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Abstract

Consider a linear regression model with n-dimensional response vector, p-dimensional

regression parameter β and independent normally distributed errors. Suppose that

the parameter of interest is θ = aTβ where a is a specified vector. Define the

s-dimensional parameter vector τ = CTβ − t where C and t are specified. Also

suppose that we have uncertain prior information that τ = 0. Part of our evalu-

ation of a frequentist confidence interval for θ is the ratio (expected length of this

confidence interval)/(expected length of standard 1− α confidence interval), which

we call the scaled expected length of this interval. We say that a 1−α confidence in-

terval for θ utilizes this uncertain prior information if (a) the scaled expected length

of this interval is significantly less than 1 when τ = 0, (b) the maximum value of

the scaled expected length is not too large and (c) this confidence interval reverts to

the standard 1−α confidence interval when the data happen to strongly contradict

the prior information. Let Θ̂ = aT β̂ and τ̂ = CT β̂− t, where β̂ is the least squares

estimator of β. We consider the particular case that that E
(

(τ̂ − τ )(Θ̂− θ)
)

= 0,

so that Θ̂ and τ̂ are independent. We present a new 1 − α confidence interval for

θ that utilizes the uncertain prior information that τ = 0. The following problem

is used to illustrate the application of this new confidence interval. Consider a 23

factorial experiment with 1 replicate. Suppose that the parameter of interest θ is

a specified linear combination of the main effects. Assume that the three-factor in-

teraction is zero. Also suppose that we have uncertain prior information that all of

the two-factor interactions are zero. Our aim is to find a frequentist 0.95 confidence

interval for θ that utilizes this uncertain prior information.
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1. Introduction

Suppose that the parameter of interest θ is a scalar and that we have uncertain

prior information about the parameters of the model. Hodges and Lehmann (1952),

Bickel (1984) and Kempthorne (1983, 1987, 1988) show how such uncertain prior

information can be utilized in frequentist inference, mostly for point estimation of θ.

A confidence interval for θ is said to be a 1−α confidence interval if it has infimum

coverage probability 1 − α. We assess a 1 − α confidence interval J by its scaled

expected length, defined to be the ratio (expected length of J)/(expected length

of the standard 1 − α confidence interval for θ). The first requirement of a 1 − α

confidence interval that utilizes the uncertain prior information is that its scaled

expected length is significantly less than 1 when the prior information is correct

(Kabaila, 2009).

We classify confidence intervals that satisfy this first requirement into the fol-

lowing two groups. The first group consists of 1−α confidence intervals with scaled

expected length that is less than or equal to 1 for all parameter values, so that these

dominate the standard 1− α confidence interval. An example of such a confidence

interval is the Stein-type confidence interval for the normal variance (see e.g. Maata

and Casella, 1990 and Goutis and Casella, 1991). The second group consists of 1−α

confidence intervals that satisfy this first requirement, when dominance of the usual

1 − α confidence interval is not possible (the scaled expected length must exceed

1 for some parameter values). Some relevant admissibility results are provided by

Kabaila, Giri and Leeb (2010) and Kabaila (2011). This second group includes the

confidence intervals described by Pratt (1961), Brown et al (1995) and Puza and

O’Neill (2006ab). This second group also includes 1−α confidence intervals that sat-

isfy the additional requirements that (a) the maximum (over the parameter space)

of the scaled expected length is not too much larger than 1 and (b) the confidence

interval reverts to the standard 1 − α confidence interval when the data happen to

strongly contradict the prior information. Confidence intervals that utilize uncertain

the prior information and satisfy these additional requirements have been proposed

by Farchione and Kabaila (2008) and Kabaila and Giri (2009ab) (cf Kabaila and

Giri, 2013).

