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Abstract

We describe a methodology for modeling the performance of decision-level data fusion between
different sensor configurations, implemented as part of theJIEDDO Analytic Decision Engine (JADE).
We first discuss a Bayesian network formulation of classicalprobabilistic data fusion, which allows
elementary fusion structures to be stacked and analyzed efficiently. We then present an extension of
the Wald sequential test for combining the outputs of the Bayesian network over time. We discuss an
algorithm to compute its performance statistics and illustrate the approach on some examples. This
variant of the sequential test involves multiple, distinctstages, where the evidence accumulated from
each stage is carried over into the next one, and is motivatedby a need to keep certain sensors in the
network inactive unless triggered by other sensors.
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tion (JIEDDO) for supporting and funding this work, Dr. Tom Stark of JIEDDO for technical and opera-
tional guidance, and Dr. Dave Colella and Dr. Garry Jacyna ofMITRE for providing valuable feedback and
suggestions on the paper.

1 Introduction

The JIEDDO Analytic Decision Engine (JADE) is a flexible software toolkit for studying the performance
of sensor configurations for the detection of person-borne explosive compounds and other threat substances.
JADE is designed to enable performance and tradeoff analyses between different, user-specified scenarios
with given sensor placements and data fusion networks. JADEcontains fundamental physics-based models
of several sensor technologies of interest, such as nonlinear acoustic and radar-based detectors, along with
a data fusion system that we focus on in this paper. The fusionsystem consists of a static component that
combines the decisions of individual sensors at a fixed pointin time, and a dynamic, time-dependent com-
ponent that in turn fuses the outputs of the static structureat different times. The static component is based
on a probabilistic graphical model, or Bayesian network, and accepts probability matrices from the physics-
based sensor models as inputs (the details of which are abstracted from the fusion system). Its outputs are
fed into the dynamic fusion framework, which is based on sequential hypothesis testing and produces per-
formance metrics for the entire, fused sensor configuration. The purpose of the system is to determine the
performance of a given fusion structure, as opposed to doingfusion on actual measurements.
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We first discuss the static framework in Section 2, which allows elementary fusion structures to be stacked
and analyzed efficiently. This material is fairly standard but serves as a background for the rest of the
paper. We then describe an extension of the Wald sequential test in Section 3 that involves multiple, distinct
stages, where the evidence accumulated from each stage is carried over into the next one. We show how the
performance characteristics and decision times of such a test can be computed efficiently for time-dependent
statistics and illustrate this approach on examples in Section 4. This setup models a bank of anomaly sensors
that observe a moving target over time, reach an initial fused decision, and if justified, activate additional
sensors that continue to collect static fused evidence overtime until a final decision is made about the target.
The multiple-stage configuration allows sensors that have ahigh cost of operation to remain inactive unless
specifically called upon.

2 Static fusion using Bayesian networks

The static fusion structure is formulated as a Bayesian network, i.e. a directed acyclic graph with each vertex
representing a random variable and edges describing dependencies between the variables. A Bayesian net-
work has the defining property that every vertex is conditionally independent of its ancestor vertices given
its immediate parent vertices [4]. Such networks are an intuitive framework for performing probabilistic
inference among interconnected events in many different contexts, and are well suited for formulating a
sensor fusion system. The vertices in our network representthe object, sensors and fusion centers.

Suppose we haveN sensors to be fused, each of which outputs hard decisions betweenM possibilities
(with the first one corresponding to the case where no threat is present). LetH be the true object (or
the hypothesis in a Bayesian setting) andS be the local decision of a given sensor. The performance of
the sensor is described by theM ×M matrix {P(S = m|H = m′)}1≤m,m′≤M, which we write concisely as
P(S = ·|H). In this paper, we will generally focus onM = 2, corresponding to binary decision-level fusion,
but the discussion in this section applies to otherM as well. At any fusion centerF with V parent vertices
{Sn}1≤n≤V , we can describe the fusion rule by theV -dimensional tensorP(F = ·|{Sn}1≤n≤V ), which for
deterministic fusion rules consists only of 0 and 1 elements. The performance of the entire system is given
by P(D = ·|H), whereH is the root vertex in the graph and the system’s final decisionD is the last child
vertex. This formulation enables the graph to take on essentially any desired form and allows different
combinations of fusion centers and sensors to be stacked together, subject to the following rules that ensure
that the fusion structure is meaningful.

