
ar
X

iv
:1

30
3.

72
97

v2
  [

m
at

h.
ST

] 
 2

1 
A

pr
 2

01
3 Infinitely imbalanced binomial regression

and deformed exponential families

T. Sei

April 23, 2013

Abstract

The logistic regression model is known to converge to a Poisson

point process model if the binary response tends to infinitely imbal-

anced. In this paper, it is shown that this phenomenon is universal in

a wide class of link functions on binomial regression. The proof relies

on the extreme value theory. For the logit, probit and complementary

log-log link functions, the intensity measure of the point process be-

comes an exponential family. For some other link functions, deformed

exponential families appear. A penalized maximum likelihood estima-

tor for the Poisson point process model is suggested.

Keywords: binomial regression; extreme value theory; imbalanced

data; Poisson point process; q-exponential family.

1 Introduction

Let {(Xi, Yi)}
m
i=1 be m independently and identically distributed observable

data on R
p × {0, 1}. The conditional distribution of Yi given Xi is assumed

to be

P (Yi = 1 | Xi, a, b) = G(a+ bTXi), a ∈ R, b ∈ R
p, (1)

where G(·) is a one-dimensional cumulative distribution function. The in-
verse function G−1(p) = sup{z : G(z) ≤ p} is the link function in terms of
generalized linear models. Denote the marginal distribution ofXi by F (dXi).
The distribution functionG is typically the logistic, standard normal or Gum-
bel distributions. The corresponding link functions are the logit, probit and
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complementary log-log functions, respectively. For the three examples, the
log-likelihood function of (1) is concave; see Wedderburn (1976).

Our interest is the situation that the data is highly imbalanced. In
other words, the probability of success is almost zero. Examples of such
cases are fraud detection, medical diagnosis, political analysis and so forth.
See e.g. Bolton & Hand (2002), Chawla et al. (2004), Jin et al. (2005), and
King & Zeng (2001). For the data without covariates, Poisson’s law of rare
events is well known: if P (Yi = 1) = λ/m + o(m−1), then the probability
distribution of

∑m
i=1 Yi converges to the Poisson distribution with the mean

parameter λ. From this observation, for highly imbalanced data, it is natural
to consider that the true parameter (a, b) in (1) depends on m, say (am, bm),
and G(am) → 0 as m→ ∞.

Owen (2007) showed that the maximum likelihood estimator of the logis-
tic regression model converges to that of an exponential family if

∑m
i=1 Yi is

fixed and m goes to infinity. This result is roughly derived as follows. Con-
sider the model (1) with the logistic distribution G(z) = ez/(1 + ez). Take
am(α) = − logm+ α and bm(β) = β for any fixed α and β. Then we obtain

P (Yi = 1 | Xi, am(α), bm(β)) =
e− logm+α+βTXi

1 + e− logm+α+βTXi
=
eα+βTXi

m
+ o(m−1)

(2)

as m → ∞. By Bayes’ theorem, the conditional density of Xi given Yi = 1
with respect to the distribution F (dXi) is, at least formally,

eβ
TXi

∫

eβTxF (dx)
+ o(1). (3)

This is an exponential family with the sufficient statistic xi, and Owen’s
result follows.

Remark 1. To be precise, Owen (2007) proved the convergence result under
a different setting from here. He assumed that the true conditional distri-
bution of Xi given Yi = j, j ∈ {0, 1}, is any distribution Fj. In our setting,
F0 is asymptotically equal to F , and the density of F1 with respect to F
should satisfy (3). In other words, our setting becomes misspecified unless
this equality is satisfied. We discuss this point again in Section 5.