Consider the linear regression model Y = Xβ + ε , where Y is a random n-

vector of responses, X is a n× p matrix with linearly independent columns, β is an

unknown parameter p-vector and ε ∼ N(0, σ2In), where σ2 is an unknown positive
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parameter. Suppose that the parameter of interest is θ = aTβ, where a is a given p-

vector (a 6= 0). Let the s-dimensional parameter vector τ be defined to be CTβ− t

where C is a specified p×smatrix (s < p) with linearly independent columns and t is

a specified s-vector. Suppose that a does not belong to the linear subspace spanned

by the columns of C. Also suppose that previous experience with similar data sets

and/or expert opinion and scientific background suggests that τ = 0. In other

words, suppose that we have uncertain prior information that τ = 0. Our aim is to

find a frequentist 1−α confidence interval for θ that utilizes this prior information.

By “utilizes this prior information” we mean that (a) the scaled expected length of

this interval is significantly less than 1 when τ = 0, (b) the maximum value of the

scaled expected length is not too large and (c) this confidence interval reverts to the

standard 1−α confidence interval when the data happen to strongly contradict the

prior information.

Kabaila and Giri (2009a) have dealt with the case that s = 1, so we consider

the case that s ≥ 2. Let β̂ denote the least squares estimator of β. Also let

Σ̂2 = (Y − Xβ̂)T (Y − Xβ̂)/(n − p), Θ̂ = aT β̂ and τ̂ = CT β̂ − t. We consider

the particular case that E
(

(τ̂ − τ )(Θ̂− θ)
)

= 0. An example of this particular case

is the following. Consider a 23 factorial experiment with 1 replicate. For factorial

experiments, it is a widely-held belief that the higher the order of interaction, the

more likely it is to be negligible. Indeed, fractional factorial designs are based on this

belief. Assume that the third-order interaction is zero. Also suppose that we have

uncertain prior information that all of the second-order interactions are zero. In this

case, n− p = 1 and s = 3. If the parameter of interest θ is a linear combination of

the main effects then E
(

(τ̂ − τ )(Θ̂− θ)
)

= 0.

In Section 2, we describe the new 1−α confidence interval for θ that utilizes the

uncertain prior information that τ = 0. Define γ =
(

Cov(τ̂ )
)

−1/2
τ . The coverage

probability and scaled expected length of this new confidence interval are even func-

tions of ||γ|| =
√

γTγ. In Section 3, we consider this 23 factorial experiment, when

1−α = 0.95. Figure 2 presents graphs of the squared scaled expected length and the

coverage probability of this new confidence interval (as functions of ||γ||). The in-

fimum coverage probability is computed to be 0.95. To an excellent approximation,

the coverage probability of the new confidence interval is equal to 0.95, throughout

the parameter space. This figure demonstrates that this new confidence interval has

excellent performance in terms of squared scaled expected length. When the prior
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information is correct (i.e. ||γ|| = 0), we gain since the square of the scaled ex-

pected length is 0.34707, which is much smaller than 1. The maximum value of the

square of the scaled expected length is 1.0404, which is only slightly larger than 1.

The new 0.95 confidence interval for θ coincides with the standard 1−α confidence

interval when the data strongly contradicts the prior information. This is reflected

in Figure 2 by the fact that the square of the scaled expected length approaches

1 as ||γ|| → ∞. In Section 4, we examine the effect on the performance of the

new confidence interval of increasing s, for n − p = 1. The application of the new

confidence interval is to the case that n − p is small. As pointed out in Section 2,

the ability of the new confidence interval to utilize the uncertain prior information

comes from enhanced estimation of σ2. The smaller n− p is, the larger will be this

enhancement.

2. New confidence interval that utilizes the uncertain prior information

Our first step is to reduce the data to
(

Θ̂, τ̂ , Σ̂2
)

. Let v11 = aT (XTX)−1a and

V22 = CT (XTX)−1C. Note that Θ̂ ∼ N(θ, σ2v11), τ̂ ∼ N(τ , σ2V22) and Σ̂2 are

independent random vectors. Let m = n − p. Define the quantile t(m) by the

requirement that P
(

− t(m) ≤ T ≤ t(m)
)

= 1− α for T ∼ tm. The standard 1− α

confidence interval for θ = aTβ is

I =
[

Θ̂− t(m)
√
v11 Σ̂, Θ̂ + t(m)

√
v11 Σ̂

]

.

The new confidence interval for θ that we will describe shortly is centered at Θ̂.

