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Abstract. We adress the problem of Laplace deconvolution with random noise in

a regression framework. The time set is not considered to be fixed, but grows with

the number of observation points. Moreover, the convolution kernel is unknown, and

accessible only through experimental noise. We make use of a recent procedure of

estimation based on a Galerkin projection of the operator on Laguerre functions ([9]),

and couple it with a threshold performed both on the operator and the observed signal.

We establish the minimax optimality of our procedure under the squared loss error,

when the smoothness of the signal is measured in a Laguerre-Sobolev sense and the

kernel satisfies fair blurring assumptions. It is important to stress that the resulting

process is adaptive with regard both to the target function’s smoothness and to the

kernel’s blurring properties. We end this paper with a numerical study emphazising

the good practical performances of the procedure on concrete examples.
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1. Introduction

Laplace deconvolution is motivated by a wide set of practical applications, ranging

from population dynamics or physics to computational tomography or fluorescence

spectroscopy (Linz [22, Chap. 2], Ameloot et al. [4], Comte et al. [9]). In the

corresponding setting we observe q, the result of the action of a kernel g on the function

of interest f , according to the following equation

qptq “
ż t

0

gpt ´ τqf pτqdτ, t ě 0 (1)

Equation (1) is also refered to as Volterra integral equation. One of its main features is

its causal property, since qptq is affected only by the values of f and g at times anterior

to t. Of course, only finite samples of qptq are accessible in practice. Moreover, the

http://arxiv.org/abs/1303.7437v2
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presence of additional noise justifies the empirical modelization of (1) by the classical

regression model, inspired by Abramovich et al. [3]

yptiq “
ż ti

0

gpti ´ τqf pτqdτ ` σηi, i “ 1, ..., n (2)

where 0 ď t1 ď ... ď tn ď Tn are the points of observation, pηiqi“1,...,n are independent

standard gaussian variables, and σ is a fixed factor accounting for the precision of the

observations. Tn is supposed to grow with the number of observations n.

As pointed out in Abramovich et al. [3] and Comte et al. [9], in spite of its apparent

similarity with the Fourier deconvolution problem, the theoritical features of equation

(1), as well as the practical problems raised during its resolution are deeply different.

More precisely, setting artificially gptq “ f ptq “ 0 for t ă 0 amounts to solving the

classical Fourier deconvolution problem

yptiq “
ż Tn

0

gpti ´ τqf pτqdτ ` σηi, i “ 1, ..., n (3)

A first notable objection is that the framework of classical Fourier deconvolution assumes

periodicity of the function f and the kernel g on r0, T s, a meaningless notion when

applied to a varying time set r0, Tns. Even more problematic is the fact that this

modelization totally ignores the causal feature of Laplace convolution, creating unwanted

interferences between different time sets. To finish, the manipulation consisting in

artificially expanding q and g for t ă 0 creates artifacts on the estimated function

at times t ă 0 as well.

Another approach is to treat equation (2) as a general ill-posed problem and apply a

Tikhonov regularization (Golubev [15]). However the direct implementation of this

method also destroys the causal nature of equation (1), and tends to oversmooth

the solution (Cinzori and Lamm [7]). Subsequent adaptations which remedy these

shortcomings are present in Lamm [20] and Cinzori and Lamm [7]. However in these

works the time set is considered to be fixed.

A more suitable theoritical tool in solving (1) is the use of Laplace transform, which

allows to derive a closed form of the solution. However, its direct implementation is

compromised by numerical problems, since the generic expression of the inverse Laplace

transform is not easily computable in general. This motivates the widespread use of

inversion tables, unfortunately irrelevant when the image function is not known exactly

but approximated via a numerical scheme.

In this paper, following Comte et al. [9], we will exploit the properties of Laguerre

functions, which can be used either to compute the inverse Laplace transform (Abate

et al. [1], Lien et al. [21]), or to solve directly equation (1) (Keilson and Nunn [19]). More

precisely, a Galerkin method applied to (2) shows that, even if their role is not entirely

symmetric to the role played by harmonics in the framework of Fourier deconvolution,

they allow a sparse analysis of equation (1).

All the previous mentionned works only concerned the case of a deterministic noise
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at best. The presence of random noise requires an additionnal treatment, and calls

for specific statistical tools. In the setting of random noise, Dey et al. [11] considered a

kernel of the form e´at and used a regularized inversion of the inverse Laplace transform.

More recently, Abramovich et al. [3] conceived an optimal procedure in the minimax

sense on Hölder spaces HspR`q. This procedure used an exact expression of the solution

involving the derivatives of q, which were then estimated via Lepskii’s method. However

a shortcoming of the procedure is its strong dependence on the kernel g, in the sense that

a small error in g can translate into a wide difference in the result. In other words there

seems to be a trade off between the closed form of the solution, and the unstability with

regard to the kernel. Moreover, the fact that g is seldom observed directly in practice,

but is usually subject to experimental noise should prompt us to privilege stability over

exactitude.

In that spirit, Comte et al. [9] took advantage of the algebraic properties of Laguerre

functions in the context of (2). With an adequate penalty term, they proposed an

estimator which mimicks the oracle risk to within logarithmic terms. This modelization

has the non negligible advantage of practical simplicity and efficiency, since solving

equation (1) amounts to the inversion of a lower triangular Toeplitz matrix.

Even if this latter procedure proves to be more stable with regard to g experimentally,

no systematic study has been conducted on the subject yet. In this paper we attempt to

fill in this gap: we suppose that the observation of g is contaminated by a gaussian white

noise, and show how Laguerre functions allow to handle this issue. We place ourselves

under the minimax point of view and suppose that f belongs to a Laguerre-Sobolev

space and that g satisfies standard blurring assumptions. We apply recent techniques

for the treatment of noisy operators in the context of inverse problems (Hoffmann and

Reiß [17],Delattre et al. [10]), which consist in a preliminary processing of the operator

K coupled with a classical thresholding procedure applied to y.

2. Discretization of Laplace deconvolution

2.1. Laguerre functions

Suppose that the target function f and the kernel K both lie in L2pR`q. Define the

Laguerre polynomials (see Gradshteyn and Ryzhik [16])

Lℓptq “
ℓÿ

j“0

p´1qj
ˆ
ℓ

j

˙
tj

j!
(4)

and, following Comte et al. [9], the ensuing Laguerre functions, depending on the

parameter a ą 0,

ϕℓptq “
?
2ae´atLℓp2atq, ℓ P N (5)
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The parameter a is a tuning parameter used to fit experimental curves. The Laguerre

functions constitute a Hilbert basis of L2pR`q. Any function f P L2pR`q satisfies

f “
ÿ

ℓě0

f̌ℓϕℓptq, f̌ℓ
∆“

ż 8

0

fpτqϕℓpτqdτ (6)

The following proposition illustrates the conveniency of Laguerre functions in the

framework of equation (1).

Proposition 2.1 (Gradshteyn and Ryzhik [16], Formula 7.411.4).

@a ą 0, @t ě 0,

ż t

0

ϕkpxqϕℓpt ´ xqdx “ p2aq´1{2
`
ϕℓ`mptq ´ ϕℓ`m`1ptq

˘
(7)

From now on, except if explicitly mentionned, we will suppose a “ 1
2
.

2.2. Galerkin method

Proposition 2.1 prompted Comte et al. [9] to apply a Galerkin scheme to equation

(1). Galerkin schemes rely on the choice of a set of functions which discretize the

inverse problem at stake in a convenient way. They were beneficially applied in the

context of inverse problems (Cohen et al. [8]), and blind deconvolution (Efromovich

and Koltchinskii [14], Hoffmann and Reiß [17] and Delattre et al. [10]). To this end we

will remind briefly the underlying methodology of a Galerkin scheme and show how it

conveniently applies to equation (1).

Let f P L2pR`q and K an operator of L2pR`q, and suppose we want to recover f

from the observation q “ Kf . Note V ℓ the finite dimensional space spanned by the

orthogonal set of Laguerre functions tϕkukďℓ. The Galerkin approximation f ℓ of f on

V ℓ is the solution of the equation

xKf ℓ, vy “ xg, vy, @v P V ℓ

ô
ÿ

kďℓ

xKϕk,ϕ
1
ky xf ℓ,ϕky “ xg,ϕky, @k1 ď ℓ (8)

We shall note Kℓ the Galerkin matrix pKℓqi,j “ xKϕj,ϕiy, i, j ď ℓ. Note hence K the

operator of L2pR`q mapping f onto t ÞÑ
şt
0
fpt ´ τqgpτqdτ . We can reformulate (1) as

qℓ “ Kℓf ℓ (9)

Moreover, Proposition 2.1 implies:

Proposition 2.2 (Comte et al. [9], Lemma 1). The Galerkin matrix Kℓ is lower

triangular, Toeplitz. More precisely, note 9g the function with Laguerre coefficients

9̌gℓ “ ǧ01tℓ“0u `
`
ǧℓ ´ ǧℓ´1

˘
1tℓě1u, ℓ P N
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Then

Kℓ “

¨
˚̊
˚̊
˝

9̌g0 0 . . . 0

9̌g1 9̌g0

. . .
...