Warton & Shepherd (2010) pointed out that the likelihood of logistic re-
gression converges to a Poisson point process model with a specific form of
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intensity. Indeed, by (2), the probability P (Yi = 1, Xi ∈ A) is approximately
m−1

∫

A
eα+βTxF (dx) for any compact subset A of Rp. Therefore, by Pois-

son’s law of rare events, the number of observations Xi for which Xi ∈ A
and Yi = 1 is approximately distributed according to the Poisson distribu-
tion with mean

∫

A
eα+βTxF (dx). This is the Poisson point process with the

intensity measure eα+βTxF (dx).
In this paper, we consider the limit of various binomial regression mod-

els other than the logistic model. As expected from the result on logistic
regression, the limit becomes a Poisson point process. A remarkable fact
we prove is that the intensity measure of the point process should be a q-
exponential family for some real number q. The q-exponential family, also
called the deformed exponential family or α-family, is recently much inves-
tigated in the literature of statistical physics and information geometry; see
e.g. Amari (1985), Amari & Nagaoka (2000), Amari & Ohara (2011), Naudts
(2002), Naudts (2010), and Tsallis (1988). The precise definition is given in
Section 2. The proof relies on the theory of extreme values. For example,
for the probit or complementary log-log link functions, the limit of binomial
regression is the usual exponential family as with the logit link. On the other
hand, if G is the Cauchy distribution, then the limit becomes a q-exponential
family with q = 2. If the uniform distribution is used, q = 0.

As a related work, Ding et al. (2011) introduced the t-logistic regression,
that uses the q-exponential family for binary response, where q = t. In Sec-
tion 3, we show that the t-logistic regression converges to the q-exponential
family if q ≥ 0.

In Section 4, we study a penalized maximum likelihood estimator on
the q-exponential family of intensity measures. For some special cases, the
estimator is reduced to a known admissible estimator for the Poisson mean
parameter; see Ghosh & Yang (1988).

Some related problems are discussed in Section 5.

2 Imbalanced asymptotics of binomial regres-

sion

For each real number q, define the q-exponential function by

expq(z) =

{

ez, if q = 1,

[1 + (1− q)z]1/(1−q)
+ , if q 6= 1,

(4)
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where [z]+ = max(z, 0) and [0]−1
+ = ∞. This is inverse of the Box-Cox

transformation. Note that expq(z) = ∞ for z ≥ −1/(1 − q) if q > 1. The
function expq(z) is convex if and only if q ≥ 0.

Consider the binomial regression model (1) and put the following assump-
tion on the distribution function G.

Assumption 1. There exist q > 0, cm ∈ R and dm > 0 such that

G(cm + dmz) =
1

m
expq(z) + o(m−1) (5)

as m→ ∞ for each z ∈ R.

In the extreme value theory, it is known that there is no other asymptotic
form than (5) as long as it exists; see e.g. de Haan & Ferreira (2006, Theorem
1.1.2 and 1.1.3). The number q controls the lower tail structure of G. For
example, the logistic distribution satisfies Assumption 1 with q = 1, cm =
− logm and dm = 1. Other examples including the normal and Cauchy
distributions are considered in Section 3.

We define

am(α) = cm + dmα and bm(β) = dmβ (6)

for (α, β) ∈ R×R
p by using the sequences cm and dm that satisfy (5). Denote

the probability law of {(Xi, Yi)}
m
i=1 under the true parameter (am(α), bm(β))

by Pm,α,β.
Now the asymptotic form like (2) follows from the assumption. Indeed,

Pm,α,β(Yi = 1 | Xi) = G(am(α) + bm(β)
TXi)

= G(cm + dm(α + βTXi))

=
1

m
expq(α + βTXi) + o(m−1).

Therefore, as in the logistic regression, we expect that the binomial regression
model with G converges to the Poisson point process under Assumption 1.

We give a lemma before the main result.

Lemma 1. Let (α, β) ∈ R × R
p. Let A be any compact subset of Rp such

that the function expq(α + βTx) is finite over x ∈ A. Then the following
equation holds:

Pm,α,β(Yi = 1, Xi ∈ A) =
λ(A)

m
+ o(m−1), (7)

where λ(A) =
∫

A
expq(α + βTx)F (dx).
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The proof of Lemma 1 is given in Appendix.

