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Abstract—Dictionaries adapted to the data provide superior
performance when compared to predefined dictionaries in ap-
plications involving sparse representations. Algorithmic stability
and generalization are desirable characteristics for dictionary
learning algorithms that aim to build global dictionaries which
can efficiently model any test data similar to the training samples.
In this paper, we propose an algorithm to learn dictionaries
for sparse representation of image patches, and prove that
the proposed learning algorithm is stable and generalizable
asymptotically. The algorithm employs a 1-D subspace clustering
procedure, the K-lines clustering, in order to learn a hierarchical
dictionary with multiple levels. Furthermore, we propose a
regularized pursuit scheme for computing sparse representations
using a multilevel dictionary. Using simulations with natural
image patches, we demonstrate the stability and generalization
characteristics of the proposed algorithm. Experiments also
show that improvements in denoising performance are obtained
with multilevel dictionaries when compared to global K-SVD
dictionaries. Furthermore, we propose a robust variant of multi-
level learning for severe degradations that occur in applications
like compressive sensing. Results with random projection-based
compressive recovery show that the multilevel dictionary and its
robust variant provide improved performances compared to a
baseline K-SVD dictionary.

I. INTRODUCTION
A. Dictionary Learning for Sparse Representations

HE statistical structure of naturally occurring signals

and images allows for their efficient representation as a
sparse linear combination of patterns, such as edges, lines and
other elementary features [1]]. A finite collection of normalized
features is referred to as a dictionary. The linear model used
for general sparse coding is given by

y = Pa+n, (D

where y € RM is the data vector and W = |11, ... %] €
RM*K is the dictionary. Each column of the dictionary,
referred to as an atom, is a representative pattern normalized
to unit /5 norm. a € R is the sparse coefficient vector and n
is a noise vector whose elements are independent realizations
from the Gaussian distribution N (0, 0?).

The sparse coding problem can be stated as

a = argmin ||a]|p s.t. ||y — Pal3 <e, 2)
a
where ||.||p indicates the ¢y norm, ||.||2 denotes the ¢ norm

and € is the error goal for the representation. However, exact
{y minimization is a combinatorial problem and hence its
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convex surrogate, the /1 norm, is often used. Some of the
widely used methods for computing sparse representations
include the Matching Pursuit (MP) [2], Orthogonal Matching
Pursuit (OMP) [3]], Basis Pursuit (BP) [4], FOCUSS [5] and
iterated shrinkage algorithms [6], [[7]]. The sparse coding model
has been successfully used for inverse problems in images
[[81-[10], and also in machine learning applications such as
classification and clustering [11]]-[21]]

Predefined dictionaries obtained using the discrete cosine
transform (DCT), wavelet, and curvelet [22]] bases have been
used successfully for image reconstruction and compression.
The dictionary W can also be designed from a union of
orthonormal bases [23]] or structured as an overcomplete set
of individual vectors optimized to the training data [24],
[25]. A wide range of dictionary learning algorithms have
been proposed in the literature [26]]—[32]], some of which are
tailored for specific applications. The conditions under which
a dictionary can be identified from the training data using
an ¢; minimization approach are derived in [33]]. The joint
optimization problem for dictionary learning and sparse coding
with ¢, sparsity constraints can be expressed as [8]], [34]], [35]]

min [V - WA[L st faillo < 8,Vi [9,]ls = 1,¥5,  (3)

where Y = [y1y2...yr] is a collection of T training vectors,
A = [ajay...ar] is the coefficient matrix, S is the sparsity
of the coefficient vector and ||.|| 7 denotes the Frobenius norm.
Learned dictionaries have been successfully applied to image
compression, denoising and inpainting [9]], [|10].

In this paper, we propose a stable and generalizable learning
algorithm for designing multilevel dictionaries that are par-
ticularly suited for sparse approximation of natural images.
A simple example of learning a dictionary with two levels
is demonstrated in Figure [T} The properties and performance
of this learning algorithm will be analyzed in detail in this
paper. The multilevel dictionary (MLD) learning algorithm is
a hierarchical procedure where the dictionary atoms in each
level are obtained using a 1-D subspace clustering algorithm,
which we refer to as K-lines clustering [36] [ﬂ The proposed
algorithm builds global dictionaries using a set of randomly
chosen training patches obtained from a large collection of
natural images that can generalize well to any test set of
patches. For a learned dictionary to provide a good approxi-
mation, the test data must be similar to the data samples used

INote that in the papers [36]—[38] the procedure has been referred to as
K-hyperline clustering. But in this paper, we prefer to use the term K-lines
clustering, since a 1-D subspace in any number of dimensions is referred only
to as a line, and not as a hyperline.
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Fig. 1. Features learned at two levels from non-overlapping patches (8 x 8)
of a 128 x 96 image. In each level, the patches that are highlighted in the
image share similar information and hence jointly correspond to a learned
pattern (also highlighted).

for training. Since local regions of natural images have high
redundancy and consistent statistical properties [39)]], learning
global dictionaries from a random collection of natural image
patches will provide a good representation for patches from
images not in the training set. The effectiveness of such
dictionaries have been demonstrated in denoising [9] and
compressed recovery [40].

B. Stability and Generalization in Learning

A learning algorithm is a map from the space of training
examples to the hypothesis space of functional solutions.
Algorithmic stability characterizes the behavior of a learning
algorithm with respect to the perturbations of its training set
[41]], and generalization ensures that the expected error of the
learned function with respect to the novel test data will be
close to the average empirical training error [42]. In clustering,
the learned function is completely characterized by the cluster
centers. Stability of a clustering algorithm implies that the
cluster centroids learned by the algorithm are not significantly
different when different sets of i.i.d. samples from the same
probability space are used for training [43]. When there is a
unique minimizer to the clustering objective with respect to the
underlying data distribution, stability of a clustering algorithm
is guaranteed and this analysis has been extended to
characterize the stability of K-means clustering in terms of the
number of minimizers [45]]. In [38]], the stability properties of
the K-lines clustering algorithm have been analyzed and they
have been shown to be similar to those of K-means clustering.
Note that all the stability characterizations depend only on
the underlying data distribution and the number of clusters,
and not on the actual training data itself. Generalization
implies that the average empirical training error becomes
asymptotically close to the expected error with respect to the
probability space of data, as the number of training samples
T — occ. In [46]], the generalization bound for sparse coding in
terms of the number of samples 7', also referred to as sample
complexity, is derived and in the bound is improved by
assuming a class of dictionaries that are nearly orthogonal.

The algorithmic stability of dictionary learning methods has
not been discussed in the literature until now, to the best of
our knowledge. Given a sufficiently large training set, a stable
learning algorithm will result in global dictionaries that will
depend only on the probability space to which the training
samples belong and not on the actual samples themselves.
Generalization ensures that such global dictionaries learned
result in a good performance with test data. In other words,
the asymptotic stability and generalization of a dictionary
learning algorithm provide a theoretical justification for the
uniformly good performance of global dictionaries learned
from an arbitrary training set.