The fact that Θ̂ and τ̂ are independent suggests that the uncertain prior information

that τ = 0 should not influence the point estimation of θ. However, this uncertain

prior information can be used to enhance the estimation of σ2. In the absence of any

prior information about τ , the standard estimator of σ2 is Σ̂2 and mΣ̂2/σ2 ∼ χ2
m.

However, if it known that τ = 0 then that standard estimator of σ2 is

Σ̃2 =
m Σ̂2 + τ̂ T V −1

22 τ̂

m+ s
= Σ̂2

(

m+ sF

m+ s

)

,

where F =
(

τ̂ T V −1
22 τ̂/s

)

/Σ̂2 and (m + s)Σ̃2/σ2 ∼ χ2
m+s. This suggests that the

uncertain prior information that τ = 0 can be used to enhance the estimation of σ2

by using the appropriate function of Σ̂2 and F .

This motivates us to consider a new confidence interval for θ of the form

J(d) =
[

Θ̂−√
v11 Σ̂ d(

√
F ), Θ̂ +

√
v11 Σ̂ d(

√
F )
]

,
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where the function d : [0,∞) → (0,∞) is required to satisfy the following restric-

tions.

Restriction 1 d is a continuous function.

Restriction 2 d(x) = t(m) for all x ≥ k, where k is a specified positive number.

The first restriction implies that the endpoints of the confidence interval J(d) are

continuous functions of the data. Note that F is the usual F statistic for testing

the null hypothesis H0 : τ = 0 against the alternative hypothesis H1 : τ 6= 0.

Thus the second restriction implies that this confidence interval reverts to the usual

1 − α confidence interval I when the data happen to strongly contradict the prior

information that τ = 0.

Part of the evaluation of the confidence interval J(d) consists of comparing it

with the usual 1 − α confidence interval I using the scaled expected length crite-

rion (expected length of this confidence interval) / (expected length of I). Theorem

1, which is stated and proved in Appendix A, provides computationally-convenient

expressions for the coverage probability and scaled expected length of J(d). Define

γ =
(

Cov(τ̂ )
)

−1/2
τ = (1/σ)V

−1/2
22 τ . According to this theorem, for given function

d, both the coverage probability and the scaled expected length of J(d) are functions

of ||γ||. We denote this scaled expected length by e
(

||γ||; d
)

. The numerical inte-

gration method used to evaluate this coverage probability is described in Appendix

B.

Our aim is to find a function d satisfying Restrictions 1 and 2 and such that

(a) the minimum of P (θ ∈ J(d)) over ||γ|| is 1 − α and (b) e(0; d) is minimized

subject to the restriction that e
(

||γ||; d
)

≤ ℓ for all ||γ||, where ℓ ≥ 1 is chosen

by the statistician prior to the analysis of the data. Theorem 2, which is stated

and proved in Appendix C, provides a computationally-convenient expression for

e(0; d). We expect that, for small m, this constrained minimization will lead to a

1 − α confidence interval for θ that has scaled expected length e
(

||γ||; d
)

that is

substantially less 1 for γ = 0.

We implement the coverage constraint P (θ ∈ J(d)) ≥ 1 − α for all ||γ|| ≥ 0

as follows. For any reasonable choice of the function d, P (θ ∈ J(d)) converges to

1 − α as ||γ|| → ∞. The constraints implemented in the computations are that

P (θ ∈ J(d)) ≥ 1 − α for every ||γ|| in a judiciously-chosen finite set of values G.
That a given G is adequate to the task is judged by checking numerically, at the
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completion of the computations, that the coverage probability constraint is satisfied

for all ||γ|| ≥ 0 (cf. Farchione and Kabaila, 2012).

For computational feasibility, we specify the following parametric form for the

function d. Suppose that x1, . . . , xq satisfy 0 = x1 < x2 < · · · < xq = k. We fully

specify the function d by the vector
(

d(x1), . . . , d(xq−1)
)

as follows. The value of

d(x) for any x ∈ [0, k] is specified by natural cubic spline interpolation for these

given function values and d(xq) = t(m) (without any endpoint conditions on the

first derivative of d). We call x1, x2, . . . xq the knots. Of course, the values of k,

ℓ and knots xi need to be judiciously-chosen and this will usually require some

computational exploration.