Theorem 1. Denote the observations Xi for which Yi = 1 by {xi}
n
i=1. Then,

under Pm,α,β, the set {xi}
n
i=1 converges in law to the Poisson point process

with the intensity measure

λ(dx) = expq(α + βTx)F (dx) (8)

as m→ ∞. More precisely, we have

lim
m→∞

Pm,α,β (#{i | xi ∈ Aj} = nj , j = 1, . . . , J) =
J
∏

j=1

λ(Aj)
nje−λ(Aj)

nj !
(9)

for any positive integer J , non-negative integers nj and mutually disjoint
compact subsets Aj of R

p such that expq(α + βTx) is finite over x ∈ Aj .

The equation (9) is consistent with the definition of weak convergence of
point processes; see Embrechts et al. (1997).

Proof of Theorem 1. Define

x(A) = #{i ∈ {1, . . . , n} | xi ∈ A}

= #{i ∈ {1, . . . , m} | (Xi, Yi) ∈ A× {1}}.

Since {(Xi, Yi)}
m
i=1 is an independent and identically distributed sequence, the

random vector (x(A1), . . . , x(AJ)) for the disjoint compact subsets {Aj}
J
j=1 is

distributed as the multinomial distribution. Then, by Lemma 1 and Poisson’s
law of rare events, (x(A1), . . . , x(AJ)) converges to independent Poisson ran-
dom variables with intensity (λ(A1), . . . , λ(AJ)). The proof is completed.

By Theorem 1, the logistic regression model converges to the Poisson
point process model with intensity exp(α+βTx)F (dx) as Warton & Shepherd
(2010) showed.

Definition 1. For each q ∈ R, we call the set of intensity measures (8) the
q-exponential family of intensity measures. Denote the law of the process
{xi}

n
i=1 with respect to (8) by P

(q)
α,β.
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The q-exponential family of intensity measures is closely related to the
q-exponential family of probability measures as follows. Denote the total
intensity by

Λq(α, β) =

∫

Rp

expq(α + βTx)F (dx). (10)

Assume Λq(α, β) <∞. Then the likelihood of P
(q)
α,β is

e−Λq(α,β)

n!

n
∏

i=1

expq(α + βTxi), (11)

where the base measure of n is the counting measure on {0, 1, · · · }, and the
base measure of xi for each i is the distribution F (dxi). In (11), the number
n of observed points is marginally distributed according to the Poisson dis-
tribution with intensity Λq(α, β). Each point xi is independently distributed
according to the q-exponential family defined by the probability density func-
tion

expq(α + βTxi)

Λq(α, β)
(12)

with respect to F (dx). The q-exponential family is also called the deformed
exponential family or the α-family; see Amari & Nagaoka (2000) for the α-
family, where α = 2q − 1 should be distinguished with the regression coeffi-
cient α. It is known that the density (12) is also written as expq(θ

Txi−ψq(θ))
with appropriate θ and ψq(θ); see e.g. Amari & Ohara (2011). However, we
do not use this parametrization since the quantity Λq(α, β) remains in the
whole likelihood (11).

We conjecture that the maximum likelihood estimator of the binomial
regression model Pm,α,β converges to that of the Poisson process model P

(q)
α,β

under mild conditions. However, we only give experimental results in Sec-
tion 3. Instead, we study the estimation problem of the limit model P

(q)
α,β in

Section 4. See also Section 5 for further discussion.

3 Examples

In this section, we give some examples of distributions G satisfying Assump-
tion 1, and experimental results on the maximum likelihood estimation.
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Even if G satisfies Assumption 1, the sequences cm and dm are not
uniquely determined. A unified choice is known (see Galambos (1987, Theo-
rem 2.1.4–2.1.6)). However, in the following examples, one of possible pairs
(cm, dm) is explicitly given for each case.

For the logistic distribution and the Gumbel distribution G(z) = 1 −
exp(−ez) on minimum values, we have

q = 1, cm = − logm, dm = 1. (13)

For the standard normal distribution, we have

q = 1, cm = −(2 logm)1/2 +
log(logm) + log(4π)

2(2 logm)1/2
, dm = (2 logm)−1/2.

(14)

See e.g. Galambos (1987, Section 2.3.2). For the Cauchy distribution, we
have

q = 2, cm = −m/π, dm = m/π. (15)

For other examples such as t-distribution and Pareto distributions, refer to
Galambos (1987) and Embrechts et al. (1997).