C. Contributions

In this paper, we propose the MLD learning algorithm to
design global representative dictionaries for image patches.
We show that, for a sufficient number of levels, the proposed
algorithm converges, and also demonstrate that a multilevel
dictionary with a sufficient number of atoms per level exhibits
energy hierarchy (Section [[II-C). Furthermore, we develop a
Regularized Multilevel OMP (RM-OMP) procedure for com-
puting sparse codes for test data using the proposed dictionary
(Section [II-D). Some preliminary algorithmic details and
results obtained using MLD have been reported in [37].

Using the fact that the K-lines clustering algorithm is
stable, we perform stability analysis of the MLD algorithm.
For any two sets of i.i.d. training samples from the same
probability space, as the number of training samples 7" — oo,
we show that the dictionaries learned become close to each
other asymptotically. When there is a unique minimizer to
the objective in each level of learning, this holds true even
if the training sets are completely disjoint. However, when
there are multiple minimizers for the objective in at least one
level, we prove that the learned dictionaries are asymptotically
close when the difference between their corresponding training
sets is o(v/T)). Instability of the algorithm when the difference
between two training sets is €(v/7), is also shown for the
case of multiple minimizers (Section |IE|-C). Furthermore, we
prove the asymptotic generalization of the learning algorithm
(Section [[V-D).

The stability characteristics of MLD learning are experimen-
tally demonstrated using natural image data (Section [[V-E).
We show that, the stability in terms of the learned dictionar-
ies improves as the difference between their corresponding
training sets becomes small and as the number of training
samples increases. We train a global multilevel dictionary from
a set of patches chosen randomly from a corpus of natural
images and study its generalization behavior using several
simulations. For comparison, we use a dictionary learned
using the K-SVD algorithm, with similar training parameters,
for the same training data set. We observe that the error in
sparse approximation for the training and test data sets become
comparable as the size of the training set increases. When
compared to the K-SVD, the proposed algorithm exhibits
much improved generalization by providing reduced test error
even with a small number of training samples. The learned
MLD results in a better denoising performance compared to



LEARNING STABLE MULTILEVEL DICTIONARIES FOR SPARSE REPRESENTATION OF IMAGES 3

the global K-SVD dictionary (Section [V). In order to improve
recovery performance with severe degradations such as com-
pressive sensing, we also propose a robust MLD (RMLD)
procedure that uses multiple random subsets of data to obtain
approximations in each level. Using compressive recovery of
randomly projected data, we show that the RMLD improves
over MLD, which in turn performs better than a baseline K-
SVD dictionary (Section [VI).

II. BACKGROUND

In this section, we describe the K-lines clustering, a 1-D
subspace clustering procedure proposed in [36], which forms
a building block of the proposed dictionary learning algorithm.
Furthermore, we briefly discuss the results for stability analysis
of K-means and K-lines algorithms reported in [43]] and [38]]
respectively. The ideas described in this section will be used in
Section [[V]to study the stability characteristics of the proposed
dictionary learning procedure.

A. K-lines Clustering Algorithm

The K-lines clustering algorithm is an iterative procedure
that performs a least squares fit of K 1-D linear subspaces
to the training data [36]. Note that the K-lines clustering is a
special case of general subspace clustering methods proposed
in [48]-[50], when the subspaces are 1—dimensional and
constrained to pass through the origin. In contrast with K-
means, K-lines clustering allows each data sample to have
an arbitrary coefficient value corresponding to the centroid of
the cluster it belongs to. Furthermore, the cluster centroids
are normalized to unit /5 norm. Given the set of T data
samples Y = {y;}., and the number of clusters K, K-
lines clustering proceeds in two stages after initialization:
the cluster assignment and the cluster centroid update. In
the cluster assignment stage, training vector y; is assigned
to a cluster 7 based on the minimum distortion criteria,
H(y:) = argmin; d(y;,,), where the distortion measure is

dly.¥) =y — vy ¥)|3. 4)

In the cluster centroid update stage, we perform singular
value decomposition (SVD) of Y; = [y;|icc,, Where C; =
{i|H(y;) = j} contains indices of training vectors assigned
to the cluster j. The left singular vector corresponding to the
largest singular value of the decomposition, is the centroid of
cluster j. Different strategies exist for initialization of cluster
centroids and estimation of the number of hyperlines [36].

B. Stability Analysis of Clustering Algorithms

Analyzing the stability of unsupervised clustering algo-
rithms can be valuable in terms of understanding their behavior
with respect to perturbations in the training set. These algo-
rithms extract the underlying structure in the training data and
the quality of clustering is determined by an accompanying
cost function. As a result, any clustering algorithm can be
posed as a Empirical Risk Minimization (ERM) procedure,
by defining a hypothesis class of loss functions to evaluate
the possible cluster configurations and to measure their quality

[51f]. For example, K-lines clustering can be posed as an ERM
problem over the distortion function class

Or = {9@()’) =d(y,¥;),j = argmax IyT%I} )
le{1, ,K}

The class Gx is obtained by taking functions gy correspond-
ing to all possible combinations of K unit length vectors from
the RM space for the set W. Let us define the probability
space for the data in RM as (), 3, P), where ) is the sample
space and X is a sigma-algebra on ), i.e., the collection of
subsets of ) over which the probability measure P is defined.
The training samples, {yi}iTzl, are 1.i.d. realizations from this
space.

Ideally, we are interested in computing the cluster centroids
W that minimize the expected distortion E[gg] with respect
to the probability measure P. However, the underlying distri-
bution of the data samples is not known and hence we resort
to minimizing the average empirical distortion with respect to
the training samples {y;}7 ; as

1 I
5 = argmin — i)
9 = argin 7 ; g% (yi) (©)
When the empirical averages of the distortion functions in Gx
uniformly converge to the expected values over all probability

measures P,
> 6) =0,

(7)
for any § > 0, we refer to the class G as uniform Glivenko-
Cantelli (uGC). In addition to being uGC, if the class also
satisfies a version of the central limit theorem, it is defined
as uniform Donsker [41]. In order to determine if Gg is
uniform Donsker, we have to verify if the covering number of
Gk with respect to the supremum norm, N, (7, Gk ), grows
polynomially in the dimensions M [43]. Here, v denotes
the maximum L., distance between an arbitrary distortion
function in G, and the function that covers it. For K-lines
clustering, the covering number is upper bounded by [38|
Lemma 2.1]

lim supP | sup
T—oo p 9w €GK

1 T
Elge] - = ZQ‘II(Yi)

8R3K+7>MK ®)

gl

where we assume that the data lies in an M -dimensional /5
ball of radius R centered at the origin. Therefore, G belongs
to the uniform Donsker class.

The general idea behind stability of a clustering algorithm is
that the algorithm should produce cluster centroids that are not
significantly different when different i.i.d. training sets from
the same probability space are used for training [43[|-[45].
Stability is characterized based on the number of minimizers
to the clustering objective with respect to the underlying data
distribution. A minimizer corresponds to a function gg € Gg
with the minimum expectation E[gg]. Stability analysis of the
K-means algorithm has been reported in [43]], [45].