3. Application to the analysis of data from a single-replicate 23 factorial

experiment

Consider a 23 factorial experiment carried out without replication. Let Y denote

the response and let x1, x2 and x3 denote the coded levels for each of the 3 factors,

where the coded level takes either the value −1 or 1. We assume the model

Y = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + β123x1x2x3 + ε

where β0, β1, β2, β3, β12, β13, β23, β123 are unknown parameters and ε ∼ N(0, σ2),

where σ2 is an unknown positive parameter.

For factorial experiments it is commonly believed that higher order interactions

are negligible (see e.g. Mead (1988, p.368) and Hinkelman & Kempthorne (1994,

p.350)). Indeed, this type of belief is the basis for the design of fractional factorial

experiments. Assume that β123 = 0. Also suppose that we have uncertain prior

information that β12, β13 and β23 are all zero. Thus n − p = 1. We consider the

particular case that the parameter of interest interest θ is a linear combination of

the main effects i.e. θ = a1β1 + a2β2 + a3β3. In this case, E
(

(τ̂ − τ )(Θ̂− θ)
)

= 0.

Of course, the properties of J(d), resulting from the constrained minimization

described in Section 2, depend on the values of k, ℓ, the knots xi and 1−α. We focus

on the particular case that k = 15, ℓ = 1.02, the knots are at 0, 1, 2, 3, 7, 12, 15 and

1−α = 0.95. When we compute the new confidence interval, we obtain the function

d shown in Figure 1. All of the computations presented in the present paper were

performed with programs written in MATLAB, using the optimization and statistics

toolboxes. Consistent with the corollary stated in Appendix C, d(x) takes values
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larger than t(m). Figure 2 presents graphs of the squared scaled expected length

and the coverage probability (as functions of ||γ||) of this new confidence interval.

The squared scaled expected length and coverage probability computations were

checked using Monte Carlo simulations.

The infimum coverage probability is computed to be 0.95. The upper panel of

Figure 2 demonstrates that this new confidence interval has excellent performance in

terms of squared scaled expected length. When the prior information is correct (i.e.

||γ|| = 0), we gain since the square of the scaled expected length is 0.34707, which

is much smaller than 1. The maximum value of the square of the scaled expected

length is 1.0404, which is only slightly larger than 1. The new 0.95 confidence

interval for θ coincides with the standard 1 − α confidence interval when the data

strongly contradicts the prior information. This is reflected in the upper panel of

Figure 2 by the fact that the square of the scaled expected length approaches 1 as

||γ|| → ∞.

4. The effect on the performance of the new confidence interval of in-

creasing the value of s

Suppose that the value of m is fixed and that we increase s. It seems plausible

that the best possible performance of the new confidence interval for θ will increase

as s increases i.e. as the amount of uncertain prior information increases. We have

examined the truth of this plausible result as follows. We have considered m = 1

and 1 − α = 0.95, chosen ℓ = 1.02 and the number of knots to be 7. For each

s = 1, 2, 3, 5 and 7, we have chosen k and the knots so as to minimize the scaled

expected length at ||γ|| = 0. We have obtained the following results:

s Min sq sel Max sq sel Min CP Max CP
1 0.80549 1.0414 0.95 0.95049
2 0.54698 1.0404 0.95 0.95030
3 0.34707 1.0404 0.95 0.95037
5 0.25151 1.0406 0.95 0.95034
7 0.19027 1.0404 0.95 0.95030

Table 1: Comparison of results for different values of s, for m = 1, 1−α = 0.95 and
ℓ = 1.02. The column labels Min sq sel, Max sq sel, Min CP and Max CP denote
the minimum squared scaled expected length, the maximum squared scaled expected
length, the minimum coverage probability and the maximum coverage probability,
respectively.
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Figure 1: Plot of the function d for the new 0.95 confidence interval for θ when s = 3,
m = n− p = 1 and ℓ = 1.02. The knots are at 0, 1, 2, 3, 7, 12, 15.
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Figure 2: Plots of squared scaled expected length e2(||γ||; d) and coverage probability as
function of ||γ|| when 1− α = 0.95, s = 3, m = n− p = 1 and ℓ = 1.02.
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If, for each s considered, we assume that the performance of the confidence interval

in terms of the scaled expected length at ||γ|| = 0 is about as good as it can be

then this table tells us the following. As s increases, the amount of uncertain prior

information increases and this leads to an improvement in the performance of this

confidence interval.