We briefly study the t-logistic regression proposed by Ding et al. (2011).
For each real number t, let Gt(z) = expt(z − γt(z)), where expt denotes the
q-exponential function with q = t and γt(z) is uniquely determined by

expt(z − γt(z)) + expt(−γt(z)) = 1. (16)

We call Gt(z) the t-logistic distribution. Uniqueness of γt(z) follows from
strictly monotone property of the q-exponential function. The distribution
Gt(z) is symmetric in the sense that Gt(−z) = 1 − Gt(z) since γt(−z) =
−z + γt(z) by (16). We obtain the following theorem. The proof is given in
Appendix.

Theorem 2. The t-logistic distribution Gt satisfies Assumption 1 with q =
max(t, 0).

Table 1 and Table 2 show the experimental results. The sample is

(Xi, Yi) =

{

(0.4 + 0.4(i− 1)/(n− 1), 1) if i ∈ {1, . . . , n},
((i− n− 1)/(m− n− 1), 0) if i ∈ {n+ 1, . . . , m}

(17)

for n = 10 and various m’s. For the binomial regression models, the esti-
mated regression coefficient (â, b̂) is normalized by (6). From Table 1, the
convergence rate for the probit link is very slow, or may not converge. For
the others, the rate is satisfactory.

7



Table 1: Comparison of the maximum likelihood estimate of the Poisson
point process model with q = 1 and the binomial regression models. The
logit, probit and clogog (complementary log-log) link functions are used.
The sample is (17) and n is fixed to 10. The normalizing sequence (cm, dm)
is (13) and (14).

Poisson process logit probit cloglog

m α̂ β̂ α̂ β̂ α̂ β̂ α̂ β̂
102 1.6504 1.1737 1.6883 1.3067 2.0282 2.3030 1.6975 1.1883
103 1.6277 1.2246 1.6314 1.2373 1.9070 1.8777 1.6322 1.2260
104 1.6256 1.2294 1.6260 1.2307 1.8634 1.6725 1.6260 1.2295
105 1.6254 1.2299 1.6254 1.2300 1.8330 1.5642 1.6254 1.2299

4 Estimation of the q-exponential family of

intensity measures

We deal with estimation problem of the q-exponential family of intensity
measures (8). The maximum likelihood estimator is likely to fail to exist for
small sample size n. We propose a penalized maximum likelihood estimator.

We put the following assumption for simplicity.

Assumption 2. The covariate distribution F (dx) is known. The support of
F , denoted by S(F ), is finite, and is not included in any hyperplane in R

p.
The observable data {xi}

n
i=1 belongs to S(F ).

In practice, F (dx) may be replaced with the empirical, or estimated,
distribution based on the covariate sample {Xi}

m
i=1 of the original regression

problem.
The parameter space is

Θ = {(α, β) | 1 + (1− q)(α + βTx) > 0 for any x ∈ S(F )}. (18)

The set Θ is convex and unbounded since it is intersection of half spaces
including the set {(α, 0) | 1 + (1 − q)α > 0}. Furthermore, Θ is open since
S(F ) is compact. In terms of convex analysis, Θ corresponds to the polar
set of S(F ). See Barvinok (2002).
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Table 2: Comparison of the maximum likelihood estimate of the Poisson
point process model with q = 2 and the binomial regression model with the
cauchit (inverse of Cauchy) link function. The sample is (17) and n is fixed
to 10. The normalizing sequence (cm, dm) is (15).

Poisson process cauchit

m α̂ β̂ α̂ β̂
102 0.8662 0.0667 0.8632 0.0656
103 0.8626 0.0673 0.8623 0.0677
104 0.8622 0.0680 0.8622 0.0679
105 0.8621 0.0680 0.8622 0.0679

We consider a penalized log-likelihood function

−Λq(α, β) +
n

∑

i=1

log expq(α+ βTxi) + κ

∫

log expq(α + βTx)F (dx), (19)

where κ is a non-negative regularization parameter. If κ = 0, (19) is the log-
likelihood function; see (11). The penalty term represents a pseudo-data of
size κ distributed according to F . The function (19) is concave with respect
to (α, β) if 0 ≤ q ≤ 1. Indeed, we can directly confirm that − expq(z) is
concave if q ≥ 0, and that log(expq(z)) is concave if q ≤ 1.

