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Random generation of optimal saturated designs

An approach based on discovery probability
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Abstract Efficient algorithms for searching for opti-
mal saturated designs are widely available. They maxi-

mize a given efficiency measure (such as D-optimality)

and provide an optimum design. Nevertheless, they do

not guarantee a global optimal design. Indeed, they

start from an initial random design and find a local
optimal design. If the initial design is changed the op-

timum found will, in general, be different. A natural

question arises. Should we stop at the design found or

should we run the algorithm again in search of a bet-
ter design? This paper uses very recent methods and

software for discovery probability to support the deci-

sion to continue or stop the sampling. A software tool

written in SAS has been developed.

Keywords Design of experiments · Optimal designs ·
Unobserved species · Discovery probability

1 Introduction

In the design of experiments, optimal designs, or opti-

mum designs, are a class of experimental designs that

are optimal with respect to a given statistical criterion.

In this paper we focus on saturated optimum designs

(SOD). Saturated designs contain a number of points

that is equal to the number of parameters of the model.
It follows that SODs are often used in place of standard

designs, such as orthogonal fractional factorial designs,

when the cost of each experimental run is high. Main

references to this topic include Atkinson et al (2007),

Pukelsheim (2006), Shah and Sinha (1989) and Wynn
(1970).
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The optimality of a design depends on the statisti-
cal model that is assumed and is assessed with respect

to a statistical criterion, which, for information-based

criteria, is related to the variance-matrix of the model

parameter estimators. Well-known and commonly used

criteria are A-optimality and D-optimality.

Widely used statistical systems like SAS and R have

procedures for finding an optimal design according to
the user’s specifications. In this paper we will refer to

Proc Optex of SAS/QC (sas (2010)), but the approach

can be adopted for other software.

The Optex procedure searches for optimal exper-

imental designs. The user specifies an efficiency crite-

rion, a set of candidate design points, a linear model and

the size of the design to be found and the procedure gen-
erates a subset of the candidate set so that the terms in

the model can be estimated as efficiently as possible. By

default, the standard output of the procedure is a list

of 10 designs that are found as the result of 10 runs of
the exchange search algorithm (Mitchell and Miller Jr

(1970)) starting each time from an initial completely

randomly chosen design.

The number of times that we decide to run the

search algorithm is crucial. Obviously, if we increase

it, in general we will explore different local optima with

the possility to find better designs. On the other hand,
sometimes, the extra time that we use to explore other

possibilities is wasted because new optima do not ex-

ist. This work aims at developing a methodology that

could support the user in making the decision whether

to stop or continue the search.

The paper is organized as follows. In Sect. 2 we

state the problem of finding new optimal designs as the
problem of finding new species in a population. Then,

in Sect. 3, using some examples, we describe how our

methodology, which is based on the estimator of the
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discovery probability, could be used for optimal design

generation. In Sect. 4 we describe the algorithm in more

detail. The software code that has been developed is

written in SAS, is available on request and can be used

for any choice of factors, levels and model. Concluding
remarks are in Sect. 5.

2 Optimal designs vs richness of species

We consider the following setting that is quite common
in optimal design problems.

We have d factors, A1, . . . , Ad. The factor Ai has si
levels coded with the integer 0, . . . , si − 1, i = 1, . . . , d.

The full factorial design is D = {0, . . . , s1 − 1} × . . .×

{0, . . . , sm − 1}. For each point ζ = (ζ1, . . . , ζd) of D
we consider a real-valued random variable Yζ1,...,ζd . We

make the hypothesis that the means of the responses,

E [Y ] where Y is the column vector [Yζ ; ζ ∈ D] can be

modeled as

E [Y ] = XDβ , (1)

where XD is the non-overparametrized design matrix,

as it will be defined in Sect. 2.1, and β is the subset of

all the effects (constant effect, main effects and interac-

tions) that are supposed to affect the response Y .
Given an efficiency criterion φ, a saturated optimal

design (φ-SOD) is a subset of the full factorial design

D = {0, . . . , s1 − 1}×. . .×{0, . . . , sm − 1}, whose size is

equal to the number of degrees of freedom of the model
(1) and that maximizes this criterion φ. In this paper we

focus on information-based criteria and, in particular,

on D-optimality but other criteria can be chosen (like

A-optimality and G-optimality). We denote this type of

problem with the triple (D,M, φ) where D is the full
design, M is the hypothesized model (see Eq. 1) and φ

is the optimality criterion.