5. Discussion

In this paper we have shown how to construct a frequentist confidence interval

for the parameter of interest θ that utilizes the uncertain prior information that

τ = 0. We have done this for the particular case that the covariances between the

components of the least squares estimator of τ and the least squares estimator of θ

are all zero. Our practical experience with the computations of this new confidence

interval, in a variety of circumstances, shows that the coverage probability needs

to be computed with great accuracy for these computations to be successful. If we

no longer restrict attention to the particular case that all of these covariances are

zero then the construction of such a confidence interval necessitates the computation

of coverage probabilities using more complicated methods of the type employed by

Kabaila and Farchione (2012). However, the increased computation time of these

methods would appear to make the constrained optimization not computationally

practicable.

Appendix A. Theorem 1 and its proof

In this appendix, we state and prove Theorem 1, which provides new computationally-

convenient expressions for the coverage probability and scaled expected length of the

confidence interval J(d). DefineG = (Θ̂−θ)/(σ
√
v11) andQ = (1/σ2)τ̂ TV −1

22 τ̂ . Also

define V =
√

Q/s and W = Σ̂/σ. Now, (G, V ) and W are independent random

vectors. The assumption that E
(

(τ̂ − τ )(Θ̂ − θ)
)

= 0 implies that G and V are

independent random variables. Thus, G, V and W are independent random vari-

ables. Note that G ∼ N(0, 1), Q has a noncentral χ2 distribution with s degrees of

freedom and noncentrality parameter ||γ||2 = γTγ and W has the same distribution

as
√

χ2
m/m.

Theorem 1. Let fV ( · ; ||γ||) and fW denote the probability density functions of V

and W , respectively. Also let Φ denote the N(0, 1) distribution function.
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(a) The coverage probability of J(d) is equal to

1− α + 2

∫ k

0

∫

∞

0

(

Φ(w d(x))− Φ(w t(m))
)

fV (xw; ||γ||)wfW (w) dw dx. (1)

For given function d, the coverage probability of J(d) is a function of ||γ||.

(b) The scaled expected length of J(d) is equal to

1 +
1

t(m)E(W )

∫

∞

0

∫ k

0

(

d(x)− t(m)
)

fV (xw; ||γ||) dxw2 fW (w) dw. (2)

For given function d, the scaled expected length of J(d) is a function of ||γ||.

Proof of part (a). It is straightforward to show that the coverage probability

P (θ ∈ J(d)) is equal to P
(

−W d(V/W ) ≤ G ≤ W d(V/W )
)

. By the law of total

probability, this is equal to

P
(

−W d(V/W ) ≤ G ≤ W d(V/W ), V/W < k
)

+P
(

−t(m)W ≤ G ≤ t(m)W, V/W ≥ k
)

,

since d(x) = t(m) for all x ≥ k . Now

P
(

− t(m)W ≤ G ≤ t(m)W, V/W ≥ k
)

+ P
(

− t(m)W ≤ G ≤ t(m)W, V/W < k
)

= P
(

− t(m)W ≤ G ≤ t(m)W
)

= P
(

− t(m) ≤ G/W ≤ t(m)
)

= 1− α

Thus P (θ ∈ J(d)) is equal to

1− α+ P
(

−W d(V/W ) ≤ G ≤ W d(V/W ), V/W < k
)

− P
(

− t(m)W ≤ G ≤ t(m)W,V/W < k
)

= 1− α +

∫

∞

0

∫ kw

0

(

2Φ (wd(v/w)) − 1
)

fV (v)dv fW (w)dw

−
∫

∞

0

∫ kw

0

(

2Φ (wt(m)) − 1
)

fV (v)dv fW (w)dw

= 1− α + 2

∫

∞

0

∫ kw

0

(

Φ (wd(v/w)) − Φ (wt(m))
)

fV (v)dv fW (w)dw.