Though the geometry of K-lines clustering is different
from that of K-means, the stability characteristics of the two

Noo(7,9k) < (
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clustering algorithms have been found to be similar [38].
Given two sets of cluster centroids ¥ = {t);,..., ¥}
and A = {A\q,...,Ax} learned from training sets of T
ii.d. samples each realized from the same probability space,
let us define the L;(P) distance between the corresponding
clusterings as

9w — gallzue = / 92 () — gAW)IAPE).  ©)

When T" — o0, and G is uniform Donsker, stability in terms
of the distortion functions is expressed as

P
lgw — gallz,(p) — O, (10)

where = denotes convergence in probability. This holds true
even for ¥ and A learned from completely disjoint training
sets, when there is a unique minimizer to the clustering
objective. When there are multiple minimizers, (I0) holds
true with respect to a change in o(v/7T) samples between
two training sets and fails to hold with respect to a change
in Q(v/T) samples [38]. The distance between the cluster
centroids themselves is defined as [43]]

A(P,A) = max min
ISG<K 1<KISK

Y

Lemma 2.1 ( [38]): If the L (P) distance between the dis-
tortion functions for the clusterings ¥ and A is bounded as
lge — gallL, Py < p. for some p > 0, and dP(y)/dy > C,
for some C' > 0, then A(W¥, A) < 2sin(p) where

) T
p < 2sin ! [ = | = H
" \ Co,m

Here the training data is assumed to lie outside an M-
dimensional /5 ball of radius r centered at the origin, and
the constant C’q m depends only on C' and M.

When the clustering algorithm is stable according to (10},
for admissible values of r, Lemma[2.T]indicates that the cluster
centroids become arbitrarily close to each other, A(W, A) R
0, which implies stability in terms of cluster centroids. From
@]), it is also clear that the K-lines clustering cannot be stable
if some training vectors have a norm close enough to 0, (i.e.)
r— 0.

(12)

III. MULTILEVEL DICTIONARY LEARNING

In this section, we motivate and develop a multilevel dic-
tionary learning approach for sparse representations, whose
algorithmic stability and generalizability will be proved in
Section [[V] Furthermore, we propose the RM-OMP algorithm,
that can be used to obtain sparse codes for a test image using
the multilevel dictionary.

A. Motivation for Multilevel Learning

Our motivation for learning an MLD is two-fold. Firstly we
require a global dictionary that can exploit, (a) the redundancy
observed across local regions in natural images and, (b)
the hierarchy of patterns found in training image patches.

[ M)+ (Al 2)) 2]

Secondly, the learning procedure must be provably stable, with
respect to the notion of algorithmic stability, and generalizable.

The generative model in (T)) is well suited for natural signals
and images as they can be represented using a sparse linear
combination of elementary features chosen from a dictionary
[24]]. The redundancy in the local regions of natural images
[39] allows for the design of global dictionaries that can
generalize well to a wide range of images. Global dictio-
naries learned from a set of randomly chosen patches from
natural images have been successfully used for denoising [9],
compressed sensing [40]] and classification [52f]. In addition
to exhibiting redundancy, the natural image patches typically
contain either geometric patterns or stochastic textures or
a combination of both. This fact is demonstrated in [53],
where the authors define two types of atomic subspaces to
model image patches: subspaces of low dimensions (explicit
manifolds) for primitive geometric patterns and subspaces of
high dimensions (implicit manifolds) for stochastic textures.
Since the image patches can contain both geometric and
stochastic structures, a hybrid combination of explicit and
implicit manifolds can be used for modeling them [53].
The proposed MLD algorithm learns global representative
patterns in multiple levels, according to the order of their
energy contribution. Since the geometric patterns usually are
of higher energy when compared to stochastic textures in
images, geometric patterns are learned in the first few levels
and stochastic textures are learned in the last few levels.

Considering the dictionary learning formulation in (3), it
can be seen that clustering algorithms such as the K-means
and the K-lines can be obtained by constraining the desired
sparsity to be 1. Since the stability characteristics of clustering
algorithms are well understood, employing similar tools to
analyze the more general dictionary learning can be beneficial.
Note that the proposed algorithm poses dictionary learning
as performing K-lines clustering in multiple levels and hence
in this case we can use the stability characteristics of the
clustering algorithm to study the stability of multilevel learn-
ing. Furthermore, by exploiting the fact that the distortion
function class for each level of learning is uniform Donsker,
the generalizability of the algorithm can also be proved. Note
that multilevel learning is different from the work in [54],
where multiple sub-dictionaries are designed and one of them
is chosen for representing a group of patches.

B. Proposed MLD Learning Algorithm

We denote the MLD as ¥ = [¥;P,.¥;], and the
coefficient matrix as A = [ATAT. AT|T. Here, ¥, is the
sub-dictionary and A is the coefficient matrix for level [. The
approximation in level [ is expressed as

R, _1=¥YA+Ry, forli=1,..., L, (13)

where R;_1, R; are the residuals for the levels [ — 1 and
l respectively and Ry = Y, the matrix of training image
patches. This implies that the residual matrix in level [ — 1
serves as the training data for level [. Note that the sparsity
of the representation in each level is fixed at 1. Hence, the
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TABLE 1
ALGORITHM FOR BUILDING A MULTILEVEL DICTIONARY.

Input

Y = [yi}iTzl, M x T matrix of training vectors.

L, maximum number of levels of the dictionary.

K, number of dictionary elements in level I, | = {1,2,..., L}.
€, error goal of the representation.

Output
W, adapted sub-dictionary for level [.

Algorithm
Initialize: I =1 and Ro =Y.
Ao = {i | ||ro,i||2 > €1 <4 < T}, index of training vectors with
squared norm greater than error goal.
R() = [rOJ}iEAO .
while A;_; #Qand [ < L
Initialize:
A, coefficient matrix, size K; x M, all zeros.
R, residual matrix for level [, size M x T, all zeros.
{\IIZ,AAZ} = KLC(Bl_l,Kl).
Rf = Rl,1 - ‘I’ZAZ-
r; =rf; where i = Aj_1(j), Vi =1,..., | A1l
ay; = él,j where i = Al_l(j), V] = 1, ceey |Al_1|.
Ay={i|lrl3>e1<i<T}

Ri = [r1a],c,
Il 1+1.
end

overall approximation for all levels is

L
Y = Z W,A; +Ry.
=1

(14)

MLD learning can be interpreted as a block-based dictio-
nary learning problem with unit sparsity per block, where
the sub-dictionary in each block can allow only a 1-sparse
representation and each block corresponds to a level. The
sub-dictionary for level [, ¥, is the set of cluster centroids
learned from the training matrix for that level, R;_1, using
K-lines clustering. MLD learning can be formally stated as an
optimization problem that proceeds from the first level until
the stopping criteria is reached. For level [, the optimization
problem is

argmin |R;_; — ¥;A,||% subject to ||la; ;[0 < 1,
L
fori={1,..,T}, (15)
along with the constraint that the columns of W¥; have
unit ¢ norm, where a;; is the i™ column of A; and T
is the number of columns in A;. We adopt the notation
{¥;,A;} = KLC(R,_1, K;) to denote the problem in
where K is the number of atoms in the sub-dictionary W;.
The stopping criteria is provided either by imposing a limit
on the residual representation error or the maximum number
of levels (L). Note that the total number of levels is the same
as the maximum number of non-zero coefficients (sparsity)
of the representation. The error constraint can be stated as,
llr1ill3 <€ Vi=1,..,T for some level [, where € is the error
goal.
Table [ lists the MLD learning algorithm with sparsity and
error constraints. We use the notation A;(j) to denote the 5