• Each sensor vertex must have the object and at most one fusion center as its parent.

• At least one sensor must have only the object as its parent.

• Each fusion center can have any combination of sensors and/or fusion centers as parents, as long as
no cycles are formed in the graph.

• No fusion center can have the object as a parent.

• There must be exactly one fusion center with no children, representing the final decision.

These rules ensure that all sensors in the graph observe the object and that all intermediate decisions are
ultimately combined at a single, final fusion center. An example fusion network of this type is shown in
Figure 2.1.

To determineP(D = ·|H), we choose small subgraphs of the Bayes network at a time, each containing one
fusion center and all its parent vertices, and marginalize over them using the standard method of belief
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propagation [3, 4]. This is done iteratively for each fusioncenter in parent-to-child order until all the fusion
centers have been covered. For certain fusion rules, the probability matrix at any child fusion centers may
depend on the outputs of any parent fusion centers, so this iterative procedure is much more simple and
efficient than having the child fusion centers’ conditionalprobabilities account for this dependence and
computing marginal probabilities over the entire Bayes network at once.

Object

Sensor 1 Sensor 2 Sensor 3 Sensor 4

Fusion Center 1 Fusion Center 2

Fusion Center 3

Figure 2.1: An example static fusion network.

At each fusion center, JADE allows the user to choose betweenfive elementary hard-decision fusion rules:
the “and,” “or,” majority, Neyman-Pearson optimal and Bayes optimal rules [6]. Any of the five fusion rules
can be used in the decision-level case ofM = 2, while for M > 2, only the Bayes and majority rules are
meaningful. At any given fusion center, let{Sn}1≤n≤V be the local decisions ofV sensors feeding into it,
with 0≤ Sn ≤ M−1, and letF be the fused decision. The “and” rule simply choosesF = 1 if all theSn = 1,
andF = 0 otherwise. Similarly, the “or” rule choosesF = 0 if all the Sn = 0, andF = 1 otherwise. It is
clear that the “and” rule minimizesPF while keepingPD > 0 and the “or” rule maximizesPD while keeping
PF < 1, so they can be thought of respectively as the least and mostsensitive fusion rules available. The
majority rule takes a majority vote between the sensors, i.e. F = mode({Sn}), with a random, uniformly
distributed decision taken if there is a tie between multiple choices. This is the only rule where the fused
decision is potentially random. These three rules generally do not satisfy any good optimality criteria, but
are conceptually simple and useful as a baseline for comparison against the two optimal rules.

At a given fusion vertex in the network, the Neyman-Pearson rule (for M = 2) has the user specify a target
false alarm probabilityP′

F , and the system chooses the (deterministic) fusion rule that maximizes the local
PD at that vertex, subject to the constraintPF ≤ P′

F . The optimal rule is found by computing the likeli-

hood ratios∏V
n=1

P(Sn|H=1)
P(Sn|H=0) for every combination of individual sensor decisions{Sn} and arranging them
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in increasing order. The combinations are then partitionedinto two subsetsI andJ such that for{Sn} ∈ I,
∏V

n=1P(Sn|H = 0) ≤ P′
F and for{Sn} ∈ J, ∏V

n=1P(Sn|H = 0) > P′
F . The solution is given by the rule that

choosesF = 0 for {Sn} ∈ I andF = 1 for {Sn} ∈ J.

For the Bayes fusion rule [1, 2], the user specifies the costs of a false alarmCF , a missed detectionCM

and (forM > 2) a mix-up between two threat possibilitiesCX . For each combination of individual sensor
decisions{Sn}, the system finds a fused decisionF that minimizes the Bayes risk, or the expected cost of a
wrong decision,

F = argmin1≤ j≤M

M

∑
k=1

C j,kP(H = k−1)
V

∏
n=1

P(Sn|H = k−1),

whereC j, j = 0, C j,1 = CF andC1, j = CM for j ≥ 2, andC j,k = CX for all other( j,k). The optimal fusion
rule can be found by simply looking at every combination{Sn} individually and taking the best of theM
possible fused decisions for each one. In general, finding this fusion rule is a computationally difficult dis-
crete optimization problem, but this simple, brute-force approach is fast as long asV andM are fairly small
(e.g. less than 10), as is the case in our scenarios of practical interest.