Changing the variable of integration of the inner integral to x = v/w, we obtain

1− α + 2

∫

∞

0

∫ k

0

(

Φ (wd(x)) − Φ (wt(m))
)

fV (xw; ||γ||) dx wfW (w)dw

= 1− α + 2

∫ k

0

∫

∞

0

(

Φ (wd(x)) − Φ (wt(m))
)

fV (xw; ||γ||)wfW (w)dw dx

10



Proof of part (b). It is straightforward to show that the scaled expected length

of J(d) is equal to
E
(

W d(V/W )
)

t(m)E(W )
. (3)

We use the notation

I(A) =

{

1 if A is true

0 if A is false

where A is an arbitrary statement. Since I(V/W < k) + I(V/W ≥ k) = 1,

E
(

W d(V/W )
)

is equal to

E
(

Wd(V/W ) I(V/W < k)
)

+ E
(

Wd(Q/W 2) I(V/W ≥ k)
)

= E
(

Wd(V/W ) I(V/W < k)
)

+ E
(

Wt(m) I(V/W ≥ k)
)

= t(m)E(W ) + E
(

(d(V/W )− t(m))W I(V/W < k)
)

.

Thus the expression (3) for the scaled expected length is equal to

1 +
1

t(m)E(W )
E
(

(d(V/W )− t(m))W I(V/W < k)
)

(4)

= 1 +
1

t(m)E(W )

∫

∞

0

∫ kw

0

(

d
( v

w

)

− t(m)
)

fV (v; ||γ||) dv w fW (w) dw. (5)

Changing the variable of integration of the inner integral to x = v/w, we obtain (2).

Appendix B. The method used to evaluate the coverage probability

In this appendix we describe the numerical integration method used to compute

the coverage probability P (θ ∈ J(d)), as given by (1). The function d, which is a

cubic spline in the interval [0, k], does not necessarily have a third derivative at each

of the knots x2, . . . , xq = k. So we evaluate (1) by computing

1− α + 2

q−1
∑

i=1

∫ xi+1

xi

∫

∞

0

(

Φ(wd(w))− Φ(wt(m))
)

fV (xw; ||γ||)wfW (w) dw dx. (6)

Each of the inner integrals is equal to
∫

∞

0

(

Φ(wd(w))− Φ(wt(m))
)

fV (xw; ||γ||)wfW (w) dw

= E
(

(

Φ(Wd(x)) − Φ(Wt(m))
)

fV (xW ; ||γ||)W
)

, (7)

where W has pdf fW . Let Z = mW 2, so that Z ∼ χ2
m. Thus (7) is equal to

E

{(

Φ

(
√

Z

m
d(x)

)

− Φ

(
√

Z

m
t(m)

))

fV

(

x

√

Z

m
; ||γ||

)
√

Z

m

}

=
1√
m

∫

∞

0

(

Φ

(
√

z

m
d(x)

)

− Φ

(
√

z

m
t(m)

))

fV

(

x

√

z

m
; ||γ||

)√
z fm(z) dz

(8)
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where fm denotes the χ2
m pdf. It can be shown that

z1/2fm(z) =
21/2 Γ((m+ 1)/2)

Γ(m/2)
fm+1(z).

Thus (8) is equal to
√

2

m

Γ((m+ 1)/2)

Γ(m/2)

∫

∞

0

(

Φ

(
√

z

m
d(x)

)

−Φ

(
√

z

m
t(m)

)

)

fV

(

x

√

z

m
; ||γ||

)

fm+1(z)dz.

(9)

Assuming that d(x) > 0 for all x ∈ [0, k], we compute this as follows. Let Fm denote

the χ2
m cdf. Now change the variable of integration to u = Fm+1(z), so that (9) is

equal to
√

2

m

Γ((m+ 1)/2)

Γ(m/2)

∫ 1

0

g
(

u; x, ||γ||
)

du

where g(u; x, ||γ||) is defined to be


Φ





√

F−1
m+1(u)

m
d(x)



 − Φ





√

F−1
m+1(u)

m
t(m)







 fV



x

√

F−1
m+1(u)

m
; ||γ||





(10)

for all (x, u) ∈ [0, k]× [0, 1) and the limit of (10) as u approaches 1 from below for

u = 1 and all x ∈ [0, k]. Thus g(1; x, ||γ||) = 0 for all x ∈ [0, k].