...
. . .

. . . 0

9̌gℓ . . . 9̌g1 9̌g0

˛
‹‹‹‹‚

In the sequel, for any function f P L2pR`q, we will note T pfq the infinite Toeplitz

matrix such that T pfqi,1 “ fi`1 for all i ě 0, and Tℓpfq the extracted matrix defined by

Tℓpfqi,1 “ T pfqi,1, i ď ℓ ` 1. In particular,

Kℓ “ Tℓp 9gq

The resolution of the linear system (8) now shows great practical conveniency, provided

that Kℓ is invertible. This is equivalent to ǧ0 ‰ 0, an assumption we will make in the

sequel.

2.3. Application to the regression model with irregular design

It remains to incorporate two supplementary features of equation (2) in the inversion

of (9). First, the presence of the random noise η and secondly, the possible irregularity

of the design points. This construction is due to Comte et al. [9]. Due to the fact that

the observation points ti are imposed by the problem, the estimation of the Laguerre

coefficients q̌ℓ of the function q suffers from two potential drawbacks. First, the infinite

support of the Laguerre polynomials as well as the function q which should not be

too problematic, provided that Tn is large enough and that the functions decrease

sufficiently to infinity. More problematic is the fact that the observation points ti are

sometimes subject to experimental constraints, which affect their repartition on R`.

The consistency of the estimation of q̌ℓ is hereby deteriorated.

We will hence suppose that the following conditions are fulfilled:

‚ There exists an integer n0 such that n
Tn

ą σ for all n ě n0.

‚ lim
nÑ8

Tn “ 8, and lim
nÑ8

Tn

n
“ 0

To take into account the irregularity of the design, we follow Comte et al. [9] and define

Pn : r0;Tns Ñ r0;Tns a regular non decreasing function such that

Pnp0q “ 0, PnpTnq “ Tn, Pnptiq “ i

n
Tn for i ď n (10)

Note Φℓ the pℓ`1qˆn matrix with entries pΦℓqk,i “ ϕkptiq. For any function h P L2pRq,
we have

P ℓhptiq “
ÿ

kďℓ

ϕkptiqȟk “ Φℓh
ℓ

ô hℓ “
`
tΦℓΦℓ

˘´1tΦℓP ℓhptiq
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where P ℓ is the orthogonal projector onto V ℓ. We deduce that

yℓ “
`
tΦℓΦℓ

˘´1tΦℓP ℓ

“
q ` ση

‰
ptiq “ Kℓf ℓ ` σ

`
tΦℓΦℓ

˘´1tΦℓηn (11)

where ηℓ „ N p0, Inq. Let us take a closer look to the matrix ptΦℓΦℓ

˘
. Its general term

is

ptΦℓΦℓqℓ,k “
nÿ

i“1

ϕkpP´1p i
n
TnqqϕℓpP´1p i

n
Tnqq

„ n

Tn

ż Tn

0

ϕkpP´1pτqqϕℓpP´1pτqqdτ

“ n

Tn

ż Tn

0

ϕkpτqϕℓpτqP 1pτqdτ

for n, Tn large enough. If the points ti are equispaced, taking P pτq “ τ in (10) entails

that Tnn
´1ptΦℓΦℓ

˘
is close to the identity provided that Tn is large enough. As in Comte

et al. [9], we hence reformulate (11) as the sequential model

yℓ “ Kℓf ℓ ` σ

c
Tn

n
ξℓ

where ξℓ „ N p0,Ωℓq and Ωℓ “ nT´1
n ptΦℓΦℓ

˘´1
. In general, Ωℓ somehow quantifies the

distance to the uniform design case. To ensure that the design is not too ill conditionned,

we will suppose that the following assumption is fulfilled.

Assumption 2.3. Let L P N. There exists C ě 0, such that for all ℓ ď L, for all

λ P SppΩℓq, λ ď C

This assumption is dependent on the integer L, which plays the role of a maximal

resolution level, and will be adapted to the case of interest later. The inversion of (11)

now requires controls of the variable pKℓq´1ξℓ. Under suitable properties of f and g,

we shall be able to apply a classical inverse/thresholding procedure, and derive rates of

convergence over specific regularity spaces. These properties are the subject of Part 3.

2.4. Error in the operator

We already mentionned the fact that the resolution of (1) is usually unstable with

respect to g (Abramovich et al. [3]). Furthermore, in practice, inference on the kernel g

is possible only through experimental noise, and requires a preliminary step of estimation

giving way to imprecision. This additionnal error might significantly contaminate

the result of any procedure of estimation if not properly treated. Let us see how

Laguerre functions ϕℓ allow to handle this issue: in section 2.2, we established that the

discretization of (13) with Laguerre functions involved a Toeplitz matrix with entries

constituted of the Laguerre coefficients of 9g. We can thus consider 9g as the finite impulse

response of the operator K when applied to the system pϕℓqℓě0. To take into account
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the imprecision in the observations of 9g, we adopt the framework of blind deconvolution

and suppose that 9g is not known exactly, but that we have acces the noisy version

9gδ “ 9g ` δb (12)

where b is a gaussian white noise on L2pR`q. The generic problem of blind deconvolution

is motivated by numerous scientific fields, including for example electronic microscopy

or astrophysics, where the corresponding kernel is seldom known nor directly observed.

It was adequatly discussed in Efromovich and Koltchinskii [14] and Hoffmann and Reiß

[17].

Taking into account the observations (12), the projection 9gℓ is changed to 9gℓ
δ “ 9gℓ ` δbℓ

where bℓ is a gaussian vector with covariance Iℓ. The new model, adjusted from (11)

becomes
$
&
%
yℓ “ Kℓf ℓ ` σ

b
Tn

n
ξℓ

Kℓ
δ “ Kℓ ` δBℓ

(13)

where Bℓ “ Tℓpbq is a random Toeplitz matrix. In the sequel, for the sake of clarity, we

note ε “ σ

b
Tn

n
.

Remark 2.4. We could as well suppose that we observe gδ “ g ` δb, yet it is more

convenient to work with 9g (the entries of the noisy Toeplitz matrix B are directly i.i.d

standard gaussian variables). In the former case, the rest of the paper however adapts

with no change in the algorithms, since inequality (27) is satisfied as well. A modification

of the proof of Theorem 4.6 should also provide the lower bound for the second procedure.

3. Features of the target function and the kernel

3.1. Sobolev spaces associated to Laguerre functions

We proceed to the description of regularity spaces associated with the resolution of (13).

The following material is classical, we refer to Bongioanni and Torrea [5] or Rathnakumar

[26] for example.

Since f ÞÑ
?
2afp2a.q is an isometry of L2pR`q, the structures defined for different

values of a are equivalent. Hence we shall only concentrate on the mainstream case

where a “ 1{2. Define the operator L on L2pR`, dxq by

L “ ´
”
x
d2

dx2
` d

dx
´ x

4

ı
(14)

The functions ϕℓ are the eigenfunctions of L associated with eigenvalues pℓ ` 1
2
q. We

hence define the Sobolev space Ws associated with Laguerre functions as

Ws “tf P L2pR`, dxq s.t. Lsf P L2pR`, dxqu
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For a function f P L2pR`, dxq, we have the straightforward equivalence

f P Ws ô
ÿ

ℓě0

ˇ̌`
ℓ ` 1

2

˘sxf,ϕℓy
ˇ̌2 ă 8

and the associated norm

}f}Ws “
ÿ

ℓě0

ˇ̌`
ℓ ` 1

2

˘sxf,ϕℓy
ˇ̌2

For M ě 0, we shall note WspMq the Sobolev ball of radius M . Finally, we remind

that, as }ϕℓ}8 ď 1 for all ℓ ě 0, we have s ą 1{2 ñ Ws Ă C0pR`q. From now on, we

will hence suppose that there exists s ą 1{2 such that f P Ws.

3.2. Banded Toeplitz matrices

Before entering into details about the kernel features, we introduce basic material on

Toeplitz matrices. Most of it is inspired by Böttcher and Grudsky [6] and Comte et al.

[9].

Let a “ paℓq P ℓ1pZq be a sequence of real numbers. We remind from section 2.2 that

we note T paq the infinite Toeplitz matrix defined by

T paq “

¨
˚̊
˚̋

a0 a´1 a´2 . . . . . .

a1 a0 a´1 . . . . . .

a2 a1 a0 . . . . . .
...

. . .
. . .

. . . . . .

˛
‹‹‹‚

and Tℓpaq P MℓpRq the truncated Toeplitz matrix defined as

pTℓpaqqi,j “ pT paqqi,j, i, j ď ℓ ` 1

The Toeplitz matrices T paq and Tℓpaq are naturally linked to the two respective Laurent

series

apzq “
8ÿ

k“´8

akz
k and aℓpzq “

ℓÿ

k“´ℓ

akz
k

We will indifferently refer to the vector a or the corresponding Laurent serie. The

spectral norm of T paq is related to the behaviour of apzq, as illustrated in the following

proposition.