LEVEL 1

LEVEL 2 LEVEL 3 LEVEL 4

Fig. 2. Multilevel dictionary, with 16 levels of 16 atoms each, comprises of
geometric patterns in the first few levels, stochastic textures in the last few
levels and a combination of both in the middle levels.

element of the set A; and r; ; denotes the i column vector in
the matrix R;. The set A; contains the indices of the residual
vectors of level [ whose norm is greater than the error goal.
The residual vectors indexed by A; are stacked in the matrix,
R;, which in turn serves as the training matrix for the next
level, [+ 1. In MLD learning, for a given level [, the residual
r;; is orthogonal to the representation W;a; ;. This implies
that

3= ®a,

15+ lIrall3- (16)

||I‘171,i

Combining this with the fact that y; = Zlel Wia;; +rr,
a;; is 1—sparse, and the columns of ¥, are of unit /5 norm,
we obtain the relation

L
Iyillz =" llarsll3 + Irz.ill3. (17)
=1

Equation (T7) states that the energy of any training vector is
equal to the sum of squares of its coefficients and the energy
of its residual. From (T6), we also have that,

IRi_1]|% = &A% + |Ry|%. (18)

In our implementation of MLD learning, we include an addi-
tional step where the residual at each level is orthogonalized
to the dictionary atoms chosen so far, and the coefficients are
recomputed. Note that this does not affect any other behavior
of the algorithm that is discussed in this section.

The training vectors for the first level of the algorithm,
ro,; lie in the ambient RM space and the residuals, ry;, lie
in a finite union of R ~! subspaces. This is because, for
each dictionary atom in the first level, its residual lies in
an M — 1 dimensional space orthogonal to it. In the second
level, the dictionary atoms can possibly lie anywhere in R,
and hence the residuals can lie in a finite union of RM~!
and RM—2 dimensional subspaces. Hence, we can generalize
that the dictionary atoms for all levels lie in RM  whereas
the training vectors of level [ > 2, lie in finite unions of
RM-1 RM-I+1 dimensional subspaces of the RM space.
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C. Convergence

The convergence of MLD learning and the energy hierarchy
in the representation obtained using an MLD can be shown
by providing two guarantees. The first guarantee is that for a
fixed number of atoms per level, the algorithm will converge
to the required error within a sufficient number of levels. This
is because the K-lines clustering makes the residual energy
of the representation smaller than the energy of the training
matrix at each level (i.e.) |Ry||% < |[Ri—1]|%. This follows
from and the fact that || ¥;A,[|% > 0.

The second guarantee is that for a sufficient number of
atoms per level, the representation energy in level [ — 1 will
be less than the representation energy in level [. To show this,
we first state that for a sufficient number of dictionary atoms
per level, |®;A,[|% > ||R;||%. This means that for every [

IRil[F < [T1Al7 < [Ri-a]7, (19)
because of (I8). This implies that [¥A2 <

|®,—1A;_1]|%, ie., the energy of the representation in
each level reduces progressively from [ =1 to [ = L.

D. Sparse Approximation using an MLD

In order to compute sparse codes for novel test data using a
multilevel dictionary, we propose to perform reconstruction
using a Multilevel Orthogonal Matching Pursuit (M-OMP)
procedure which evaluates a 1-sparse representation for each
level using the dictionary atoms from that level, and orthog-
onalizes the residual to the dictionary atoms chosen so far.
Though asymptotic generalization of the M-OMP method will
be shown in Section [V-D| imposing the energy hierarchy
observed in the training process to any test data might result
in poor generalization. Hence, there is a need to regularize this
procedure such that there is more flexibility in choosing dictio-
nary atoms for representing the test data. Hence, we propose
to build a sub-dictionary with atoms selected from the current
level as well as the u immediately preceding and following
levels, ®; = [(I)l—u(I’lf(ufl) K < TR (I’lJr(u,l)‘I’H_u] , in
every step of the pursuit algorithm. In our implementation,
we fix v = 2 and also reduce the size of the sub-dictionary
appropriately when [ < u and [ > L —u. The dictionary ®, is
used to compute a 1-sparse representation for that step of the
pursuit. It was observed from simulations that the RM-OMP
scheme performs better than M-OMP, particularly when the
training set is small.

E. Demonstration of MLD Learning

All simulation results presented in this paper were obtained
with dictionaries learned using randomly chosen patches of
size 8 x 8, extracted from the grayscale images in the training
set of the Berkeley segmentation dataset (BSDS) [55]. The
number of grayscale patches used for training will be clearly
stated for each simulation. As a preprocessing step, the mean
value of each training patch was removed. In this section, we
will demonstrate the characteristics of MLD learning using
an example dictionary learned using 50,000 patches. Note
that, the number of atoms was fixed at 16 per level and the

@

Total Representation Energy
w =

S

Level

Fig. 3. Levelwise representation energy for the learned MLD with the BSDS
training data set

number of levels was fixed at 16, which leads to a total of
256 atoms. For comparison, a global K-SVD dictionary of
size 64 x 256 atoms was learned, with the same training set,
using the MATLAB toolbox available online [56]. In this case,
the desired sparsity, which refers to the number of non-zero
coefficients (.5), was fixed at 16. Initial dictionary atoms for
the K-SVD algorithm and for each level of MLD learning
were obtained using the K-means clustering procedure.

Figure 2] illustrates the multilevel dictionary designed using
the algorithm in Table [l Note that no noise was added to
the image patches during learning. As it can be observed,
the learned MLD contains geometric patterns in the first
few levels, stochastic textures in the last few levels and a
combination of both in the middle levels. The representation
energy, || W;A;||%, captured across all the levels in MLD is
shown in Figure 3] where the energy hierarchy in learning
can be clearly seen.

Given a multilevel dictionary, an S—sparse representation
for a test sample can be evaluated using the M-OMP or
the RM-OMP procedures described in Section For the
learned K-SVD and multilevel dictionaries, we computed the
sparse codes for patches from a test dataset, by varying the
desired sparsity. The test dataset consisted of 120,000 non-
overlapping 8 x 8 patches extracted from images in the BSDS
test images. The illustration in Figure 4 shows the mean
squared error (MSE) of the representation as a function of
the number of non-zero coefficients. For the case of MLD,
the results obtained using both the M-OMP and the RM-OMP
schemes are shown. The OMP algorithm was employed to
compute the sparse coefficients with the K-SVD dictionary.
It can be observed that the MSE obtained using the M-OMP
procedure is higher in all cases of sparsity, when compared
to RM-OMP. Since the RM-OMP procedure considers dic-
tionary atoms from the neighboring levels when computing
a coefficient, it results in an improved generalization. When
compared to K-SVD, multilevel dictionaries lead to a more
accurate reconstruction when the sparsity level .S > 4, which
is the range typically used in several applications.
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Fig. 4. Comparison of the MSE obtained with the BSDS test dataset using
the K-SVD and the MLD dictionaries at different levels of sparsity.