Appendix C. Theorem 2 and its proof

The following theorem provides a computationally-convenient expression for the

criterion e(0; d).

Theorem 2. The criterion e(0; d) is equal to

1 +
23/2 ss/2 Γ((s+m+ 1)/2)

t(m)E(W ) Γ(m/2) Γ(s/2)

∫ k

0

(

d(x)− t(m)
)

xs−1 mm/2

(sx2 +m)(s+m+1)/2
dx (11)

where Γ denotes the gamma function.

Proof. The proof of this theorem uses Theorem 1 (b). It follows from (2) that

e(0; d)− 1 =
1

t(m)E(W )

∫

∞

0

∫ k

0

(

d(x)− t(m)
)

fV (wx; 0) dxw
2 fW (w) dw

Note that fV (v; 0) = 2svfs(sv
2), where fs denotes χ2

s probability density function.

Interchanging the order of integration, we obtain

e(0; d)− 1 =
2s

t(m)E(W )

∫ k

0

(

d(x)− t(m)
)

x

∫

∞

0

fs
(

(sx2)w2
)

w3 fW (w) dw dx.
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Lemma 1. For each y > 0,

∫

∞

0

fs(yw
2)w3 fW (w) dw =

21/2mm/2 y(s/2)−1 Γ((s+m+ 1)/2)

(y +m)(s+m+1)/2 Γ(m/2) Γ(s/2)
. (12)

Proof. Note that fW (w) = 2mwfm(mw2), where fm denotes the χ2
m probability

density function. Substituting the expressions for fs and fW , we obtain

∫

∞

0

fs(yw
2)w3 fW (w) dw =

mm/2 y(s/2)−1

2(s+m−2)/2 Γ(m/2) Γ(s/2)

∫

∞

0

e−(y+m)w2/2 ws+m dw.

By (A2.1.3) of Box and Tiao (1973), this is equal to the right-hand side of (12).

It follows from this lemma that

e(0; d)−1 =
23/2 ss/2 Γ((s+m+ 1)/2)

t(m)E(W ) Γ(m/2) Γ(s/2)

∫ k

0

(

d(x)−t(m)
)

xs−1 mm/2

(sx2 +m)(s+m+1)/2
dx.

Appendix D. Some simple results on confidence interval performance

In this appendix we consider the confidence interval

J(d) =
[

Θ̂−√
v11 Σ̂ d(

√
F ), Θ̂ +

√
v11 Σ̂ d(

√
F )
]

,

where d : [0,∞) → (0,∞). We make additional requirements of d, as needed. We

state some simple results about the performance of this confidence interval. The

proofs of these results are straightforward and are omitted, for the sake of brevity.

Theorems 3 and 4 concern the expected length of J(d). Theorem 3 is used in

the proof of Theorem 4.

Theorem 3. Suppose that d1(x) ≥ d2(x) for all x ≥ 0. Then

E
(

length of J(d1)
)

≥ E
(

length of J(d2)
)

for all ||γ||.

Theorem 4. Suppose that d1(x) ≥ d2(x) for all x ≥ 0 and that there exists ǫ > 0

and an interval [a, b] (where 0 ≤ a < b) such that d1(x) > d2(x)+ ǫ for all x ∈ [a, b].

Then

E
(

length of J(d1)
)

> E
(

length of J(d2)
)

for all ||γ||.
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Theorems 5 and 6 concern the coverage probability of J(d). Theorem 5 is used

in the proof of Theorem 6.

Theorem 5. Suppose that d1(x) ≥ d2(x) for all x ≥ 0. Then

P
(

θ ∈ J(d1)
)

≥ P
(

θ ∈ J(d2)
)

for all ||γ||.