Given a subset F of D, the information matrix is

defined as X ′
FXF where XF is the design matrix cor-

responding to F and X ′ is the transpose of X . D-
optimality aims at maximizing DF , the determinant of

the information matrix

DF = det(X ′
FXF) . (2)

There are several algorithms for searching for D-
optimal designs. They have a common structure. They

start from an initial design, randomly generated or user

specified, and move, in a finite number of steps, to a

better design. In general, if a different initial design is

chosen, a different optimal design is found.
It follows that, given an algorithm α, a population

AD
α of D-optimal designs can be defined. This popula-

tion is made up of all the saturated designs that are the

result of the execution of the algorithm α and is a sub-

set of all the subsets of D of size equal to the number

of degrees of freedom of the model.

The elements of AD
α can be classified into species,

according to the criterion for which F1 ∈ AD
α and F2 ∈

AD
α are of the same species if and only if they have the

same value in terms of the D criterion, DF1
= DF2

.

We observe that, as proved in Proposition 1, iso-

morphic designs belong to the same species, while, in

general, the opposite is not true because there are de-
signs with the same value of theD criterion but that are

not isomorphic. As is known two designs are isomorphic

if one can be obtained from the other by relabeling the

factors, reordering the runs, and switching the levels of
factors, e.g. Clark and Dean (2001).

Proposition 1 Let us consider F1 ⊆ D and F2 ⊆ D.

If F1 and F2 are isomorphic then DF1
= DF2

.

Proof We separately analyse row/column permutations

and the switching of the levels of some factors. If F2 is
obtained permuting the rows and/or the columns of F1

it follows that

XF2
= RXF1

C

where R and C are permutation matrices. Then

DF2
=

= det((X ′
F2

XF2
)) = (det(R))2 det((X ′

F1
XF1

))(det(C))2 =

= DF1

being det(R) = det(C) = 1. A similar argument holds
for switching the levels of some factors. ⊓⊔

Studying the species of AD
α or, in general, of Aφ

α

where φ is an optimal criterion, is interesting for op-

timal design generation. Let us consider the problem

(D,M, φ) and let us choose an algorith α to search for
φ-SODs. If we run this algorithm n times, each time

starting from a completely random initial design, we

will get a sample of n elements of Aφ
α. Such elements

can be classified in kn ≤ n different species accord-
ing to the value of the criterion φ. Recent methods for

discovery probability estimation, Favaro et al (2012),

can be applied to the vector (ℓ1, l2, . . . , ℓn) where ℓr
is the number of species in the sample with frequency

r, r = 1, . . . , n. In particular, based on a sample of size
n, for any additional unobserved sample size m ≥ 0 and

for any frequency k = 0, . . . , n+m, these methods pro-

vide, an explicit estimator for the probability Un+m(k)

that the (n + m + 1)-th observation coincides with a
species whose frequency, within the sample size n+m,

is exactly k. The case m = k = 0 corresponds to as-

sessing the probability of finding a new species in the
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subsequent observation, that in the context of optimal

designs, is the probability of finding a saturated design

with a different value of the criterion φ in the subse-

quent run of the algorithm. If this probability Un+0(0)

is sufficiently high (let us say greater than 0.1 or even
0.05) it would be convenient to run the algorithm again

because it is likely that we could find a new optimal de-

sign. If we found a new design, it could have a greater

value of φ and this obviously represents an improvement
to our optimization process. Even if this new design did

not have an higher value of φ than the existing ones, this

would give the possibility to increase the known part of

Aφ
α. In particular, for D-optimal designs, from Propo-

sition 1, we know that designs with different values of
DF are non-isomorphic designs. It is quite common,

in practical applications, to choose a design where the

optimal criterion has a slightly smaller value than the

maximum obtained but which has other better charac-
teristics, such as space filling properties. The knowledge

of a set of non-isomorphic designs can also be used for

non parametric testing procedures, Giancristofaro et al

(2012) and Basso et al (2004).

2.1 The design matrix

The design matrix XD in Eq. 1 is built as follows.

– The first column is equal to 1 and corresponds to the

constant effect, denoted by µ. The constant effect is

always considered as a term of the model.