Definition 2. We call the maximizer of (19) the additive-smoothing estima-
tor.

This estimator has a desirable property as shown in the following example,
even if q = 1.

Example 1. Let F be a two-point distribution on R defined by

F (x = 0) = p0 and F (x = 1) = p1,

where p0, p1 > 0 and p0 + p1 = 1. Denote the intensity at x = 0 and x = 1
by λ0 = p0 expq(α) and λ1 = p1 expq(α + β), respectively. It is not difficult
to show that (α, β) ∈ Θ corresponds one-to-one with (λ0, λ1) ∈ R

2
+, where

R+ is the set of positive numbers. Hence the model is equivalent to the
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independent Poisson observable model with intensity (λ0, λ1), regardless of
q. Then the penalized log-likelihood (19) becomes

−λ0 − λ1 + n0 log λ0 + n1 log λ1 + κ

(

p0 log
λ0
p0

+ p1 log
λ1
p1

)

,

where nj denotes the number of observations xi = j, j ∈ {0, 1}. The additive-

smoothing estimator is λ̂j = nj+κpj , j ∈ {0, 1}. If κ > 0, then (λ̂0, λ̂1) ∈ R
2
+

and the estimator (α̂, β̂) always exists. Furthermore, if 0 < κ ≤ 1, this
estimator is known to be admissible with respect to the Kullback-Leibler
loss function; see Ghosh & Yang (1988, Theorem 1). For the same reason, if
S(F ) has only p + 1 points in R

p, then the additive-smoothing estimator is
admissible as long as 0 < κ ≤ 1.

Let q = 1 and F be any distribution satisfying Assumption 2. Then,
since the model (11) is an exponential family, the pair (n, x̄n) is a sufficient
statistic, where x̄n = n−1

∑n
i=1 xi is the sample mean. Indeed, the additive-

smoothing estimator should satisfy

Λ1(α̂, β̂) = n + κ and

∫

xeβ̂
TxF (dx)

∫

eβ̂TxF (dx)
=
nx̄n + κ

∫

xF (dx)

n + κ
. (20)

For the maximum likelihood estimator, meaning κ = 0, the second equation
of (20) is consistent with the result of Owen (2007). From the theory of
exponential families, the solution to (20) always exists if κ > 0 since

∫

xF (dx)
belongs to the interior of the convex hull of S(F ); see Barndorff-Nielsen (1978,
Corollary 9.6). On the other hand, the maximum likelihood estimator fails
to exist if x̄n is a boundary point.

For q 6= 1, we provide a similar result on existence. First consider the
following example. The pair (n, x̄n) is not a sufficient statistic any more.

Example 2. Let q = 0 and F be a three-point distribution on R defined by
F (x = j) = 1/3 for j ∈ {0, 1, 2}. Denote the number of observations xi = j
by nj . We use θ = 1 + α and φ = 1 + α+ 2β as a new parameter. Then the
parameter space is θ > 0 and φ > 0. The penalized log-likelihood is

−
θ + φ

2
+ n∗

0 log θ + n∗

1 log
θ + φ

2
+ n∗

2 log φ, (21)
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where n∗

j = nj + κ/3. The maximizer (θ̂, φ̂) of (21) is

θ̂ =
2n∗

0(n
∗

0 + n∗

1 + n∗

2)

n∗

0 + n∗

2

and φ̂ =
2n∗

2(n
∗

0 + n∗

1 + n∗

2)

n∗

0 + n∗

2

.

This always belongs to the parameter space if κ > 0. On the other hand, the
maximum likelihood estimator fails to exist if n0 = 0 or n2 = 0.

In general, the following theorem holds. The proof is given in Appendix.

Theorem 3. Let q be any real number and κ > 0. If Assumption 2 is
satisfied, then the additive-smoothing estimator exists almost surely. It is
unique if 0 ≤ q ≤ 1.