IV. STABILITY AND GENERALIZATION

In this section, the behavior of the proposed dictionary
learning algorithm is considered from the viewpoint of algo-
rithmic stability: the behavior of the algorithm with respect
to the perturbations in the training set. It will be shown that
the dictionary atoms learned by the algorithm from two dif-
ferent training sets whose samples are realized from the same
probability space, become arbitrarily close to each other, as the
number of training samples 7' — oo. Since the proposed MLD
learning is equivalent to learning K-lines cluster centroids in
multiple levels, the stability analysis of K-lines clustering [38]],
briefly discussed in Section will be utilized in order to
prove its stability. For each level of learning, the cases of
single and multiple minimizers to the clustering objective will
be considered. Proving that the learning algorithm is stable
will show that the global dictionaries learned from the data
depend only on the probability space to which the training
samples belong and not on the actual samples themselves, as
T — oco. We also show that the MLD learning generalizes
asymptotically, i.e., the difference between expected error
and average empirical error in training approaches zero, as
T — oo. Therefore, the expected error for novel test data,
drawn from the same distribution as the training data, will be
close to the average empirical training error.

The stability analysis of the MLD algorithm will be per-
formed by considering two different dictionaries ¥ and A with
L levels each. Each level consists of K; dictionary atoms and
the sub-dictionaries in each level are indicated by ¥; and A,
respectively. Note that the sub-dictionaries ¥; and A; are the
cluster centers learned using K-lines clustering on the training
data for level [. The steps involved in proving the overall
stability of the algorithm are: (a) showing that each level of
the algorithm is stable in terms of L, (P) distance between the
distortion functions, defined in @I) as the number of training
samples T' — oo (Section [TV-A), (b) proving that stability in
terms of L;(P) distances 1ndlcates closeness of the centers
of the two clusterings (Section [V-B), in terms of the metric
defined in (T), and (c) showing that level-wise stability leads
to overall stability of the dictionary learning algorithm (Section

V-C).

A. Level-wise Stability

Let us define a probability space (V;, ¥;, P;) where ) is
the data that lies in R™, and P, is the probability measure.
The training samples for the sub-dictionaries ¥; and A; are
two different sets of 7' i.i.d. realizations from the probability
space. We also assume that the o norm of the training samples
is bounded from above and below (i.e.), 0 <7 < |ly|ls < R <
oo. Note that, in a general case, the data will lie in RM for
the first level of dictionary learning and in a finite union of
lower-dimensional subspaces of RM for the subsequent levels.
In both cases, the following argument on stability will hold.
This is because when the training data lies in a union of lower
dimensional subspaces of RM  we can assume it to be still
lying in R™, but assign the probabilities outside the union of
subspaces to be zero.

In each level, ¥; and A; are learned using the K-lines
clustering algorithm on two different i.i.d. sets of training data.
The distortion function class for the clusterings, defined similar
to (3), is uniform Donsker because the covering number
with respect to the supremum norm grows polynomially,
according to (8). When a unique minimizer exists for the
clustering objective, the distortion functions corresponding to
the different clusterings ¥; and A; become arbitrarily close,
lgw, = ga.llL. () R 0, even for completely disjoint training
sets, as T" — oco. However, in the case of multiple minimizers,
lgw, — ga,llL.(p) £, 0 holds only with respect to a change
of o(ﬁ ) training samples between the two clusterings, and
fails to hold when there is a change of Q(v/T) samples [38],
[43].

B. Distance between Cluster Centers for a Stable Clustering

For each cluster center in the clustering ¥;, we pick the
closest cluster center from A;, in terms of the distortion
measure @), and form pairs. Let us indicate the j*® pair of
cluster centers by 1, ; and A; ;. Let us define 7 disjoint sets
{A;}T_;, in which the training data for the clusterings exist,
such that P;(U7_; A;) = 1. By defining such disjoint sets, we
can formalize the notion of training data lying in a union of
subspaces of RM. The intuitive fact that the cluster centers
of two clusterings are close to each other in R space, given
that their distortion functions are close, is proved in the lemma
below.

Lemma 4.1: Consider two sub-dictionaries (clusterings) ¥,
and A; with K; atoms each obtained using the 7' training
samples that exist in the 7 disjoint sets {A4;}7_, in the RM
space, with 0 < r < |lyll2 < R < oo, and dP,(y)/dy >
C in each of the sets. When the distortion functions become
arbitrarily close to each other, ||gw, — ga,llz,(P) 2500 as
T — oo, the smallest angle between the subspaces spanned
by the cluster centers becomes arbitrarily close to zero, i.e.,

LW Ay) 2 0,,¥5 €1, K. (20)

Proof: Denote the smallest angle between the subspaces
represented by ; ; and A;; as Z(’(/Jl’j,/\l’j = pi; and

define a region S(’l/]lj,plj/Q ={yl£(;;,y) < p1j/2,0 <
r <yl £ R < oo} If Y € S(¥, j,p13/2), then

yI (I —¢l’j1,bl’j)y <y (I—)\m)\l’j)y. An illustration of this
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Fig. 5. TIllustration for showing the stability of cluster centroids from the
stability of distortion function.

setup for a 2-D case is given in Figure [5] In this figure, the
arc qiqQs is of radius r and represents the minimum value of
|ly||2- By definition, the L; (P;) distance between the distortion
functions of the clusterings for data that exists in the disjoint
sets {A;}7_, is

lgw, — gaillz,(p) = Z/ 9w, (y) —
i=17 A

For any j and 7 with a non-empty By ; j = S(3, ;, p1,;/2)NA
we have, '

gn,(W)|dP(y). (1)

lgw, = nlzairy = [ lowy) = on @A), @)

Bi,i,j

= /B [yT (I—)\z,j)\%)y—in (I_lpz,k’/’lj:k)y

) k=1

I (y closest to ¥, ;) |dPi(y), (23)

> [ (1Al y -y (1,9l v]dRe).

T 2 T 2 -
{(y 1/)1,]-) - (y Az,j) ]dy.

We have ga,(y) = yT (I — )\M)\;[’j) y in , since A ; is
the closest cluster center to the data in S(¥, ;, p1,;/2) N A; in
terms of the distortion measure (@). Note that I is the indicator
function and follows from because dP)(y)/dy > C.
Since by assumption, |lgw, — ga, |z, (P) 250, from , we
have

>C (25)

Bii,j

T 2 T 2 pP
(" ;)" = (" M) =0,
because the integrand in (25) is a continuous non-negative
function in the region of integration.

Denoting the smallest angles between y and the subspaces
spanned by 1, ; and A;; to be Oy, , and 0>\l_j respectively,

from ( we have ||y||3(cos? 91/, — cos® O, ;) L 0, for
all y. By deﬁmtlon of the region B“ > We have 0,/, <
Ox, - Since |y||2 is bounded away from zero and 1nﬁn1ty, if

(26)

(cos® Oy, , — cos® Oy, ;) L, 0 holds for all y € By ;i j, then

P .
we have Z(v, ;, A1 ;) — 0. This is true for all cluster center
pairs as we have shown this for an arbitrary ¢ and j. [ ]

C. Stability of the MLD Algorithm

The stability of the MLD algorithm as a whole, is proved in
Theorem .3 from its level-wise stability by using an induction
argument. The proof will depend on the following lemma
which shows that the residuals from two stable clusterings
belong to the same probability space.