Proposition 3.1. Let a P ℓ1pZq. Let C stand for the complex unit circle. We have

}T paq}op “ }apzq}circ

where }apzq}circ ∆“ sup
zPC

ˇ̌ 8ÿ

ℓ“´8

aℓz
ℓ
ˇ̌
. A simple corollary is the following inequality

}T paq}op ď
8ÿ

ℓ“´8

|aℓ|
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In particular, Proposition 3.1 applies to the case of truncated Toeplitz matrices

Tℓpaq. Moreover, if a has no zero on the complex unit circle, we have

lim sup
ℓÑ8

}Tℓpaq}op ă 8 and lim
ℓÑ8

}Tℓpaq}op “ }T paq}op (15)

Now suppose that a and a1 both generate lower triangular Toeplitz matrices (i.e.

ak “ a1
k “ 0 if k ă 0). Then the following equalities hold for all ℓ ě 0:

TℓpaqTℓpa1q “ Tℓpa1qTℓpaq “ Tℓpaa1q and Tℓpaq´1 “ Tℓp1{aq (16)

In other words, the matrix multiplication (resp. inversion) is equivalent to a power serie

multiplication (resp. inversion).

3.3. Degree of ill posedness

We now need to precise the properties of K as a blurring operator of L2pR`q. Usually
the operator K is not compact, and the problem (1) is ill-posed. This results in

practical unstabilities when trying to invert equation (11) from discrete observations.

The quantification of the ill-posedness of the problem is specified by the introduction

of a constant, called degree of ill-posedness (DIP) of the problem (see Nussbaum and

Pereverzev [25], Mathe and Pereverzev [23] for a generic review). We adapt this concept

to our framework, and make the following assumption.

Assumption 3.2 (Degree of ill-posedness of g). There exists ν ě 0, Q ě 0 such that,

for all ℓ ě 0,

}pKℓq´1}op ď Qpℓ _ 1qν

ν is called degree of ill-posedness of g (or equivalently of K). We note KνpQq the set of

functions which satisfy this assumption.

We shall see examples of kernels satisfying this assumption further. For the moment,

we concentrate on the treatment of observations (13) in the context we just described.

3.4. Algorithms and rates of convergence

The main challenge which remains to be treated now is to articulate the two critical

steps of inversion and regularization, via adapted procedures. For example, let us give

a brief overview of the methodology in Comte et al. [9]: Let ℓ P N, and let Λ be the

following contrast function, defined on R
ℓ by

Λ : t ÞÑ }t}2 ´ 2xt, pKℓq´1yℓy

Note }.}op the spectral norm and }.}HS the Hilbert Schmidt norm. A model selection is

performed on the maximal level L, by introducing the following penalizing factor (B ą 0

is an arbitrary constant):

penpℓq “ 4σ2Tnn
´1

´
p1 ` Bq}

b
Qℓ}2HS ` p1 ` Bq´1pν ` 1q}

b
Qℓ}2op log ℓ

¯
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where Qℓ “ pKℓq´1Ωℓ
tpKℓq´1 and

a
Qℓ is a lower triangular matrix satisfyinga

Qℓ t
a
Qℓ “ Qℓ. The maximal level L̃ is hence chosen as

L̃ “ argmin
ℓďℓpnq

tΛ2
`
pKℓq´1yℓ

˘
` penpℓqu

where ℓpnq is a large enough resolution level, possibly depending on n, and the ensuing

estimator of f is

pKL̃q´1yL̃

We follow here a different path: we suppose that the target function belongs to a

Sobolev-Laguerre space, and perform thresholding techniques in a minimax framework.

Furthermore, our results are asymptotic with regard to ε, δ. Would g be known, the

estimation of f from observations (13) amounts to solving a standard inverse problem

with signal noise. To this end, a prolific litterature is at disposal (a selected list is Donoho

[12], Abramovich and Silverman [2], Cohen et al. [8]). In order to take into account

the presence of noise in the operator, we shall hence apply a preliminar regularizing

thresholding procedure to the noisy operator Kδ in order to ensure the stability of the

further inversion step. To that end, define the maximal level as

LI “ λ
´
ε
a

| log ε| _ δ| log δ|
¯ ´1

ν`1

(17)

with λ a positive constant. Define also the two thresholding levels

Oℓ,δ “ κ
`
pℓ _ 1q logpℓ _ 2q

˘1{2
δ
a

| log δ| (18)

SI

ℓ,n “ pℓ _ 1qν
´
τsigε

a
| log ε| _ τopδ| log δ|

¯
(19)

For ℓ ě 0, note ζℓ “ xpKℓ
δq´11t}pKℓ

δq´1}opăO´1
δ,l uy

ℓ,ϕℓy. The estimator rf I

of f is defined

by

rf I “
ÿ

ℓďLI

ζℓ1t|ζℓ|ąSℓuϕℓ

We call this procedure Algorithm I. The preliminary threshold performed on pKℓ
δq´1

ensures its proximity with pKℓq´1 with high probability (see Lemma 6.2). We now

study the squared loss performance of the procedure.

Theorem 3.3. Let M ě 0, s ą 1{2. Let ν ě 0, Q ě 0. Suppose that Assumption 2.3

holds for L “ LI. Then for sufficiently large thresholding constants κ, τsig and τop,

sup
fPWspMq
gPKν pQq

E}rf I ´ f} À
´
δ| log δ|

¯ 2s
2ps`νq`1 _

´
ε
a

| log ε|
¯ 2s

2ps`νq`1

where À means inequality up to a constant depending only on λ, κ, τsig, τop, s,M, ν,Q.
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The rates in Theorem 3.3 reveal two components, accounting respectively for the

imprecision in the observation of the operator and the signal. The latter is fairly classic

in non parametric statistics (Nussbaum and Pereverzev [25], Johnstone et al. [18]) where

it is also optimal, while the former is standard (and optimal too) in blind deconvolution

on Hilbert spaces (Efromovich and Koltchinskii [14], Hoffmann and Reiß [17]). Thus,

we do not study the optimality of these rates in this paper, but rather concentrate on a

more specific framework related to the problem of interest.

4. Adaptation to the standard framework of Laplace deconvolution

We now discuss the adapation of our algorithm in the mainstream framework of Laplace

deconvolution, as exposed in Abramovich et al. [3] or Comte et al. [9]. As we shall see,

this more restrictive framework allows to treat observations (13) more efficiently. To

this end, we first define a more restrictive version of the degree of ill-posedness.

Assumption 4.1 (Second kind degree of ill-posedness). Note γk “ xp1{ 9gq,ϕky, so that

p1{ 9gqpzq “
ÿ

kě0

γkz
k. There exists ν ą 0, there exists Q2, Q1 ą 0, such that for all ℓ ě 0,

ℓÿ

k“0

γ2
k ď Q2pℓ _ 1q2ν´1 (20)

ℓÿ

k“0

kÿ

n“0

γ2
n ě Q1pℓ _ 1q2ν (21)

For Q “ pQ1, Q2q, we note GνpQq the set of functions g P L2pR`q such that

Assumption 4.1 holds. Note that the validity of this assumption automatically entails

Q1 ď
`
1 ` 22ν

2ν

˘
Q2. Note also that the left term in (21) is the Hilbert-Schmidt norm of

pKℓq´1. Thus, Assumption 4.1 is more restrictive that Assumption 3.2. However, it is

satisfied by a natural class of functions g:

Proposition 4.2 (Comte et al. [9], Lemma 3/ Lemma 5). Suppose that there exists

C, ν ą 1{2, µ P C and wpzq “ śN
i“1pz ´ µiq, |µi| ą 1 a polynomial function with no pole

inside of the complex unit disc, such that

9gpzq “ Cwpzqpµ ´ zqν (22)

Then Assumption 4.1 is satisfied. Furthermore, if w ” 1 and ν ě 0, then |γℓ| „ ℓν´1

Γpνq
.

For completeness, we give a proof of Proposition 4.2 in section 6. We now turn to

the standard framework of Laplace deconvolution, as exposed in Abramovich et al. [3]

and Comte et al. [9]. To this end, we define the following assumptions concerning the

kernel g.

Assumption 4.3.
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(A1) There exists an integer r ě 1 such that

djg

dtj

ˇ̌
t“0

“
#
0 if j “ 0, 1, ..., r ´ 2

Br ‰ 0 if j “ r ´ 1

(A2) g P L1
`
r0,`8q

˘
is r times differentiable and gprq P L1

`
r0,`8q

˘
.

(A3) The Laplace transform of g has no zeros with non negative real parts except for the

zeros of the form 8 ` ib.

The consequences of these assumptions are well formulated in the terms of the

preceding framework:

Proposition 4.4 (Comte et al. [9], Lemma 3). Suppose that Assumptions (A1), (A2)

and (A3) hold. Then the hypotheses of Proposition 4.2 are satisfied with µ “ 1, ν “ r.