Theorem 6. Suppose that d1(x) ≥ d2(x) for all x ≥ 0 and that there exists ǫ > 0

and an interval [a, b] (where 0 ≤ a < b) such that d1(x) > d2(x)+ ǫ for all x ∈ [a, b].

Then

P
(

θ ∈ J(d1)
)

> P
(

θ ∈ J(d2)
)

for all ||γ||.

These theorems have the following three consequences.

Corollary. Suppose that d is continuous. If d(0) < t(m) and d(x) ≤ t(m) for all

x > 0 then

P (θ ∈ J(d)) < 1− α for all ||γ||.

References

Bickel, P.J., 1984. Parametric robustness: small biases can be worthwhile. Annals

of Statistics 12, 864–879.

Box, G.E.P., Tiao, G.C., 1973. Bayesian Inference in Statistical Analysis. Wiley,

New York.

Brown, L.D., Casella, G., Hwang, J.T.G., 1995. Optimal confidence sets, bioequiva-

lence and the Limacon of Pascal. Journal of the American Statistical Association

90, 880–889.

Farchione, D., Kabaila, P., 2008. Confidence intervals for the normal mean utilizing

prior information. Statistics and Probability Letters 78, 1094–1100.

Farchione, D., Kabaila, P., 2012. Confidence intervals in regression centred on the

SCAD estimator. Statistics and Probability Letters 82, 1953–1960.

Goutis, C., Casella, G., 1991. Improved invariant confidence intervals for the normal

variance. Annals of Statistics 19, 2015–2031.

Hinkelmann, K., Kempthorne, O., 1994. Design and Analysis of Experiments, re-

vised edition. John Wiley, New York.

Hodges, J.L., Lehmann, E.L., 1952. The use of previous experience in reaching

statistical decisions. Annals of Mathematical Statistics 23, 396–407.

14



Kabaila P., 2009. The coverage properties of confidence regions after model selection.

International Statistical Review 77, 405–414.

Kabaila P., 2011. Admissibility of the usual confidence interval for the normal mean.

Statistics and Probability Letters 81, 352–359.

Kabaila, P., Farchione, D., 2012. The minimum coverage probability of confidence

intervals in regression after a preliminary F test. Journal of Statistical Planning

and Inference 142, 956–964.

Kabaila, P., Giri, K., 2009a. Confidence intervals in regression utilizing prior infor-

mation. Journal of Statistical Planning and Inference 139, 3419–3429.

Kabaila, P., Giri, K., 2009b. Large-sample confidence intervals for the treatment

difference in a two-period crossover trial, utilizing prior information. Statistics

and Probability Letters 79, 652–658.

Kabaila, P., Giri, K., 2013. Simultaneous confidence interval for the population cell

means, for two-by-two factorial data, that utilize uncertain prior information.

To appear in Communications in Statistics - Theory and Methods.

Kabaila, P., Giri, K., Leeb, H., 2010. Admissibility of the usual confidence interval

in linear regression. Electronic Journal of Statistics 4, 300–312.

Kempthorne, P.J., 1983. Minimax-Bayes compromise estimators. In 1983 Business

and Economic Statistics Proceedings of the American Statistical Association,

Washington DC, pp.568–573.

Kempthorne, P.J., 1987. Numerical specification of discrete least favourable prior

distributions. SIAM Journal on Scientific and Statistical Computing 8, 71–184.

Kempthorne, P.J., 1988. Controlling risks under different loss functions: the com-

promise decision problem. Annals of Statistics 16, 1594–1608.

Maatta, J.M., Casella, G., 1990. Decision-theoretic estimation. Statistical Science

5, 90–120.

Mead, R., 1988. The Design of Experiments. Cambridge University Press, Cam-

bridge.

Pratt, J.W., 1961. Length of confidence intervals. Journal of the American Statis-

tical Association 56, 549–657.

Puza, B., O’Neill, T., 2006a. Generalised Clopper-Pearson confidence intervals for

the binomial proportion. Journal of Statistical Computation and Simulation 76,

489–508.

Puza, B., O’Neill, T., 2006b. Interval estimation via tail functions. Canadian

Journal of Statistics 34, 299–310.

15