Lemma 4.2: When the training vectors for the sub-
dictionaries (clusterings) ¥; and A; are obtained from the
probability space ()}, X, P;), and the cluster center pairs
become arbitrarily close to each other as T" — oo, the resid-
ual vectors from both the clusterings belong to an identical
probability space (:))ZH, i1, Piy1).

Proof: For the 4™ cluster center pair ¥, j» Aij» define
¥, ; and A ; as the projection matrices for their respective
orthogonal complement subspaces 1/)l _; and )\l _j- Define the
sets Dy, - = {y € U, (8 + dB) + ¥, o} and Dy, =
{y € Alj(ﬁ—kdﬁ)—i—)\lja} where —oo < a < oo, B
is an arbitrary fixed vector, not orthogonal to both ¥, ; and
A5, and d@ is a differential element. The residual vector set
for the cluster ¥, ;, when y € Dy,  is given by, ry, =~ €
{¥, Jyly € Dy, , }, or equivalently ry, € {¥, (B + dﬁ)}
Similarly for the cluster i, we have r)w L €{A;(B+dB)}.
For a 2-D case, Figure @ shows the 1-D subspace 1, ;, its
orthogonal complement 1/Jl ;j» the set Dy, and the residual
set {18+ dB)}.

In terms of probabilities, we also have that Pi(y € Dy, ) =
Pryi(ry,, € {¥;(B + dB)}), because the residual set
{¥,,(B + dB)} is obtained by a linear transformation of
Dy, .. Here P, and Py, are probability measures defined
on the training data for levels [ and [ + 1 respectively.
Similarly, Pl(y € D>\L,j) = Pl+1(r)\l,j € {Al,j(/a + dﬂ)})
When T' — oo, the cluster center pairs become arbitrarily
close to each other, i.e., Z(3; ;, A ;) 2o, by assumption.
Therefore, the symmetric difference between the sets Dy, |
and Dy, ; approaches the null set, which implies that P;(y e
Dy, ;) — Pi(y € Dy, ;) — 0. This implies,

Pryi(ry,, € {P1;(8+dB)}) -
Pria(ra,, € {A;(B+dB)}) — 0,

for an arbitrary 3 and dB3, as T — oo. This means that the
residuals of b, ; and A;; belong to a unique but identical
probability space. Since we proved this for an arbitrary [ and j,
we can say that the residuals of clusterings ¥; and A; belong
to an identical probability space given by (Y41, Xi+1, Pi41)-
|
Theorem 4.3: Given that the training vectors for the first
level are generated from the probability space (Y1, X4, P1),
and the norms of training vectors for each level are bounded
as 0 <r < |yll2 £ R < oo, the MLD learning algorithm is
stable as a whole.
Proof: The level-wise stability of MLD was shown in
Section for two cases: (a) when a unique minimizer

27)
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vi;

Fig. 6. The residual set {®; ;(8+ dB)}, for the 1-D subspace P, ;> lying
in its orthogonal complement subspace wf:]..

exists for the distortion function and (b) when a unique
minimizer does not exist. Lemma [4.1] proved that the stability
in terms of closeness of distortion functions implied stability
in terms of learned cluster centers. For showing the level-wise
stability, we assumed that the training vectors in level [ for
clusterings ¥; and A; belonged to the same probability space.
However, when learning the dictionary, this is true only for the
first level, as we supply the algorithm with training vectors
from the probability space ()1, %1, Pr).

We note that the training vectors for level [+ 1 are residuals
of the clusterings ¥; and A;. Lemma showed that the
residuals of level [ for both the clusterings belong to an
identical probability space (Y41, 2i+1, Pi+1), given that the
training vectors of level ! are realizations from the probability
space (V;,%;,P) and T — oc. By induction, this along
with the fact that the training vectors for level 1 belong to
the same probability space ()1, X1, P;), shows that all the
training vectors of both the dictionaries for any level [ indeed
belong to a probability space ()}, 3, P;) corresponding to that
level. Hence all the levels of the dictionary learning are stable
and the MLD learning is stable as a whole. ]

If there is a unique minimizer to the clustering objective
in all levels of MLD learning, then the MLD algorithm is
stable even for completely disjoint training sets, as 7" — oc.
However, if there are multiple minimizers in at least one level,
the algorithm is stable only with respect to a change of o(\/T)
training samples between the two clusterings. In particular, a
change in Q(v/T) samples makes the algorithm unstable.

D. Generalization Analysis

Since our learning algorithm consists of multiple levels, and
cannot be expressed as an ERM on a whole, the algorithm can
be said to generalize asymptotically if the sum of empirical
errors for all levels converge to the sum of expected errors, as
T — oo. This can be expressed as

L T L
ZZ gu,(vii) — > Eplgw]| 50, @28
I=1i=1 =1

'ﬂ \

where the training samples for level [ given by {y;;}~ , are
obtained from the probability space (J;, X, P;). When
holds and the learning algorithm generalizes, it can be seen
that the expected error for test data which is drawn from the
same probability space as that of the training data, is close to
the average empirical error. Therefore, when the cluster centers
for each level are obtained by minimizing the empirical error,
we are guaranteed that the expected test error will also be
small.

In order to show that (28] holds, we use the fact that each
level of MLD learning is obtained using K-lines clustering.
Hence, from , the average empirical distortion in each level
converges to the expected distortion as 1" — oo,

1 Z
T Zg‘pl (yui)
i=1

The validity of the condition in follows directly from the
triangle inequality,

L
%ZZQ% (y1,1) ZEH [9%,]
zL: = -1
<>
=1

If the M-OMP coding scheme is used for test data, and
the training and test data for level 1 are obtained from the
probability space ()1, 31, Py), the probability space for both
training and test data in level [ will be ();,X;, F;). This
is because, both the M-OMP coding scheme and the MLD
learning associate the data to a dictionary atom using the
maximum absolute correlation measure and create a residual
that is orthogonal to the atoms chosen so far. Hence, the
assumption that training and test data are drawn from the same
probability space in all levels hold and the expected test error
will be similar to the average empirical training error.

—Enlge]| D o0. (29)

T
Z 9%, (y1:) — Eplgw,]| - (30)

ﬂ \

E. Simulations

Both stability and generalization are crucial for building
effective global dictionaries to model natural image patches.
Although it is not possible to demonstrate the asymptotic
behavior experimentally, we study the changes in the behavior
of the learning algorithm with increase in the number of
samples used for training.

In order to illustrate the stability characteristics of MLD
learning, we setup an experiment where we consider a mul-
tilevel dictionary of 4 levels, with 8 atoms in each level. We
extracted patches of size 8 x 8 from the BSDS training images
and trained multilevel dictionaries using different number of
training patches 7'. As we showed in Section asymptotic
stability is guaranteed when the training set is changed by not
more than o(v/T') samples. The inferred dictionary atoms will
not vary significantly, if this condition is satisfied.