Hence, Assumption 4.1 is verified with ν “ r and Algorithm I applies. However,

Assumption 4.1 provides additional information on the behaviour of p1{ 9gq. We adapt

Algorithm I to this new framework, by operating the following changes:

‚ Set the maximal level to

LII “ λ
´
ε
a

| log ε| _ δ| log δ|
¯´1

‚ Set the signal thresholding level to

SII

ℓ,n “

$
&
%

}pKℓ
δq´1}HSpℓ _ 1q´1{2

´
τsigε

a
| log ε| _ τopδ| log δ|

¯
if }pKℓ

δq´1}op ă O´1
ℓ,δ

`8 if }pKℓ
δq´1}op ě O´1

ℓ,δ

(23)

where }A}HS “
a

TrptAAq is the Hilbert-Schmidt norm. We call the modified procedure

Algorithm II and note rf II

the corresponding estimated function. A notable gain of this

new algorithm is its independence with regard to the parameter ν. Indeed, Assumption

4.1 allows us to use }pKℓ
δq´1}HS in (19) as a substitute of ℓν , and to overesimate the

’true’ maximal level LI. Its performances are exposed in the next theorem:

Theorem 4.5. Let M ě 0. Let ν ą 0, Q2, Q1 ą 0 and s ą 1{2. Suppose that

Assumption 2.3 holds with L “ LII. Then for sufficiently large thresholding constants

κ, τsig and τop,

sup
fPWspMq
KPGνpQq

E}rf II ´ f} À
´
δ| log δ|

¯ s
s`ν _

´
ε
a

| log ε|
¯ s

s`ν

where À means inequality up to a constant depending only on λ, κ, τsig, τop, s,M, ν,Q1, Q2.

Thus, in addition to the adaptivity over the parameter ν, the strengthening of

Assumption 3.2 via (20) and (21) allows to improve on the rates of Theorem 3.3

with regard both to the operator and signal noise. Our next result shows that the

rate achieved in Theorem 4.5 is indeed optimal, up to logarithmic terms. The lower

bound will not decrease for increasing noise levels δ and ε, whence it suffices to provide

separately the cases δ “ 0 and ε “ 0.
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Theorem 4.6. Let s ą 1{2, let M ě 0 ν ą 1{2 and Q2 ě cνQ1 ą 0. Here cν is a

constant depending only on ν which will will not seek to precise. We have

inf
f̃

sup
fPWspMq
gPGν pQq

E}f̃ ´ f} Á δ
s

s`ν | log δ|´1 _ ε
s

s`ν | log ε|´1

where the infimum is taken among all estimators f̃ of f based on observations (13).

Combining Theorem 3.3 together with Theorem 4.6, we conclude that our algorithm

is minimax over WspMq to within logarithmic terms in ε and δ, uniformly with regard

to the blurring kernel g P GνpQq.

5. Practical performances

In this section we study the practical performances of the two procedures developped

above. Note that three potential sources of errors may contaminate the quality of the

observations in (13) : the signal precision σ

b
Tn

n
, the operator precision δ and the design

quality }Ωℓ}op. We shall hence emphasize their influence in the estimation of f , as well

as their respective interactions.

Our first aim is to study the interaction between the effect of signal and kernel noise in

the two procedures of reconstruction. To this end, we will isolate them from the effect

of the design, and suppose that the latter is ideally conditionned by setting Ωℓ “ Iℓ.

Let us start by a few precisions concerning the tuning parameters of Algorithm I and

II. The setting up of these procedures requires the preliminary definition of λ, κ, τsig
and τop.

Tuning parameters: for the definition of the maximal level of resolution, we set λ “ 1

for both algorithms. The concrete choice of adequate thresholding constants κ and τ is

a complex issue. Our practical choices will be based on the following remark, inspired by

Donoho and Johnstone [13]: in the case of direct estimation on real line, the universal

threshold which is both efficient and simple to implement, takes the form 2
a

| log ε|.
A consistent interpretation is to consider that this threshold should kill any pure noise

signal. We will adapt this reasoning to the case of interest.

Choice of κ : we use as a benchmark the case where g ” 0. Given δ large enough, we

define κ as the smallest value κδ such that , for all ℓ ď 10, 1t}pKℓ
δq´1}opăO´1

δ,l u “ 0. The

results are reported in Table 1 and give κ “ 0.3.

Choice of τsig and τop: It is clear that the role of τsig and τop is to control the influence

of the signal (resp. the operator) error. To choose τsig (resp. τop), we therefore set

εsig ą δsig ą 0 (resp. δop ą εop ą 0) large enough. We resort to the case f ” 0 as a

benchmark: we have xf ,ϕℓy “ 0 for ℓ ě 1, consequently the observations xgεsig
,ϕℓy,

ℓ ě 0 are pure noise. We hence simulateKδsig and, integrating the precedently computed

value of κ, apply the procedure for increasing values of τsig (resp. τopq until all the

computed coefficients xf̃ i
,ϕℓy (i “I,II) are killed for ℓ ď 10. The results are reported

in Table 2.



Noisy Laplace deconvolution with error in the operator 14

κ 0.1 0.2 0.3

N 3 1 0

Table 1. Choosing of κ. N is the average number, computed on a basis of 10

realizations, of levels ℓ ď 10 such that }pKℓ
δq´1}op ă O´1

δ,l pκq. We have δ “ 10´2.

τsig 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

NI 1 1 0 0 0 0 0 0

NII 7 5 4 3 2 1 1 0

τop 0.1

NI 0

NII 0

Table 2. Choosing of τ . For pδsig, εsigq “ pεop, δopq “ p10´2, 10´1q and each value of

τ , we computed 10 times the described procedure and reported Ni the average number

of remaining Laguerre coefficients for Algorithm i.
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(a) Target function f1
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(b) Kernel g

0 5 10 15
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

ε=10−3

ε=10−2

q=Kf

(c) q “ Kf

Figure 1. Datas and noisy observations of g and q

We now apply the two procedures to the case where f 1ptq “ pt2 ´ tq expp´tq and

g “ ϕ0 (a graphical representation of these two functions is presented in Figure 1).

We have `
1{ 9g

˘
pzq “ p1 ´ zq´1 “

ÿ

ℓě0

zℓ

hence Assumptions 3.2 and 4.1 are both satisfied taking ν “ 1. For several values of ε

and δ, we report the corresponding squared loss, computed on a basis of 500 realisations

with the use of Parseval’s identity, in Table 3. The corresponding results are presented

in Figure 2 for one particular realization of ξ, b. The results indicate that the transition

on the two types of errors occur when δ is higher than ε, translating a prevailing effect

of the signal noise ε over the operator error δ in practice. As Theorems 3.3 and 4.5

suggest, the second Algorithm overperforms the first in (almost) every case.

Discussion on the design irregularity: to control the squared risk of the two
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Algorithm I Algorithm II
❍
❍
❍
❍
❍
❍❍

δ

ε
0 10´3 10´2 3.10´2 0 10´3 10´2 3.10´2

0 0 0.020 0.141 0.348 0 0.012 0.109 0.312

10´3 0.004 0.020 0.141 0.352 0.005 0.012 0.108 0.301

10´2 0.047 0.054 0.143 0.344 0.053 0.039 0.116 0.318

3.10´2 0.170 0.169 0.190 0.348 0.118 0.109 0.145 0.324

Table 3. Normalized mean squared error of the two procedures applied to the functions

f1 and g. The computations were performed using a monte carlo method on 500

realizations.
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(a) Algorithm I
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(b) Algorithm II

Figure 2. Estimation of f1 for predominant signal noise pε, δq “ p10´2, 10´3q and

predominant operator noise pδ, εq “ p10´3, 10´2q.

procedures, one needs condition 2.3 to be fulfilled. If not, the eigenvalues of the matrix

ΩL become potentially too large, and observations (11) are not conveniently treatable.

In this case, it is preferable to lower the maximal level down to a point where }ΩL}op
remains under control. To this end, we change the maximal level of the two respective

procedures to

N i “ Li ^ maxtℓ ě 0 s.t. }Ωℓ}op ď αu, i “ I, II

where α is an arbitrary thresholding constant, set to 1.5 in the sequel. We now fix

σ “ δ “ 10´2 and chose the design points ti as ti “ 100i{n for n “ 200, 250, 750

and 1000. Taking the same kernel g “ ϕ0, and setting f 2ptq “ pt1{2 ´ tq expp´tq, we
compare the performances of the new choice N i to the previous one Li, by computing

the respective mean squared losses on a basis of 500 observations and report the result

in Table 4. The results show a minor effect of the design ill-posedness on Algorithm I,
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❍
❍
❍
❍
❍
❍❍

n “
200 250 500 750

Algorithm I

`
LI, N I

˘
(6,6) (6,6) (6,6) (6,6)

MSE, LI 0.273 0.270 0.264 0.258

MSE, N I 0.275 0.272 0.264 0.257

Algorithm II

`
LII, N II

˘
(37,12) (37,15) (37,27) (37,27)

MSE, LII 1.336 0.559 0.289 0.253

MSE, N II 0.294 0.291 0.284 0.256

Table 4. Normalized mean squared error of the two procedures when the design

is constituted of 200 equispaced points on the interval r0; 100s. We compare the

performances of the two maximal resolution levels Li and N i for the parameters

σ “ δ “ 10´2, g “ ϕ0 and f2ptq “ pt1{2 ´ tq expp´tq.
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(LI)"=6
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(a) Algorithm I
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1.5

 

 

LII=37

NII=12
Target function

(b) Algorithm II

Figure 3. Result of the two different maximal levels Li and N i to estimate f2, for a

particular realizaton of b and ξ. The design is constituted of 200 equidistant points of

observations in r0; 100s. The noise levels are σ “ δ “ 10´2.

since Li is usually already smaller than N i. However, the gain is notable for Algorithm

II when n ď 250. To illustrate this point, we plot in Figure 3 the corresponding results

when n “ 200.