– If the main effect of the factor Ai is to be considered
in the model, the corresponding si − 1 columns are

computed as follows. For a design point with Ai at

its k-th level

– if 1 ≤ k ≤ si− 1 the columns are all 0 except for
the k-th column that is 1;

– if k = si the columns are all −1

– If an interaction Ai1 ⋆ . . . ⋆ Aik is to be considered

in the model, the corresponding (si1 −1) · . . . · (sik −

1) columns are computed by taking the horizontal
direct product of the colummns corresponding to

the main effects of Ai1 , . . . , Aik .

This coding corresponds to modeling without over pa-

rametrization and XD is full rank.

For a subset F of D, the design matrix XF is simply

built deleting from XD the rows that correspond to the

points of D that are not in F .

2.2 Discovery probability

We briefly summarize the main results that are used

in this work, as in Favaro et al (2012). The interested

reader should refer to the original paper for a detailed

description of the methodology.

Given a sample of size n, (ℓ1, . . . , ℓn), where ℓr is the

frequency of species that have been observed r-times in
the sample, r = 1, . . . , n. We have

∑n

i=1 iℓi = n. We

denote the number of different species that have been

observed in the sample by j. We get
∑n

i=1 ℓi = j.

Based on a sample of size n, for an additional un-

observed sample size m ≥ 0 and for any frequency
k = 0, . . . , n+m, using a non parametric Bayesian ap-

proach, Favaro et al provide an estimator for the prob-

ability Uk
n+m that the (n+m+1)-th observation coin-

cides with a species whose frequency, within the sample
of size n+m, is exactly k.

We are interested in discovering new species, that

correspond to the case k = 0.

From Section 2 of on p.1190 we obtain

Un+0(0) =
Vn+1,j+1

Vn,j

where, for the two-parameter Poisson-Dirichlet process,

we have Vn,j =
∏j−1

i=1 (θ + iσ)/(θ + 1)n−1, σ ∈ (0, 1),
θ > −σ. The symbol (a)n denotes the n-th ascending

factorial of a, (a)n = a(a+ 1) . . . (a+ n− 1), (a)0 ≡ 1.

It follows that

Un+0(0) =
θ + jσ

θ + n

and, for m > 0, we obtain

Un+m(0) =
θ + jσ

θ + n

(θ + n+ σ)m
(θ + n+ 1)m

.

The estimates σ̂, θ̂ of σ, θ are obtained as

argmax
(σ,θ)

∏j−1
i=1 (θ + iσ)

(θ + 1)n−1
n!

n
∏

i=1

{
(1− σ)i−1

i!
}ℓi

1

ℓi!
. (3)

Using (θ̂, σ̂) we finally obtain the estimates of the

discovery probability at the (n+ 1)-th observation

Ûn+0(0) =
θ̂ + jσ̂

θ̂ + n
(4)

and at the (n+m+ 1)-th observation, m > 0,

Ûn+m(0) =
θ̂ + jσ̂

θ̂ + n

(θ̂ + n+ σ̂)m

(θ̂ + n+ 1)m
(5)
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3 Methodology and Applications

We repeat the search for optimal designs to analyse the

population AD
α of D-optimal designs that can be found

for a given problem using a predefined algorithm. Each

time the algorithm starts from a randomly chosen initial

design. We set a maximum number of iterations equal
to M⋆ and we continue the process until the estimate

of the discovery probability at the subsequent observa-

tion goes under a given threshold p⋆ or the maximum

number of iterations is reached.
The procedure can be described as follows. A prob-

lem (D,M, φ), with φ = D in our examples, is defined

and an algorithm α for φ-optimal design generation is

chosen. For each iteration s, s = 1, . . . ,M⋆,

1. using the algorithm α, a φ-optimal saturated design

Fs is obtained;

2. the values of the φ-criterion of Fs is computed;
3. the vector (ℓ1, . . . , ℓs) is built, where ℓr is the num-

ber of species with frequency r, r = 1, . . . , s;

4. an estimate (σ̂s, θ̂s) is obtained, see Eq. 3;

5. an estimate of Ûs+0(0) is computed using Eq. 4;

6. if Ûs+0(0) < p⋆ the algorithm stops, otherwise the
next iteration s+ 1 is performed (if s+ 1 > M⋆ the

algorithm stops).

The main output of the algoritm is a set of designs,

where each design belongs to a different species, i.e.

has a different value of the φ-criterion.