3 Dynamic fusion using multiple-stage sequential testing

Suppose now that we have two static fusion networks of sensors, each represented by a Bayesian network
of the type described in Section 1. The sensors collect measurements from a target moving along a spec-
ified path, with the static network producing a fused decision at every point in time based on the sensors’
individual probabilities at each position. These fused decisions can be combined over time using Wald’s
theory of sequential probability testing. The classical Wald sequential test is essentially a one-dimensional
random walk where the total likelihood ratio of the system makes “steps” in either direction, corresponding
to different incoming binary decisions. The system reachesa fused decision when a specified upper or lower
threshold has been crossed. We refer to [5] or [7] for more details.

We develop an extension of the classical sequential test to cover the following scenario. Only the sensors
in the first static network are initially active, and the sequential test accepts and combines the fused outputs
from that network at each point in time. If the system detectsan anomaly, it switches over to the second
static network and continues to pick up and combine measurements in the same manner until a final deci-
sion has been reached. The motivation for this two-stage setup is that there is typically a cost to activating
and operating the sensors in the second-stage network, so they are to be switched on only if the first-stage
sensors decide that there is a good chance of a threat. The twonetworks do not need to be disjoint and can
contain some of the same sensors, although possibly with different graph linkages or fusion rules. In prac-
tical scenarios, the second-stage graph is a superset of thefirst-stage one that includes additional sensors,
reflecting the fact that the first-stage sensors continue to collect observations after they trigger any additional
sensors in the second-stage network. It is also straightforward to add additional stages in the same manner.
For example, a third stage might correspond to an object being acquired by video before sensors begin to
collect measurements on it (known as “track before detect”). For clarity, however, we focus on two stages
in what follows.

Let H be the object as before, andDn andD′
n respectively be the decision outputs of the first and second

stage fusion networks (at their respective final fusion centers) at timen. Assume that the{Dn}
⋃{D′

n} are
mutually independent. We restrictM = 2 for the rest of the paper, so the static fusion system gives us the
sequences of 2× 2 matricesP(Dn = ·|H) andP′(D′

n = ·|H) for all times 1≤ n ≤ N. We use these inputs
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to set up the following type of sequential test. We writeK, K, K, η0 and η1 for respectively the lower
stopping time, upper stopping time, stopping time, lower threshold and upper threshold for the first stage of
the test. The thresholdsη0 andη1 are fixed parameters that control the overall sensitivity ofthe test, while
the stopping times are random variables that we will specifybelow. Similarly, we writeK′, K′, K′, η ′

0 andη ′
1

for the corresponding variables for the second stage of the test, where we require thatη ′
0 ≤ η0 andη ′

1 ≥ η1.
Let Dk = {Dn}1≤n≤k denote the set of decisions of the system’s active static fusion network at each time
n, up to timek. For any sequence of decision possibilitiesdk = {dn}1≤n≤k, we define the likelihood ratio
recursively by

L(dk) =

(

M(dk)

∏
n=1

P(Dn = dn|H = 1)
P(Dn = dn|H = 0)

)(

k

∏
n=M(dk)+1

P′(D′
n = dn|H = 1)

P′(D′
n = dn|H = 0)

)

,

whereM(dk) = max{n : n ≤ k,L(dm) ∈ (η0,η1)∀m ∈ [1,n]}. This allows us to define the stopping times by

K = min
k∈[1,N]

{k : L(Dk)≤ η0,L(Dm) ∈ (η0,η1)∀m < k},

K = min
k∈[1,N]

{k : L(Dk)≥ η1,L(Dm) ∈ (η0,η1)∀m < k},

K = min(K,K).

K′ = min
k∈[1,N]

{k : k ≥ K,L(Dk)≤ η ′
0,L(Dm) ∈ (η ′

0,η ′
1)∀m < k},

K
′

= min
k∈[1,N]

{k : k ≥ K,L(Dk)≥ η ′
1,L(Dm) ∈ (η ′

0,η ′
1)∀m < k},

K′ = min(K′,K
′
).