Back to the regression model

We now turn back to the original model (2) to apply the two procedures. It is well

known that this model is asymptotically equivalent to (11), in the sense that a fine
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(a) step“5.10´1;n“30

pMSEI,MSEIIq“p0.166,0.177q
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(b) step“10´1;n“100

pMSEI,MSEIIq“p0.118,0.133q

Figure 4. Adaptation of the procedures to the regression framework. Here, MSE

denotes the normalized mean squared error for each algorithm (computed with 500

realizations). The target function is f3 and the noise levels are σ “ δ “ 5.10´2.

enough design will provide an estimation of the Laguerre coefficients with a negligible

error when n Ñ 8. We work with f3pzq “ p1 ´ zq1{2 , g “ ϕ0, δ “ 10´2, and suppose

that the design is constituted of the points ti “
iÿ

j“1

pstep`|Xj|q where pXjqjďn is an i.i.d

sequence of N p0, 10´2q variables. We observe the noisy values yptiq “ qptiq ` σηi where

qpzq “ p1 ´ zq3{2, and compute the Laguerre coefficients q̌ℓ via the approximation

q̌ℓ „
n´1ÿ

i“1

qptiqϕℓptiq ` qpti`1qϕℓpti`1q
2

pti`1 ´ tiq

We apply the two procedures and present the results on Figure 4.

6. Proofs

In the sequel, for the sake of clarity, we suppose that τsig “ τop
∆“ τ .

6.1. Proof of Proposition 4.2

Proof. We can restrict ourselves to the case where µ “ 1. Proposition 16 applied to

equality (22) entails

@ℓ ě 0, Tℓ

`
p1{ 9gq

˘
“ C´1Tℓ

`
w´1

˘
Tℓ

`
p1 ´ zq´ν

˘

Tℓ

`
p1 ´ zq´ν

˘
“ CTℓ

`
w

˘
Tℓ

`
p1{ 9gq

˘
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As a consequence,

ℓÿ

k“0

γ2
k “ }p1{ 9gqℓ}2 ď C´1}Tℓpw´1q}op}p1 ´ zq´ν

ℓ }2 (24)

and }pKℓq´1}HS ě C´1}Tℓ

`
w

˘
}´1
op }Tℓ

`
p1 ´ zq´ν

˘
}HS (25)

Since w is assumed to have no zeros on C, we deduce from Proposition 3.1 that both

}w´1}circ and }w}circ are finite, and from (15) that

}Tℓ

`
w´1

˘
}op — 1 and }Tℓ

`
w

˘
}op — 1

It remains to treat the binomial serie p1 ´ zq´ν . This serie can be expanded as

p1 ´ zq´ν “
ÿ

ℓě0

p´1qℓ
ˆ´ν

ℓ

˙
zℓ

, where
`

´ν

ℓ

˘ ∆“ Γp´ν`1q
Γpℓ`1qΓp´ν´ℓ`1q

is the generalized binomial coefficient. Furthermore, we

have
ˆ´ν

ℓ

˙
„

ℓÑ8

p´1qℓ
Γpνqℓ´ν`1

(26)

which is a direct consequence of Euler’s definition of the Gamma function Γpzq “

lim
kÑ8

k!kz

Πk
i“0pz ` iq . Since ν ą 1{2, the serie

ÿ

k

ˆ´ν

k

˙2

is hence divergent, and there

exists rQ2, rQ1 ą 0 such that, for all ℓ ě 0,

ℓÿ

k“0

ˆ´ν

k

˙2

ď rQ1pℓ _ 1q2ν´1 and
ℓÿ

k“0

kÿ

n“0

ˆ´ν

n

˙2

ě rQ2pℓ _ 1q2ν

The proof is complete thanks to (24) and (25).

6.2. Proofs of theorems 3.3 and 4.5

6.2.1. Preliminary lemmas We begin with the following lemmas. Lemma 6.1 is a

concentration inequality on the variable }Bℓ}op, which results from a concentration

inequality on subgaussian processes. Lemma 6.2 states that }pKℓ
δq´1}op behaves as

}pKℓq´1}op on a set with large probability. Finally, Lemma 6.3 establishes deviations

bounds on the variables ζℓ ´ f̌ ℓ which will be useful throughout the proofs of Theorem

3.3 and Theorem 4.5.

Lemma 6.1. There exists β0, c0 independent from ℓ ě 0, such that, for all ℓ ě 0, for

all t ě β0,

P

´ 1a
pℓ _ 1q logpℓ _ 2q

}Bℓ}op ą t
¯

ď expp´c0t
2q

This readily entails the following moments control, available for all ℓ ě 0, p ě 1

E}Bℓ}pop À
`
ℓ log ℓ

˘p{2 _ 1
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Proof. The proof is a slight modification of Meckes [24, Theorem 1], to which we refer

for a complete study. Lemma 6.1 is trivially satisfied if ℓ “ 0, 1, hence we will suppose

that ℓ ě 2. From Proposition 3.1, we derive that

E}Bℓ}op ď E}T
`
pbqk

˘
}op “ E sup

xPr0,1s

|Yx|, Yx
∆“

ℓÿ

k“0

bℓe
2iπkx

We claim the two following facts:

‚ Let a0, ..., aℓ P R. There exists c ě 0 such that ofor all t ą 0,

P
`ˇ̌ ℓÿ

k“0

akbk
ˇ̌

ą t
˘

ď exp
` ´ct2

řℓ

k“0 a
2
k

˘
(27)

‚ dpx, yq ∆“
a

E|Yx ´ Yy|2 ď 4ℓ3{2|x ´ y| ^ 2
?
ℓ

The first point is readily verified since pbkqkďℓ is a standard Gaussian vector, while the

second point directly results from the bound

ˇ̌
e2iπkx ´ e2iπky

ˇ̌
ď 2 ^ 2πk|x ´ y| for all x, y P r0, 1s, k ě 0

A direct application of Dudley’s entropy bound (Talagrand [27, Proposition 2.1]) now

entails

E sup
xPr0,1s

|Yx| À pℓ log ℓq1{2

(see Meckes [24] for the rest of the proof). The deviation bound is now a consequence

of Talagrand [27, Lemma 5.3]. Indeed, for all x P r0, 1s,

E|Yx|2 “ E
ˇ̌ ℓÿ

k“0

bke
2iπkx

ˇ̌2 À ℓ

which ends the proof.

Lemma 6.2. Let ℓ ě 0, aℓ “ ρOℓ,δ for some 0 ă ρ ă 1
2
. Note γδpzq “

ÿ

ℓě0

γk,δz
k the

power series associated to pKℓ
δq´1. On Aℓ

∆“ t}pKℓ
δq´1}op ď O´1

ℓ,δ u and Bℓ
∆“ t}δBℓ}op ď

aℓu, the following inequalities hold

}pKℓ
δq´1}op ď ρ

1 ´ ρ
}pKℓq´1}op and }pKℓq´1}op ď p1 ´ ρq´1}pKℓ

δq´1}op (28)

}pKℓ
δq´1}HS ď ρ

1 ´ ρ
}pKℓq´1}HS and }pKℓq´1}HS ď p1 ´ ρq´1}pKℓ

δq´1}HS (29)

ℓÿ

k“0

γ2
k,δ ď ρ

1 ´ ρ

ℓÿ

k“0

γ2
k and

ℓÿ

k“0

γ2
k ď p1 ´ ρq´1

ℓÿ

k“0

γ2
k,δ (30)
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Proof. First, we have

`
Kℓ

˘´1 “
`
Kℓ

δ ´ δBℓ
˘´1 “

`
I ´ δpKℓ

δq´1Bℓ
˘´1`

Kℓ
δ

˘´1

On AℓXBℓ, since aℓ satisfies O
´1
ℓ,δ aℓ “ ρ ă 1

2
, by a usual Neumann series argument,

we have

}
`
Kℓ

˘´1}op “
›››
” ÿ

kě0

`
´ δpKℓ

δq´1Bℓ
˘kı`

Kℓ
δ

˘´1
›››
op

ď
” ÿ

kě0

δk}
`
Kℓ

δ

˘´1}kop}Bℓ}kop
ı
}
`
Kℓ

δ

˘´1}op

ď
” ÿ

kě0

ρk
ı
}
`
Kℓ

δ

˘´1}op

ď p1 ´ ρq´1}
`
Kℓ

δ

˘´1}op (31)

Secondly, we have

`
Kℓ

δ

˘´1 “
`
Kℓ ` δBℓ

˘´1 “
`
I ` δpKℓq´1Bℓ

˘´1`
Kℓ

˘´1

Moreover, thanks to (31), on Aℓ X Bℓ, we have

}δpKℓq´1Bℓ}op ď p1 ´ ρq´1O´1
ℓ,δ aℓ ď ρ

1 ´ ρ
ă 1 (32)

So that we can now similarly derive

››`
Kℓ

δ

˘´1››
op

ď ρ

1 ´ ρ

››`
Kℓ

˘´1››
op

This prooves (28). The proofs of (29) and (30) follow the same lines, since }AB}HS ď
}A}op}B}HS, and }Ab} ď }A}op}b}.