We show how the methodology works using the fol-
lowing problem. Let us consider 7 factors, each with 2

levels and the model that contains the overall mean, the

main effects and all the 2-factor interactions for a total

of 1 + 7 + 21 = 29 degrees of freedom. We search for

saturated D-optimal designs that is D-optimal designs
that contains 29 points.

We use Proc Optex sas (2010) with the exchange

method, which is its default search method. With the

default setting, the algorithm starts from 10 initial ran-
domly chosen designs providing 10 D-optimal designs.

We consider the design with the highest value of the

D-efficiency of the 10 optimal designs as the optimal

design found by the algorithm.

Setting the seed that is used for the random gen-
eration of the initial designs at 6789, the best of the

10 optimal designs, that we denote by F1, has DF1
=

9.0911E39 andED
F1

= 82.3162, whereED
F , theD-efficiency

of a F , is defined as

ED
F = 100×

(

1

#F
D

1
#F

F

)

where #F is the number of runs of F that coincides

with the degrees of freedom of the model for saturated

designs.

Table 1 Number ℓr of D optimal designs that have found r

times, r = 1, . . . , 493; only ℓr 6= 0 are shown.

r ℓr

1 47
2 18
3 7
4 10
5 2
6 4
9 2

11 1
12 1
14 2
15 1
16 1
17 2
20 1
36 1
39 1
40 1
46 1

Total 103

Now we run the procedure above with M⋆ = 1, 000

and p⋆ = 0.10.

After 493 runs, the estimate of the discovery proba-
bility at the next observation becomes lower than p⋆ =

0.10 and the algorithm stops (Ũ493+0(0) ≈ 0.099). We

find 103 different local D-optimal designs. All these de-

signs are not isomorphic (Proposition 1). The maximum

(minimum) value of D-efficiency is 85.6265 (78.9605).

We decide to continue the search for new species

choosing p⋆ = 0.05 and M⋆ = 2, 000. The latter value

is chosen taking into account that using Eq. 5 we get

Ũ493+1000(0) = 0.049 and Ũ493+2000(0) = 0.035. We

observe that these supplementary runs are added to
the previous ones.

After 1, 271 supplementary runs the estimate of the

discovery probability at the next observation becomes

lower than 0.05, Ũ1764+0(0) ≈ 0.0499. After 1, 271 +

493 = 1, 764 simulations we observe 191 different D-
optimal designs. The maximum value of D-efficiency is

still 85.6265, while the minimum is 78.1134.

We can now use the Fedorov algorithm, Fedorov

(1972), that is considered more reliable, even if slower,

than the exchange algorithm. We keep the standard set-

ting for which, at each iteration, 10 optimal designs are
generated and the one among them that has the highest

D-efficiency value is taken as the optimal design.

We choose 3456 as the initial seed. The first itera-

tion provides an optimal design F1 with ED
F1

= 82.7079.

Now we repeat the procedure with M⋆ = 1, 000 and
p⋆ = 0.10. After only 18 iterations, as Ũ18+0(0) ≈

0.087, the algorithm stops, with 4 different designs. The

maximum (minimum) value of D-efficiency is 83.9844
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(82.4212). We have empirical evidence that the Fedorov

algorithm is more stable than the exchange algorithm.

We observe that the best design found with the ex-

change algorithm, that hasD-efficiency equal to 85.6265,

is not found in this first sample. We were able to find
it running the algorithm again with M⋆ = 1, 000 and

p⋆ = 0.01.

4 The algorithm

In this section we provide a detailed description of the

algorithm that has been developed to study the popu-

lation AD
α that contains all the D-optimal designs that

can be found by the algorithm α.
A problem (D,M, φ = D) is defined and an algo-

rithm α for D-optimal design generation is chosen. The

set of candidates that, in our setting, is the full factorial

design is generated using an ad-hoc module written in

SAS/IML. The algorithm α can be chosen from a list
of methods that includes the exchange algorithm and

the Fedorov algorithm.

For each iteration s, s = 1, . . . ,M⋆,

1. using the algorithm α, aD-optimal saturated design

Fs is obtained;

2. the value of theD-efficiency,ED
Fs

, of Fs is computed;

3. the vector (ℓ1, . . . , ℓs) is built, where ℓr is the num-
ber of species with frequency r, r = 1, . . . , s;

4. an estimate (σ̂s, θ̂s) is obtained, see Eq. 3;

5. an estimate of Ûs+0(0) is computed using Eq. 4;

6. if Ûs+0(0) < p⋆ the algorithm stops, otherwise the

next iteration s+ 1 is performed (if s+ 1 > M⋆ the
algorithm stops).