If any of the above sets is empty, we define the corresponding stopping time to beN+1. The test starts with
the first stage static networkP(Dn = ·|H) and runs like a conventional sequential test until eitherk = K at
time k (i.e. whenL(Dk) moves outside the region(η0,η1)), at which point it switches to the second stage
network, or untilk = N +1, when it is forced to stop and make a decision by comparingL(DN) to the ge-
ometric midpoint

√η0η1. If the second stage is triggered, the test continues running with the second stage
networkP′(D′

n = ·|H) and stops with a final decision whenK′ = k or K′ = N + 1. The first stage’s result
(representing an initial decision) affects whether the second stage starts belowη0 or aboveη1. We want to
find the statistics ofK andK′ and the detection and false alarm probabilities of the first stage at each timek,
denotedPk

D andPk
F , and of the entire test,Pk

D
′ andPk

F
′.

We describe a simple, deterministic algorithm to compute these quantities for incoming, fused sensor mea-
surements from the two static networks. LetGk be the event{K ≥ k}, i.e. that the first stage was still running
at timek−1. We can expandP(K = k|H,Gk) for all 1≤ k ≤ N by writing

P(K = k|H,Gk) = P(L(Dk)≥ η1 |L(Dm) ∈ (η0,η1),1≤ m ≤ k−1,H)

= ∑
dk∈Ak(η0,η1)

k

∏
n=1

P(Dn = dn|H), (3.1)

where
Ak(η0,η1) = {dk ∈ {0,1}k : L(dk)≥ η1,L(dm) ∈ (η0,η1),1≤ m ≤ k−1}.

We can expressP(K = k|H) and thek = N+1 cases in a similar manner. The number of terms inAk(η0,η1)
generally grows exponentially, but the sum can be computed iteratively by keeping track of likelihood sets
Lk over time, where eachLk consists of elementsℓ = (ℓ1, ℓ2) ∈ R

2. For k = 1, we setL1 := {P(D1 =
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d1|H)}. For eachk > 1, we find the likelihoods of all possible sample paths,Lk := {P(Dk = dk|H)× ℓ : ℓ ∈
Lk−1}, where× denotes the outer product between vectors inR

2. We then compute

P(K = k|H,Gk) = ∑
ℓ∈Lk,ℓ2/ℓ1≥η1

ℓH+1

P(K = k|H,Gk) = ∑
ℓ∈Lk,ℓ2/ℓ1≤η0

ℓH+1,

store the likelihoods of paths that escapedMk := {ℓ∈Lk : ℓ2/ℓ1 6∈ (η0,η1)}, keep the remaining likelihoods
Lk+1 := Lk\Mk for the next step, and incrementk. Note that at each timek, we only need to keepLk and
Lk−1 in memory. Atk = N +1, any likelihoodsLN+1 still left are summed over in a similar manner. From
this, we can find

P(K = k|H) = P(K = k|H,Gk)+P(K = k|H,Gk),

Pk
D =

k

∑
m=1

P(K = m|H = 1,Gk),

Pk
F =

k

∑
m=1

P(K = m|H = 0,Gk).

In the same way, we can calculate the second stage probabilities. For example, withG′
k = {K′ < k}, we have

P(K′ = k|H,G′
k) = ∑

dk∈Ak(η ′
1)

(

M(dk)

∏
n=1

P(Dn = dn|H)

)(

k

∏
n=M(dk)+1

P′(D′
n = dn|H)

)

.

These sums are evaluated in the same way as the first stage probabilities by keeping sets of likelihoodsL ′
k

in memory, with the only differences being that for eachk ≤ N, we setL ′
k := L ′

k
⋃

Mk after computingL ′
k

as before (adding paths that cross over between stages), andfor k = N +1, we setL ′
N+1 := L ′

N+1
⋃

LN+1.
Finally, we can calculate

E(K|H) =
N+1

∑
k=1

kP(K = k|H),

and any other statistics ofK andK′ can be found in the same manner.