We fixed the size of the training set at different values
T = {1000, 5000, 10000, 50,000, 100000} and learned an
initial set of dictionaries using the proposed algorithm. The
second set of dictionaries were obtained by replacing different
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Fig. 7. Demonstration of the stability behavior of the proposed MLD
learning algorithm. The minimum Frobenius norm between difference of two
dictionaries with respect to permutation of their columns and signs is shown.
The second dictionary is obtained by replacing different number of samples
in the training set, used for training the original dictionary, with new data
samples.

number of samples from the original training set. For each case
of T, the number of replaced samples was varied between
100 and T'. For example, when 7' = 10000, the number of
replaced training samples were 100, 1000, 5000, and 10000.
The amount of change between the initial and the second set
of dictionaries was quantified using the minimum Frobenius
norm of their difference with respect to permutations of their
columns and sign changes. In Figure [/} we plot this quantity
for different values of 71" as a function of the number of
samples replaced in the training set. For each case of T, the
difference between the dictionaries increases as we increase
the replaced number of training samples. Furthermore, for a
fixed number of replaced samples (say 100), the difference
reduces with the increase in the number of training samples,
since it becomes closer to asymptotic behavior.

Generalization of a dictionary learning algorithm guarantees
a small approximation error for a test data sample, if the
training samples are well approximated by the dictionary. In
order to demonstrate the generalization characteristics of MLD
learning, we designed dictionaries using different number of
training image patches, of size 8 x 8, from the BSDS training
dataset and evaluated the sparse codes for patches in the BSDS
test dataset (Section [[II-E). The dictionaries were learned
at 16 levels with 16 atoms per level. Figure [§] shows the
approximation error (MSE) for both the training and test
datasets obtained using multilevel dictionaries. Furthermore,
the corresponding MSE for the case of similarly designed K-
SVD dictionaries are included for comparison. In all cases,
the sparsity in training and testing was fixed at S = 16. As it
can be observed, with MLD, the difference between the MSE
for training and test data is small even for a small training
set. However, the K-SVD dictionaries resulted in much higher
MSE difference for a small training set, although the MSE
with training data is similar for both MLD and KSVD. Note
that, in both cases, the approximation error for the test data
reduces with the increase in the size of the training set.

k
28] —&x = K-5VD - Training Error |7
AN —& - ¢.5VD - Testing Error
261 e —*—MLD - Training Error ||
N
. —E—MLD - Testing Error
.
24 B AN _
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Fig. 8. Demonstration of the generalization characteristics of the proposed
algorithm compared to K-SVD. We plot the MSE obtained by representing
patches from the BSDS test dataset, using dictionaries learned with different
number of training patches. For comparison, we show the training error
obtained in each case.

V. APPLICATION: DENOISING

Our goal in denoising is to recover the clean image Y
from the noisy observed image X. The image X is divided
into patches of size 8 x 8 with an overlap of 1 pixel, and
these patches are vectorized and stacked in the matrix X. A
noisy observation x (a column in X), can be represented as a
corrupted version of its corresponding clean patch, x =y +m,
where 7 is the AWGN vector with standard deviation o. Patch-
wise recovery was performed using RM-OMP with the global
MLD dictionary learned with 50,000 patches as described in
Section Patchwise error goal was fixed and image-level
reconstruction constraints were posed as described in [9]]. All
results were averaged over 5 iterations. Note that, under low-
noise conditions dictionaries learned from the noisy test image
itself perform better than global dictionaries. However, under
high-noise conditions, global dictionaries perform comparably
to image-specific dictionaries. This results in a significant
computational advantage since it is not necessary to train a
separate dictionary for each noisy image. Furthermore, we
focus on global dictionary learning in this paper and hence we
compare the results of global MLD and K-SVD dictionaries
in Table [II] for high-noise conditions (¢ > 20). For global K-
SVD dictionary, the results reported in [9] were used. It can
be seen that, in almost all the cases, global MLD performs
better than global K-SVD dictionaries. The denoised Lena
and Fingerprint images are shown in Figure [9] for o = 20
and sigma = 50 respectively, where a clear improvement
in reconstruction performance is observed. Computationally,
denoising using MLD is less expensive compared to using K-
SVD as seen from Table All the times reported in this
paper are obtained using MATLAB 2012a on a 2.8 GHz, 8-
core Intel i7 Linux machine.

VI. APPLICATION: COMPRESSED RECOVERY

In compressed recovery, the test image is recovered using
low-dimensional random projections obtained from its patches.
The finite size of the training set and the lack of robustness
in the initialization of K-lines clustering can affect the gener-
alization of multilevel dictionaries to test observations, under



LEARNING STABLE MULTILEVEL DICTIONARIES FOR SPARSE REPRESENTATION OF IMAGES

TABLE I

11

PSNR (DB) OF THE DENOISED STANDARD IMAGES CORRUPTED WITH AWGN OF STANDARD DEVIATION o. IN EACH CASE, THE AVERAGE OF 5 TRIALS
IS PROVIDED. HIGHER PERFORMANCE IS SHOWN IN BOLD FONT.

Image
Noise (o) Barbara Boat Fingerprint House Lena

K-SVD | MLD | K-SVD | MLD | K-SVD | MLD | K-SVD | MLD | K-SVD | MLD
20 28.87 | 29.15 | 30.24 | 30.31 28.21 28.37 | 32.88 | 3293 | 3227 | 32.44
25 27.57 | 2791 29.17 | 29.26 | 2694 | 27.22 | 31.82 | 31.99 31.2 31.37
50 24.06 | 24.15 | 2591 2597 | 22.68 | 2336 | 27091 2798 | 27.77 | 27.89
75 22.54 | 22.57 | 24.02 | 24.06 19.73 20.24 | 25.33 2542 | 25.81 25.92
100 21.73 | 21.72 | 22.83 22.92 18.23 18.72 | 2386 | 24.06 | 24.45 24.51

(b) Noisy Image (22.11 dB)

4

(;) Ori

S0

ginal Image (b) Noisy Image (14.15 dB)

Fig. 9.
obtained using the K-SVD toolbox [56].

TABLE IIT
AVERAGE TIME(SECONDS) TAKEN IN MATLAB FOR DENOISING IMAGES
OF SIZE 512 X 512 UNDER DIFFERENT NOISE CONDITIONS.

| Method [ 0=20|0=25]0=50|0=75]0=100 |
K-SVD [56] | 1647 | 1493 | 1143 | 958 8.61
MLD 8.79 8.52 7.96 7.54 7.11

such severe degradation. The learning procedure can be made
robust by using multiple clusterings in each level, where each
clustering is learned from a random subset of the training
samples for that level.