6.2.2. Proof of theorem 3.3

Lemma 6.3. Under Assumption 3.2, we have, for all ℓ ě 0,

E

”ˇ̌
ˇxpKℓ

δq´11Aℓ
1Bℓ

`
´ δBℓf ℓ ` εξLI

˘
,ϕℓy

ˇ̌
ˇ
qı

À pℓ _ 1qqνpε _ δqq (33)

P

´ˇ̌
ˇxpKℓ

δq´11Aℓ
1Bℓ

`
´ δBℓf ℓ ` εξLI

˘
,ϕℓy

ˇ̌
ˇ ą SI

ℓ,ε

¯
À ετ

2 _ δτ (34)

Proof. In order to prove Inequalities (33) and (34), it suffices to study the tails of the

random variables
ˇ̌
ˇxpKℓ

δq´11Aℓ
1Bℓ

`
´ δBℓf ℓ ` εξLI

˘
,ϕℓy

ˇ̌
ˇ. For convenience we will only

treat the case where ℓ ě 2, otherwise the result follows by identical arguments. To this

end, we study each term apart. On Aℓ X Bℓ, Lemma 6.2 and Assumption 3.2 entail

}pKℓ
δq´1}op ď Qρ

1 ´ ρ
ℓν
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Thus, combining Assumption 2.3 with the latter inequality, a brief conditionning

argument readily yields

P

´ˇ̌
ˇxpKℓ

δq´11Aℓ
1Bℓ

εξLI,ϕℓy
ˇ̌
ˇ ą t

¯
À exp

`
´ t2

ε2ℓ2ν

˘

Let us study the second term. On Aℓ X Bℓ, we have

δpKℓ
δq´1Bℓ “

ÿ

kě1

`
δpKℓq´1Bℓ

˘k “ δpKℓq´1Bℓ `
ÿ

kě2

`
δpKℓq´1Bℓ

˘k

Hence,

δpKℓ
δq´11Aℓ

1Bℓ
Bℓf ℓ “ r1 ` r2 (35)

where
#
r1 “ xδpKℓq´1Bℓf ℓ,ϕℓy
r2 “ x

`
δpKℓq´1Bℓ

˘2`
I ` δpKℓq´1Bℓ

˘´1
f ℓ,ϕℓy

(36)

Let’s now bound separately r1 and r2. We first apply equality (16) to get

xpKℓq´1Bℓf ℓ,ϕℓy “ xpKℓq´1f ℓ, tBℓϕℓy
“ xpKℓq´1f ℓ, pbℓq1y

where pbℓq1
k “ pbℓqℓ´k. The result is a centred gaussian variable with variance

}δpKℓq´1f ℓ}2 ď δ2Q2M2ℓ2ν

which hence satisfies

Pp|r1| ą tq À exp
` ´t2

δ2ℓ2ν

˘

Let us study the term r2. Since the maximal level L verifies L ď λpδ| log δ|q´ 1
ν`1 , we

have, for all ℓ ď L, δℓν`1 log ℓ À 1. We deduce that

Pp|r2| ą tq ď Ppδ2ℓ2ν}Bℓ}2op ą tq

ď Pp 1

ℓ log ℓ
}Bℓ}2op ą δ´2ℓ´2ν´1plog ℓq´1tq

À Pp 1

ℓ log ℓ
}Bℓ}2op ą δ´1ℓ´νtq

À expp´t
`
δℓν

˘´1q1ttąβ0δℓνu ` 1ttďβ0δℓν u

inequality (34) directly follows, and inequality (33) is now a direct application of the

well known formula

ErX2s “
ż

tą0

2tPp|X| ą tqdt
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Proof of theorem 3.3. We apply Parseval’s formula to derive

E}f̃ I ´ f}22 “
ÿ

ℓďLI

Exrf ´ f ,ϕℓy2 `
ÿ

ℓąLI

f̌
2

ℓ

The second term is easily handled. Remark first that, since s ą 1{2, we have
2s
ν`1

ą 2s
s`ν`1{2

and we can write

ÿ

ℓąLI

f̌
2

ℓ ď
`
LI

˘´2s

ď
`
ε
a

| log ε|
˘ 2s

ν`1 _
`
δ| log δ|

˘ 2s
ν`1

ď
`
ε
a

| log ε|
˘ 4s

2ps`νq`1 _
`
δ| log δ|

˘ 4s
2ps`νq`1

In order to lighten the notations, we will only consider the indexes ℓ ě 2 in the first

term. This is of course not problematic, since an identical reasoning allows to bound

the two remaining summands by the desired rates of convergence. We hence write the

following decomposition

ÿ

ℓďLI

Exrf ´ f ,ϕℓy2 “
ÿ

ℓďLI

Epζℓ ´ f̌ ℓq21t|ζℓ|ąSI

ℓ,εu ` E

ÿ

ℓďLI

f̌
2

ℓ1t|ζℓ|ďSI

ℓ,εu

À I ` II ` III ` IV

where

I “
ÿ

ℓďLI

E
`
ζℓ ´ f̌ ℓ

˘2
1Aℓ

1Bℓ
1t|ζℓ|ąSI

ℓ,εu

II “
ÿ

ℓďLI

Ef̌
2

ℓ1t|ζℓ|ďSI

ℓ,εu1Aℓ
1Bℓ

III “
ÿ

ℓďLI

E
`
ζℓ ´ f̌ ℓ

˘2
1Aℓ

1Bc
ℓ
1t|ζℓ|ąSI

ℓ,εu `
ÿ

ℓďLI

Ef̌
2

ℓ1t|ζℓ|ďSI

ℓ,εu1Bc
ℓ

IV “
ÿ

ℓďLI

Ef̌
2

ℓ1Ac
ℓ
1t|ζℓ|ďSI

ℓ,εu

‚ Term I and II. On Aℓ, we have

ζℓ ´ f̌ ℓ “ xpKℓ
δq´1

`
´ δBℓf ℓ ` εξ

˘
,ϕℓy (37)

Hence we can decompose further I as

I À
ÿ

ℓďLI

ExpKℓ
δq´11Aℓ

1Bℓ

`
´ δBℓf ℓ ` εξ

˘
,ϕℓy

21t|ζℓ|ąSI

ℓ,εu

À
ÿ

ℓďLI

ExpKℓ
δq´11Aℓ

1Bℓ

`
´ δBℓf ℓ ` εξ

˘
,ϕℓy

21t|ζℓ|ąSI

ℓ,εu
1t|f̌ℓ|ěSI

ℓ,ε
{2u

`
ÿ

ℓďLI

ExpKℓ
δq´11Aℓ

1Bℓ

`
´ δBℓf ℓ ` εξ

˘
,ϕℓy

21t|ζℓ|ąSI

ℓ,εu
1t|f̌ℓ|ăSI

ℓ,ε
{2u

∆
“ V ` V I
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Let us first treat the term V I. From Lemmas 6.2 and 6.3 and Cauchy-Schwarz inequality,

we derive

V I ď
ÿ

ℓďLI

E

”
xpKℓ

δq´11Aℓ
1Bℓ

`
δBℓf ℓ ` εξ

˘
,ϕℓy4

ı1{2

.Pp|ζℓ ´ f̌ ℓ| ą SI

ℓ,εq1{2

À
ÿ

ℓďLI

“
pδ _ εq4ℓ4ν

‰1{2`
δτ{2 _ ετ

2{2
˘

which is less than the desired bound for τ large enough. As for term V , we split it in

two and write

V ď
ÿ

ℓďLI

ExpKℓ
δq´11Aℓ

1Bℓ

`
δBℓf ℓ ` εξ

˘
,ϕℓy21t|f̌ℓ|ěSI

ℓ,ε
{2u

ď
ÿ

ℓďLI

ExpKℓ
δq´11Aℓ

1Bℓ
δBℓf ℓ,ϕℓy21t|f̌ℓ|ěℓνδ| log δ|{2u

`
ÿ

ℓďLI

ExpKℓ
δq´11Aℓ

1Bℓ
εξ,ϕℓy21!