This iterative approach can provide a big performance improvement over directly computing (3.1) in certain
situations. The likelihood setAk generally grows likeO(Rk) for someR ∈ [1,2], but in practice,R is fairly
close to 1 if eitherP(Dn = 1|H = 1) is increasing orP(Dn = 1|H = 0) is decreasing, which physically cor-
responds to the target moving closer to the sensor network over time.

We finally remark that the thresholdsη0 and η1 are selected in practice using theWald approximations,
η0 =

1−P∗
D

1−P∗
F

and η1 =
P∗

D
P∗

F
, for some target probabilitiesP∗

D,P
∗
F ∈ (0,1). It can be shown that at the mean

stopping timek = E(K), Pk
D ≥ 1− 1−P∗

D
1−P∗

F
andPk

F ≤ P∗
F

P∗
D

([5], p. 104). The second stage thresholdsη ′
0 andη ′

1

can be chosen in a similar manner with some givenP∗
D
′ andP∗

F
′.

4 Numerical examples

In this section, we consider a few example scenarios that illustrate different properties of the static and dy-
namic elements described above. To clarify the discussion,we consider a simple situation with two sensors,
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S1 andS2, where the first-stage static network includes onlyS1, with no fusion, and the second-stage net-
work includes bothS1 andS2 and combines them at a Bayes fusion center with uniform costsand priors. At
each timek for 1≤ k ≤ N, N = 25, we assume the sensorS j has false alarm and detection probabilities of
0.5−A j −B jk and 0.5+A j +B jk respectively, where theA j andB j are some fixed constants andj ∈ {1,2}.
This setup loosely models a target object moving over time ata constant speed, with onlyS1 being initially
active and triggeringS2 as needed. The thresholds are set using the Wald approximations as described in
Section 3.

The sequential test statistics are shown in Figures 4.1 and 4.2 for various choices of the above parameters.
The first scenario corresponds to the target moving closer toboth sensors over time, while the second one
describes a situation where the target maintains a fixed distance fromS1, but moves towardsS2. In both
cases, the first-stage thresholds are set up to be modest targets, so thatS1 quickly makes its preliminary
decision and activatesS2 well before the system reaches its final decision. The stopping time distributions
generally have large variances and are highly oscillatory in the scenario with stationary sensor statistics, but
are smooth in the one with a moving target.

We also calculate estimates of the baseR in Section 3, based on the number of sample paths still present
at the final timeN = 25. This gives an indication of how much computation time wassaved by culling out
the sample paths that crossed the thresholds at each time step. We find thatR is significantly less than 2,
especially in the first case, and the running time is several orders of magnitude less than it would be if we
computed (3.1) directly.

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Time (k)

P
ro

ba
bi

lit
y

 

 
P

F
k

P
D
k

P
F
k ’

P
D
k ’

P(K=k|H=0)
P(K=k|H=1)
P(K’=k|H=0)
P(K’=k|H=1)

Figure 4.1: Fusion scenario with{A1,B1,A2,B2} = {0,0.01,0,0.02} and target probabilities
{P∗

F ,P
∗
D,P

∗
F
′,P∗

D
′}= {0.3,0.55,0.05,0.99}.

7



5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Time (k)

P
ro

ba
bi

lit
y

 

 
P

F
k

P
D
k

P
F
k ’

P
D
k ’

P(K=k|H=0)
P(K=k|H=1)
P(K’=k|H=0)
P(K’=k|H=1)

Figure 4.2: Fusion scenario with{A1,B1,A2,B2} = {0.1,0,0,0.02} and target probabilities
{P∗

F ,P
∗
D,P

∗
F
′,P∗

D
′}= {0.2,0.55,0.03,0.999}.

5 Conclusion

We have described a general framework for decision-level data fusion performance and tradeoff analysis
between different sensor configurations. We have discussedan extension of the classical Wald sequential test
to cover a multiple-stage cueing scenario where the decisions from one sensor network are used to activate
a second network for a closer look at a target. We have described some numerical examples illustrating the
behavior of the resulting statistical quantities. These results motivate future work on better characterizing
the stopping time distributions as well as the dependenciesbetween the first and second stage times.
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