Robust Multilevel Dictionaries: Learning robust multilevel
dictionaries (RMLD) is closely related to Rvotes , a super-
vised ensemble learning method. The Rvotes scheme randomly
samples the training set to create D sets of Tp samples each,
where Tp < T'. The final prediction is obtained by averaging
the predictions from the multiple hypotheses learned from the
training sets. For learning level [ in RMLD, we draw D subsets
of randomly chosen training samples, {Yl(d)} (?:1 from the

(d) MLD (29.19 dB)

gk

MLD (23.38 dB)

(d

Original, noisy and denoised Lena and Fingerprint images with their respective PSNRs. Reconstructed images for global K-SVD dictionaries are

original training set Y; of size 7', allowing for overlap across
the subsets. The superscript here denotes the index of the
subset. For each subset Yl(d of size T'p < T, we learn a sub-
dictionary lIll(d) with K atoms using K-lines clustering. For
each training sample in Y;, we compute 1—sparse represen-
tations using all the D sub-dictionaries, and denote the set of
coefficient matrices as {Al(d)}c’?zl. The approximation for the
i™ training sample in level [, y; ;, is computed as the average of
approximations using all D sub-dictionaries, % >oa lIll(d)agf?.
The ensemble approximations for all training samples in the
level can be used to compute the set of residuals, and this
process is repeated for a desired number of levels, to obtain a
robust multilevel dictionary (RMLD). Because of its improved
robustness, reconstruction of test data with an RMLD can be
performed using simple level-wise approximation, in contrast
to the RM-OMP procedure with an MLD. We obtain 1—sparse
approximations on sub-dictionaries in each level, average the
approximations, compute the residual, and repeat this process
for the subsequent levels.

Results: The performance of compressed recovery based on
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PSNR (DB) OF THE IMAGES RECOVERED FROM COMPRESSED MEASUREMENTS OBTAINED USING GAUSSIAN RANDOM MEASUREMENT MATRICES.
RESULTS OBTAINED USING THE PROPOSED MLD, AND RMLD DICTIONARIES, ALONG WITH K-SVD, ARE SHOWN FOR DIFFERENT MEASUREMENT

TABLE IV

NOISE CONDITIONS AND NUMBER OF MEASUREMENTS. HIGHER PSNR FOR EACH CASE IS INDICATED IN BOLD FONT.

Measurement Image

SNR Method Barbara Boat House Lena Man

(dB) N=8 |N=16|N=32 | N=8 |N=16 | N=32| N=8 |N=16 |N=32| N=8 | N=16 |[N=32| N=8 |N=16 |[N=32
K-SVD | 19.8 |20.54|21.51 |21.48 |22.07 | 2342 |22.57|23.91 | 25.48 | 23.28|24.23 | 26.16 22.23| 23.2 | 24.9

0 MLD [19.96]20.63| 21.9 [21.68[22.38|23.5622.73]23.98 | 25.54| 23.3 [ 24.51 | 26.4322.41|23.59 | 25.18
RMLD |21.55|22.02| 22.6 |23.05|23.76 | 24.25 | 24.2 |24.9726.44 | 24.1 | 25.38|26.11 | 23.89 | 25.15| 25.66
K-SVD |20.93 | 21.89 | 24.3423.03 | 25.02 | 27.39 | 24.91 | 26.87 | 31.01 | 25.01 | 28.08 | 31.42|24.02 | 26.02 | 28.54

15 MLD |21.17[22.41[24.95|23.42[25.2627.83 | 25.06 | 27.15 ] 31.37 | 25.29 [ 28.29 | 31.55 | 24.31[26.19 | 28.82
RMLD |22.58 | 24.16 | 26.17 | 24.82 | 26.69 | 29.48 | 26.41 | 28.79 | 31.38 | 26.89 | 29.11 | 31.4 |25.51|27.62 | 30.04
K-SVD [21.43]22.09|24.99 |23.45|25.88 | 28.7 | 25.1 | 27.1 | 31.6 |25.27|29.03 | 31.83|24.17|26.59 | 29.36

25 MLD |[21.56|22.62]25.26 [23.69|25.27|28.82|25.36|27.31|31.78 [ 25.48[28.64| 32 [24.42[26.71|29.59
RMLD |22.65|24.33|26.72 | 25.12| 27.07 | 29.68 | 26.94 | 29.04 | 32.38 | 27.58 | 29.55 | 32.36 | 25.92 | 27.79 | 30.38

12

| (a) K-SVD (26.25 dB)

(b) MLD (26.59 dB)

(c) RMLD (7.81 dB)

Fig. 10. Compressed recovery of images from random measurements (N = 16, SNR of measurement process = 15dB) using the different dictionaries. In

each case the PSNR of the recovered image is also shown.

TABLE V
AVERAGE TIME(SECONDS) TAKEN IN MATLAB FOR TRAINING
DICTIONARIES, WITH 50, 000 SAMPLES, AND RECOVERING IMAGES OF
SIZE 512 X 512 USING DIFFERENT NUMBER OF RANDOM MEASUREMENTS.

| Method | Training | N=8 [ N=16 | N=32
K-SVD [56] 675 0.07 0.09 0.10
MLD 502 005 | 011 0.19
RMLD 1980 0.45 1.05 2.31

random measurement systems is compared for global MLD,
RMLD and K-SVD dictionaries. Sensing and recovery were
performed on a patch-by-patch basis, on non-overlapping
patches of size 8 x 8. MLD and K-SVD dictionaries were
learned with 50,000 BSDS patches as described in Section
I1I-El For learning the RMLD, we fix K = 16 and obtain
D = 20 rounds of K-lines dictionaries in each level (L = 16)
using random sets of training data. The measurement process
is described as x = ®W¥a + 1 where ¥ is the dictionary,
® is the measurement or projection matrix, 7 is the AWGN
vector added to the measurement process, x is the output of
the measurement process, and a is the sparse coefficient vector
such that y = Wa. The size of the data vector y is M x 1, that
of W is M x K, that of the measurement matrix ® is N x M,
where N < M, and that of the measured vector x is [N x 1. The

entries in the random measurement matrix were independent
realizations from a standard normal distribution. We recover
the underlying image from its compressed measurements, us-
ing the K-SVD, MLD, and RMLD dictionaries. For each case,
we present average results from 100 trial runs, each time with
a different measurement matrix. The recovery performance
was evaluated for several standard images and reported in
Table [V} MLD outperforms K-SVD dictionaries in all cases.
Furthermore, the proposed RMLD algorithm results in much
improved recovery, for increased complexity during training
and testing phases. The average time taken for recovering a
512x 512 image using the three proposed dictionaries are listed
in Table [V] Figure [I0]illustrates the recovered images obtained
using different dictionaries with random measurements.

VII. CONCLUSIONS

We presented a multilevel learning algorithm to design
global dictionaries that exploit the redundancy and energy
hierarchy found in natural image patches. The proposed al-
gorithm employs K-lines clustering to learn atoms for each
level. We showed that the algorithm converges for a sufficient
number of levels and that energy hierarchy is exhibited for a
sufficient number of atoms per level. We also showed that the
dictionaries learned using different sets of training data, from
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the same probability space, are arbitrarily close to each other,
for a sufficiently large number of data samples. Furthermore,
we proved the asymptotic generalization characteristics, and
demonstrated the stability and generalization behavior using
simulations. Simulation results for denoising and compressed
sensing clearly demonstrated that the learned MLD provide
superior performance when compared to K-SVD dictionaries.
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