|f̌ℓ|ěℓνε
?

| log ε|{2
)

ď
ÿ

ℓďLI

δ2ℓ2ν
`
f̌

2

ℓ

`
ℓν δ| log δ|

˘´2 ^ 1
˘

_
ÿ

ℓďLI

ε2ℓ2ν
`
f̌

2

ℓ

`
ℓνε

a
| log ε|

˘´2 ^ 1
˘

Note ℓδ “
`
δ| log δ|

˘ ´2
2ps`νq`1 and write

ÿ

ℓďLI

δ2ℓ2ν
`
f̌

2

ℓ

`
ℓνδ| log δ|

˘´2 ^ 1
˘

ď
ÿ

ℓďℓδ

δ2ℓ2ν `
ÿ

ℓąℓδ

f̌
2

ℓ | log δ|´2

À
`
δ| log δ|

˘ 4s
2ps`νq`1

The ε-term is treated similarly by taking ℓε “
`
ε
a

| log ε|
˘ ´2

2s`2ν`1 and leads to the desired

convergence rate. As for the term II, a similar reasonning leads to

II ď
ÿ

ℓďLI

Ef̌
2

ℓ1t|ζℓ|ďSI

ℓ,εu1t|f̌ ℓ|ď2SI

ℓ,εu `
ÿ

ℓďLI

Ef̌
2

ℓ1t|ζℓ|ďSI

ℓ,εu1t|f̌ ℓ|ą2SI

ℓ,εu
∆“V II ` V III

The term V III is handled as the term V I. Indeed,

V III ď
ÿ

ℓďLI

f̌
2

ℓP
`
|ζℓ ´ f̌ ℓ| ą SI

ℓ,ε

˘
ď

ÿ

ℓďLI

f̌
2

ℓpετ
2 _ δτ q
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which is less than the desired rate for τ large enough. Finally, we have

V II ď
ÿ

ℓďLI

Ef̌
2

ℓ1t|f̌ ℓ|ď2SI

ℓ,εu

ď
ÿ

ℓďLI

Ef̌
2

ℓ1
!

|f̌ℓ|ď2τℓνε
?

| log ε|
) `

ÿ

ℓďLI

Ef̌
2

ℓ1t|f̌ℓ|ď2τℓνδ| log δ|u

À
ÿ

ℓďℓε

ℓ2νε2| log ε| `
ÿ

ℓąℓε

f̌
2

ℓ `
ÿ

ℓďℓδ

ℓ2νδ2| log δ| `
ÿ

ℓąℓδ

f̌
2

ℓ

À
`
ε
a

| log ε|
˘ 4s

2ps`νq`1 _
`
δ| log δ|2

˘ 4s
2ps`νq`1

‚ Term III. We have

III ď
ÿ

ℓďLI

E

´`
ζℓ ´ f̌ ℓ

˘2
1Aℓ

` f̌
2

ℓ

¯
1Bc

ℓ

ď
ÿ

ℓďLI

E

”`
ζℓ ´ f̌ ℓ

˘4
1Aℓ

ı1{2

P
`
Bc

ℓ

˘1{2 `
ÿ

ℓďLI

f̌
2

ℓPpBc
ℓq

Moreover, Lemma 6.1 entails

P
`
Bc

ℓ

˘
ď δκ

2ρ2

for all ℓ ě 1. It is hence clear that for κ large enough, the term III is less than the

announced rate.

‚ Term IV. We claim that

1tAc
ℓu ď 1t}pKℓq´1}opěO´1

ℓ,δ
{2u ` 1t}δBℓ}opěOℓ,δu

for all ℓ ě 0 (see Delattre et al. [10], Lemma 5.3). Hence,

IV ď
ÿ

ℓďLI

Ef̌
2

ℓ

`
1t}pKℓq´1}opěO´1

ℓ,δ
{2u ` 1t}δBℓ}opěOℓ,δu

˘

∆“ V III ` IX

Since }pKℓq´1}op ď Q2ℓ
ν , we have t}pKℓq´1}op ě O´1

ℓ,δ {2u Ă tℓν`1{2
?
log ℓ ě

c
`
δ| log δ|

˘´1u where c is a constant depending only on Q2 and κ. Hence

V III ď
ÿ

ℓěc

`
δ| log δ|3{2

˘´ 2
2ν`1

f̌
2

ℓ

À
`
δ| log δ|

˘ 4s
2ν`2s`1

As for IX , a quick application of 6.1 entails

Pp}δBℓ}op ě Oℓ,δq ď δκ
2
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,so that

IX ď
ÿ

ℓďLI

f̌
2

ℓδ
κ2 À δκ

2

which is less than the announced rate for κ large enough.

It remains to put together the bounds of the four terms above to get the desired

rates of convergence in theorem 3.3.

6.2.3. Proof of theorem 4.5

Lemma 6.4. Note, for ℓ ě 0, ĚSII

ℓ,ε

∆“ pℓ _ 1qν´1{2
`
τsigε

a
| log ε| _ τopδ| log δ|

˘
. Under

Assumption 4.1, we have, for all ℓ ě 0, for all q ě 0,

E

”ˇ̌
xpKℓ

δq´11Aℓ
1Bℓ

p´δBℓf ℓ ` εξLII

˘
,ϕℓy

ˇ̌qı À pℓ _ 1qqpν´1{2qpε _ δqq (38)

P

´ˇ̌
xpKℓ

δq´11Aℓ
1Bℓ

p´δBℓf ℓ ` εξLII

˘
,ϕℓy

ˇ̌
ą ĚSII

ℓ,ε

¯
À ετ

2 _ δτ (39)

Proof. The proof is very similar to Lemma 6.3, whence we will just mention the notable

changes compared to it. Once more, we shall only treat the case ℓ ě 2. First, we have

xpKℓ
δq´11Aℓ

1Bℓ
εξ,ϕℓy “ xεξLII ,t pKℓ

δq´11Aℓ
1Bℓ

ϕℓy “ εxξLII , pp1{ 9gδqℓq1y

so that a brief contitionning argument, combined with (30) and Assumption 2.3 entails

Pp|xpKℓ
δq´11Aℓ

1Bℓ
εξLII ,ϕℓy| ą tq À expp ´t2

ε2ℓ2ν´1
q

In order to treat the term Pp|xpKℓ
δq´11Aℓ

1Bℓ
δBℓf ℓ,ϕℓy| ą tq, we first establish a useful

result for the sequel: if g satisfies (20), then

}pKℓq´1f ℓ} “ }Tℓpf qp1{ 9gqℓ} ď }Tℓpf q}op}p1{ 9gqℓ}

Furthermore, thanks to Proposition 3.1 we have

}Tℓpf q}op ď
ÿ

ℓě0

|f̌ ℓ| ď
ÿ

ℓě0

ℓ2s|f̌ ℓ|2
ÿ

ℓě0

ℓ´2s À 1

since f P WspMq and s ą 1{2. We derive that

}pKℓq´1f ℓ}2 À ℓ2ν´1 (40)

Let us now bound the term of interest. Once more, we decompose it as r1 ` r2 where

r1 and r2 are defined in (36). We now apply Proposition 16 and (32) and derive

P

´
|r1| ą t

¯
“ P

`
|xδpKℓq´1Bℓ1Aℓ

1Bℓ
f ℓ,ϕℓy| ą t

˘

ď P
`
|xδpKℓq´1f ℓ, tBℓϕℓy| ą t

˘
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The latter is a gaussian random variable with variance δ2}pKℓq´1f ℓ}2 À δ2ℓ2ν´1 where

we used (40). Turning to the term r2, we apply Proposition 16 to derive

P

´
|r2| ą t

¯
“ P

`ˇ̌
xδ

`
Bℓ

˘2pKℓ
δq´11Aℓ

1Bℓ
f ℓ,t pKℓq´1ϕℓy

ˇ̌
ą t

˘

À P
`
δ}Bℓ}2op}pKℓ

δq´1f ℓ}}tpKℓq´1ϕℓ}1Aℓ
1Bℓ

ą t
˘

We now apply (30) and (40) to get

}pKℓ
δq´1f ℓ}}tpKℓq´1ϕℓ} À ℓ2ν´1

Hence,

P

´
|r2| ą t

¯
À P

`
δ2ℓ2ν´1}Bℓ}2op1Aℓ

1Bℓ
ą t

˘

À P
` 1

ℓ log ℓ
}Bℓ}2op1Aℓ

1Bℓ
ą tpδ2ℓ2ν log ℓq´1

˘

Let us take a look back to Lemma 6.2. On Aℓ X Bℓ we have prooved that

}pKℓ
δq´1}HS ě p1 ´ ρqQ1ℓ

ν

so that Aℓ X Bℓ Ă
!
δℓν`1{2 log ℓ À 1

)
. We deduce

Pp|r2| ą tq À P

´ 1

ℓ log ℓ
}Bℓ}2op ą tpδℓν´1{2q´1q

À exp
` ´t

δℓν´1{2

˘
1ttąβ2

0
δℓν´1{2u ` 1ttďβ2

0
δℓν´1{2u

The end of the proof is identical to Lemma 6.3.