5 Discussion

5.1 Multinomial regression

We studied so far the binomial regression. There are variants of multino-
mial regression models. The multinomial t-logistic regression proposed by
Ding et al. (2011) can be proved to have a limit under imbalanced asymp-
totics in the same manner as Theorem 2. The author was not aware of more
general results. The problem is postponed as a future work.

5.2 Convergence of estimator

We did not study convergence properties of estimators such as the maximum
likelihood estimator. Instead we considered the additive-smoothing estimator
for the q-exponential family of intensity measures in Section 4.

Owen (2007) showed that the maximum likelihood estimator of the logis-
tic regression converges to that of the exponential family under imbalanced
asymptotics. Then a natural conjecture is that the maximum likelihood es-
timator of the binomial regression model, which is the maximizer of

m
∑

i=1

[Yi logG(a+ bTXi) + (1− Yi) log{1−G(a + bTXi)}] ,

converges to that of the q-exponential family. Note that estimation of (a, b)
is equivalent to that of (α, β) via the formula (6). It will be also meaningful
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to study convergence of statistical experiments; see van der Vaart (1998) for
the terminology.

An estimator corresponding to the additive-smoothing estimator of Defi-
nition 2 is the maximizer of

m
∑

i=1

[Yi logG(a + bTXi) + (1− Yi) log{1−G(a+ bTXi)}]+
κ

m

m
∑

i=1

log{mG(a+bTXi)}

since the additional term converges to κ
∫

log expq(α+ βTx)F (dx) after nor-
malization (6). The estimator is expected to converge as well.

5.3 Misspecified case

We studied asymptotic properties of the binomial regression model under an
assumption that the model (1) is true. On the other hand, Owen (2007)
put a different assumption, in that the true conditional distribution of the
covariate Xi given Yi = j, j ∈ {0, 1}, is fixed to some distribution Fj. In
this assumption, our setting is asymptotically described as F0(dx) = F (dx)
and F1(dx) = {expq(α+β

Tx)/Λq(α, β)}F (dx) by (11). In other words, if the
true distributions Fj do not satisfy this relation, the model is misspecified.

It is important to consider robustness of estimators under the misspecified
assumption. The problem is not so serious if the support of F1 is included
in that of F , since then F1 is absolutely continuous with respect to the esti-
mated intensity measure exp(α̂+ β̂Tx)F (dx), whenever (α̂, β̂) belongs to the
parameter space (18). Otherwise, however, F1 is not absolutely continuous.
In other words, the estimated intensity measure does not allow that the fu-
ture data xn+1 falls into a region. In particular, if the support of F1 is not
assumed a priori, there is risk of such a contradiction.

One may consider to take a distribution F with the full support R
p in

order to contain the support of F1. However, if q 6= 1, we cannot assume
such a distribution F since the parameter space (18) becomes {(α, 0) | 1 +
(1− q)α > 0}.

A solution to this problem will be to use a parametric family of F together
with a Bayesian prior distribution. For example, let F (dx) = F (dx | θ) be the
uniform distribution on the hypercube [−θ, θ]p, and assume a prior density
on θ > 0. As long as the true F1(dx) has compact support, we have a chance
to detect it since there is a sufficiently large θ such that the support of F1 is
included in that of F (· | θ).
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5.4 Bayesian prediction

In the preceding subsection, we considered the Bayesian approach for treating
misspecified case. Even if the model is correctly specified, the approach will
be fruitful.

In Section 4, we considered the additive-smoothing estimator of (α, β).
This is considered as a maximum-a-posteriori estimator if the prior density

π(α, β) = exp

(

κ

∫

log expq(α + βTx)F (dx)

)

is adopted. Then additive-smoothing Bayesian prediction can be also defined
by the same prior.

In Example 1, we noted that, for special cases of F and κ, the additive-
smoothing estimator becomes an admissible estimator with respect to the
Kullback-Leibler divergence, shown by Ghosh & Yang (1988). For prediction
problem, a class of admissible predictive densities is investigated by Komaki
(2004). Together with the additive-smoothing estimator, decision-theoretic
properties of the additive-smoothing prediction are of interest.
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The author thanks to Saki Saito for helpful discussions in the exploratory
stage.

A Appendix

A.1 Proof of Lemma 1

Denote the induced probability distribution of t = α + βTXi by F
∗(dt). Let

A∗ be A∗ = {α + βTx | x ∈ A}. Then A∗ is compact since A is. We have

Pm,α,β(Yi = 1, Xi ∈ A) =

∫

A

G(am(α) + bm(β)
Tx)F (dx)

=

∫

A

G(cm + dm(α + βTx))F (dx)

=

∫

A∗

G(cm + dmt)F
∗(dt).
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To prove (7), it is enough to show that
∫

A∗

G(cm + dmt)F
∗(dt) =

1

m

∫

A∗

expq(t)F
∗(dt) + o(m−1).

By Assumption 1, we know mG(cm + dmt) = expq(t) + o(1) for each t ∈ A∗.
Hence it is enough to show thatmG(cm+dmt) converges to expq(t) uniformly
in t ∈ A∗. However, since mG(cm + dmt) is monotone in t and expq(t) is
continuous in t ∈ A∗, uniform convergence follows from the general argument;
see e.g. Galambos (1987, Lemma 2.10.1)).

Proof of Theorem 2

For each real number q, denote the set of distributions that satisfy Assump-
tion 1 by Dq.

For t = 1, elementary calculation shows that G1(z) = ez/(1 + ez). This
is the logistic distribution and belongs to D1.

For t = 0, we have G0(z) = (1 + z)/2, −1 < z < 1. This is the uniform
distribution on [−1, 1] and belongs D0.

Let t > 1. It suffices to show that

Gt(z) = [(1− t)z]1/(1−t) + o((−z)1/(1−t)), z → −∞.

Indeed, by the condition (16), if z → −∞, then γt(z) → 0. Thus

expt(z − γt(z)) = expt(z + o(z))

= [1 + (1− t)(z + o(z))]1/(1−t)

= [(1− t)z]1/(1−t) + o((−z)1/(1−t))

Hence Gt belongs to Dt.
For t < 1, we first show that the support of Gt has the infimum z∗ =

−1/(1 − t) and that γt(z) tends to 0 as z → z∗ + 0. Note that the t-
exponential function expt(z) is continuous in z ∈ R, strictly increasing over
z > z∗, and remains 0 over z ≤ z∗. Since expt(z) > 1 for any z > 0, it
must be γt(z) ≥ 0 for any z ∈ R by (16). Then expt(z − γt(z)) > 0 only
if z > z∗. Conversely, if z > z∗, it must be expt(z − γt(z)) > 0. Indeed,
if expt(z − γt(z)) = 0, then γt(z) = 0 by (16), but this contradicts z > z∗.
To prove γt(z) → 0 as z → z∗ + 0, due to (16), it is sufficient to show that
expt(z − γt(z)) → 0 as z → z∗ + 0. This is shown as

0 ≤ expt(z − γt(z)) ≤ expt(z) → 0, z → z∗ + 0.
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Let 0 < t < 1 and z∗ = −1/(1− t). It suffices to show that

Gt(z) = [(1− t)(z − z∗)]
1/(1−t) + o((z − z∗)

1/(1−t)), z → z∗ + 0. (22)

By the definition of z∗, we have

expt(z − γt(z)) = [1 + (1− t)(z − γt(z))]
1/(1−t)

= [(1− t)(z − z∗ − γt(z))]
1/(1−t). (23)

On the other hand, since γt(z) → 0 as z → z∗ + 0, we obtain

expt(−γt(z)) = 1− γt(z) + o(γt(z)). (24)

By substituting the two equations to (16), we obtain γt(z) = O((z−z∗)
1/(1−t)) =

o(z − z∗). Then (23) implies (22). Hence Gt belongs to Dt.
Finally, let t < 0 and z∗ = −1/(1 − t). We show that Gt belongs to D0,

not Dt. It suffices to show that

Gt(z) = (z − z∗) + o(z − z∗), z → z∗ + 0. (25)

For the same reason as the case 0 < t < 1, we have the two equations (23)
and (24). By substituting them to (16), we obtain

γt(z) = (z − z∗)−
(z − z∗)

1−t

1− t
+ o((z − z∗)

1−t).