Proof of Theorem 4.5. The proof is very similar to Theorem 3.3, whence we will just

emphasize the notable changes compared to it. First, we apply Parseval’s formula to

derive

E}f̃ II ´ f}22 “
ÿ

ℓďLII

Exrf II ´ f ,ϕℓy2 `
ÿ

ℓąLII

f̌
2

ℓ

The second term is easily handled, since
ÿ

ℓąLII

f̌
2

ℓ ď pLIIq´2s

ď
`
ε
a

| log ε| _ δ| log δ|
˘2s

ď
`
ε
a

| log ε|
˘ 2s

s`ν _
`
δ| log δ|

˘ 2s
s`ν

To bound the first sum, we write the following decomposition
ÿ

ℓďLII

E}rf II ´ f}2 “
ÿ

ℓďLII

E
`
ζℓ ´ f̌ ℓ

˘2
1t|ζℓ|ąSII

ℓ,εu ` E

ÿ

ℓďL

f̌
2

ℓ1t|ζℓ|ďSII

ℓ,εu

À I ` II ` III ` IV
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where

I “
ÿ

ℓďLII

E
`
ζℓ ´ f̌ ℓ

˘2
1Aℓ

1Bℓ
1t|ζℓ|ąSII

ℓ,εu

II “
ÿ

ℓďLII

Ef̌
2

ℓ1t|ζℓ|ďSII

ℓ,εu1Aℓ
1Bℓ

III “
ÿ

ℓďLII

E
`
ζℓ ´ f̌ ℓ

˘2
1Aℓ

1Bc
ℓ
1t|ζℓ|ąSII

ℓ,εu `
ÿ

ℓďLII

Ef̌
2

ℓ1t|ζℓ|ďSII

ℓ,εu1Bc
ℓ

IV “
ÿ

ℓďLII

Ef̌
2

ℓ1Ac
ℓ
1t|ζℓ|ďSII

ℓ,εu

Thanks to Lemma 6.2 and the definition of SII

ℓ,ε, we have

Q1

1 ´ ρ
ĚSII

ℓ,ε ď SII

ℓ,ε ď Q2ρ

1 ´ ρ
ĚSII

ℓ,ε

on Aℓ XBℓ. Thus, the Terms I and II can be treated identically to the preceding proof

and yield the desired rates of convergence. The terms III and IV are treated exactly as

in the preceding proof.

6.3. Proof of theorem 4.6

Proof. The lower bound will not decrease for increasing noise levels δ and ε, whence it

suffices to provide the case δ “ 0 and the case ε “ 0 separately. In the sequel, ci will

denote a positive constant to be adjusted later and L will play the role of a maximal

level. Also, we will note Kν (resp. 9gν) the operator (resp. the function) associated with

the Laurent serie p1 ´ zqνL. The function 9g´1{2 will play an essential role in the sequel.

Unfortunately it is not square integrable. We thus begin with a preliminary lemma,

which states that a minor modification corrects this defect.

Lemma 6.5. Let h be the function associated to the Laurent serie
ÿ

ℓě0

p´1qℓ
logpℓ _ 2q

ˆ´1{2
ℓ

˙
zℓ.

Then h is square integrable. Furthermore, for all ν ě 0, for all ℓ ď L,

pℓ _ 1qν´1{2

logpℓ _ 2q À |xK´νh,ϕℓy| À pℓ _ 1qν´1{2

Proof of Lemma 6.5. h is trivially squared integrable thanks to (26) and Parseval’s

formula. Now, we have

xK´νh,ϕℓy “ p´1qℓ
ℓÿ

k“0

ˆ´ν

k

˙ˆ´1{2
ℓ ´ k

˙
log´1

`
pℓ ´ kq _ 2

˘

Moreover, since the product
`

´ν

k

˘`
´1{2
ℓ´k

˘
has a constant sign for all k ď ℓ, we derive

log´1pℓ _ 2q
ˇ̌
ˇ

ℓÿ

k“0

ˆ´ν

k

˙ˆ´1{2
ℓ ´ k

˙ˇ̌
ˇ ď |xK´νh,ϕℓy| ď

ˇ̌
ˇ

ℓÿ

k“0

ˆ´ν

k

˙ˆ´1{2
ℓ ´ k

˙ˇ̌
ˇ
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but p´1qℓ
ℓÿ

k“0

ˆ´ν

k

˙ˆ´1{2
ℓ ´ k

˙
is precisely the ℓth coefficient of the power serie p1´zq´νp1´

zq´1{2 “ p1 ´ zq´ν´1{2 which satisfies, thanks to (26),

ˇ̌
ˇp´1qℓ

ℓÿ

k“0

ˆ´ν

k

˙ˆ´1{2
ℓ ´ k

˙ˇ̌
ˇ „ ℓν´1{2

Γpν ` 1{2q

This entails the result.

‚ Case δ “ 0. For more clarity, we will suppose that ξ is a white noise (the proof readily

adapts otherwise). Let hence K0 “ c1Kν . Then K0 P GνpQq for an appropriate

constant c1, thanks to Proposition 4.2. Following the arguments of Willer [28], it suffices

to find f 0, f 1 such that

i) f 0, f1 P WspMq
ii) }f0 ´ f1}2 Á ε

2s
s`ν | log ε|´2

iii) KpP1,P2q À 1 where Pi is the law of y under the hypothesis f i, and K is the

Kullback-Leibler divergence.

Let L “ c2ε
´1
s`ν . Set f 0 “ 0 and define f 1 “ c3K´νh.

Point i): f 0 trivially belongs to the considered set. Moreover, Lemma 6.5 entails

}f1}2Ws À ε2
Lÿ

ℓ“0

ℓ2sℓ2ν´1 À 1

Point ii): again, thanks to Lemma 6.5, we have

}f0 ´ f 1}2 Á ε2
ÿ

ℓďL

ℓ2ν´1

log2pℓ _ 2q Á ε2L2νplogLq´2 Á ε
2s

s`ν | log ε|´2

Point iii): the expression of the Kullback-Leibler divergence in this case is

KpP1,P2q “ 1

2
}ε´1K0pf 0 ´ f 1q}2 “ c3

2
}h}2 À 1

thanks to Lemma 6.5. The choice of appropriate constants ci clearly yields the result

and the proof is complete.

‚ Case ε “ 0. Let L “ c1δ
´1
s`ν . Following the lines of Hoffmann and Reiß [17], we set

f 0 “ c2ϕ0, K
0 “ c3Kν and we only consider couples pK, fq such that Kf “ q0 for a

fixed q0 “ K0f0. It is clear that, for well chosen c2 and c3, we have f 0 P WspMq and

K0 P GνpQq. We thus define H the operator associated to the kernel h and introduce

Kδ “ Kν ` c4δH a perturbation of Kν . We shall refer to 9gδ for the corresponding

kernel. Remark that we have

f1 ´ f 0 “ c4δpKδq´1Hf 0 “ c4δpKδq´1h (41)
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Furthermore, for c4 small enough, we have thanks to Lemma 6.5 and Proposition 4.2,

}Kδ ´ K0}op À δL1{2 À δ
2s`2ν´1
2ps`νq ă 1

2

since s ą 1{2. Hence, the same Neumann serie arguments as in Lemma 6.2 entail that

Kδ belongs to GνpQq. We now need to check that i), ii) and iii) are satisfied, replacing

ε with δ.

Point i) : (41) and the preceding remark entail

}f1 ´ f 0}2Ws “ c24δ
2

ÿ

ℓďL

ℓ2sxpKδq´1h,ϕℓy À δ2
ÿ

ℓďL

ℓ2s`2ν´1 À 1

Point ii) : we precise (41) and write

f1 ´ f 0 “ c4δK
´1h ` c24δ

2pKδq´1K´1Hh

Moreover, Lemma 6.5 and the preceding remark entail

}δK´1Hf0}2 “ }δK´1h}2 Á δ2
ÿ

ℓďL

ℓ2ν´1

logpℓ _ 2q
Á δ2L2νplogLq´2 Á δ

2s
s`ν | log δ|´2

}δ2pKδq´1K´1H2f0}2 À δ4}pKδq´1}HS}K´1H}HS}h} À δ4L4ν`1 À δ
2s´1
ν`s δ2L2ν

Since s ą 1{2, the second term is negligible with respect to the first. This proves

the point ii).

Point iii) : Since we work with couples pK, f q such that Kf is fixed, we have

KpP0,P1q “ 1

2
δ´2} 9gδ ´ 9gν}2 “ c4

2
}h}2 À 1

thanks to Lemma 6.5 and the proof is complete.

It remains to piece together the two cases δ “ 0 and ε “ 0 to get the desired

result.
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