Then (23) implies (25). Hence Gt belongs to D0.

Proof of Theorem 3

Uniqueness follows from concavity of (19) for 0 ≤ q ≤ 1. We prove the
existence result. Since the case q = 1 is proved in (20), we assume q 6= 1.

In the following, we prove the theorem only for the case that n = 0, that
is, no data is observed. The case n ≥ 1 is similarly proved if one notes that
{xi}

n
i=1 is contained in the convex hull of the support of F .
Let F be a discrete distribution with support {ξj}

J
j=1 ⊂ R

p and put
pj = F (x = ξj) > 0, j ∈ {1, . . . , J}. By assumption, {ξj}

J
j=1 is not included

in any hyperplane of Rp. The parameter space (18) is written as

Θ = {(α, β) | 1 + (1− q)(α + βTξj) > 0, j ∈ {1, . . . , J}}.
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Note that Θ is an open convex set and the origin (α, β) = (0, 0) always
belongs to Θ. The penalized log-likelihood is, since n = 0,

L(α, β) =

J
∑

j=1

pj
{

− expq(α + βTξj) + log expq(α + βTξj)
}

. (26)

By continuity of L(α, β) over Θ, it is sufficient to show that L(α, β) → −∞ if
(α, β) tends to a boundary point of Θ or (α, β) diverges. Note that if (α0, β0)
is a boundary point of Θ, then (tα0, tβ0) belongs to Θ for any 0 ≤ t < 1 since
the origin does.

We prove the claim for q < 1 first, and then q > 1.
Let q < 1. Fix any boundary point (α0, β0) of Θ. Then there is at least

one ξj such that expq(α0+β
T

0 ξj) = 0. For such ξj ’s, expq(t(α0+β
T

0 ξj)) → +0
as t→ 1− 0. For the other ξj ’s, expq(t(α0 + βT

0 ξj)) is bounded as t→ 1− 0.
Then, by (26), the function L(tα0, tβ0) tends to −∞ as t→ 1− 0.

Let q < 1 and fix any (α1, β1) ∈ Θ \ {(0, 0)} such that (tα1, tβ1) ∈ Θ for
any t > 0. Then it is necessary that α1+β

T

1 ξj ≥ 0 for all j. Since {ξj} is not
contained in a hyperplane, there is at least one ξj such that α1 + βT

1 ξj > 0.
For such ξj ’s, we have expq(tα1 + tβT

1 ξj) → ∞ as t→ ∞. For the other ξj’s,
expq(tα1+ tβ

T

1 ξj) = expq(0) = 1. Therefore, by (26), the function L(tα1, tβ1)
tends to −∞ as t→ ∞, and the case q < 1 was completed.

Let q > 1. Fix any boundary point (α0, β0) of Θ. Then there is at least
one ξj such that expq(α0+β

T

0 ξj) = ∞. For such ξj’s, expq(t(α0+β
T

0 ξj)) → ∞
as t→ 1− 0. For the other ξj ’s, expq(t(α0 + βT

0 ξj)) is bounded as t→ 1− 0.
Then, by (26), the function L(tα0, tβ0) tends to −∞ as t→ 1− 0.

Finally, let q > 1 and fix any (α1, β1) ∈ Θ \ {(0, 0)} such that (tα1, tβ1) ∈
Θ for any t > 0. Then it is necessary that α1 + βT

1 ξj ≤ 0. Since {ξj} is
not contained in a hyperplane, there is at least one ξj such that α1 + βT

1 ξj <
0. For such ξj’s, expq(tα1 + tβT

1 ξj) → +0 as t → ∞. For the other ξj’s,
expq(tα1+ tβ

T

1 ξj) = expq(0) = 1. Therefore, by (26), the function L(tα1, tβ1)
tends to −∞ as t→ ∞, and the case q > 1 was completed.
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