The main output of the algoritm is a set of designs,

where each design belongs to a different species, i.e. has
a different value of the D-criterion.

4.1 Steps 1 and 2

At iteration s, with the chosen algorithm α, the Proc
Optex procedure is used to generate a D-optimal de-

sign, Fs. The species ofFs is the value of itsD-efficiency,

ED
Fs

. The value of the efficiency is rounded to four dec-

imal digits to avoid creating different species from nu-
merical effects.

4.2 Step 3

Using all the designs F1, . . . ,Fs with their correspond-
ingD-efficiencies,ED

F1
, . . . , ED

Fs
the vector (ℓ1, . . . , ℓs) is

built, where ℓr is the number of species with frequency

r, r = 1, . . . , s.

4.3 Step 4

An estimate (σ̂s, θ̂s) must be obtained searching for
(σ, θ), σ ∈ (0, 1), θ > −σ that maximizes f(σ, θ), (see

Eq. 3),

f(σ, θ) =

∏j−1
i=1 (θ + iσ)

(θ + 1)n−1
n!

n
∏

i=1

{
(1− σ)i−1

i!
}ℓi

1

ℓi!

The Genetic Algorithm module of SAS/IML has
been used. In order to manage the constraints σ ∈

(0, 1), θ > −σ the search has been performed in the

region R = [δ, 1− δ]× [−(1− δ), TM ] with δ = 0.01 and

TM = 1, 000. This region contains the non-feasible re-

gion made by the points inside the simplex S = R ∩
{(σ, θ) : θ ≤ −σ} whose vertices are (δ,−(1−δ)), (δ,−δ)

and (1 − δ,−(1 − δ)). We observe that the edges of S

contain non-feasible points.

We decided to manage this constraint with the pen-

alty method, because this method usually works well
when most of the points in the solution space do not

violate the constraints, as in our problem. The way in

which the penalty in the objective function for unsatis-

fied constraints has been imposed is described here.

From the point of view of the search of the point

(σ⋆, θ⋆) that maximizes f(σ, θ), it is equivalent to con-

sider log f(σ, θ) instead of f(σ, θ)

log f(σ, θ) = log(

j−1
∏

i=1

(θ + iσ)) + log(n!) +

− log((θ + 1)n−1) + log(

n
∏

i=1

{
(1− σ)i−1

i!
}ℓi)− log(ℓi!) .

Omitting the terms that do not depend on σ and θ and
as (a)n = Γ(a+n)

Γ(a) where Γ is the gamma function, the

previous equation becomes the function f⋆(σ, θ) here

f⋆(σ, θ) = f(1)⋆ (σ, θ) + f(2)⋆ (σ, θ) ,

where

f(1)⋆ (σ, θ) =

j−1
∑

i=1

f(1,i)⋆ (σ, θ)

with f(1,i)⋆ (σ, θ) = log(θ + iσ) and

f(2)⋆ (σ, θ) = − log Γ(θ + n) + log Γ(θ + 1) +

+

n
∑

i=1

ℓi log Γ(i− σ)− j log Γ(1− σ) .

We observe that, if the point (σ, θ) ∈ R does not sat-
isfy the constraint θ > −σ only f(1)⋆ (σ, θ) becomes not

defined. We apply a penalty value to f(1)⋆ (σ, θ) and to

f(2)⋆ (σ, θ) as described below.
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Given a point P1 in the non-feasible region, P1 =

(σ, θ) ∈ S, P̃1, the closest point to P1 with respect to

the euclidean distance that lies in the feasible region, is

determined

P̃1 = (σ̃, θ̃) = (
1

2
(σ − θ + ǫ),

1

2
(θ − σ + ǫ))

where ǫ is a very small number to ensure that P̃1 is
feasible, i.e. P̃1 ∈ R ∩ S. We used ǫ = 0.001. The

value of the function f(1,1)⋆ is computed in P̃1 getting

Ỹ1 = f(1,1)⋆ (σ̃, θ̃) = log ǫ. Then the value Y1 of f(1,1)⋆

in P1 is defined as f(1,1)⋆ (σ, θ) = (1 + b1)Ỹ1 where b1
is the euclidean distance between P1 and P̃1, b1 =
√

1
2 (σ + θ − ǫ)2. In an analogous way, we apply this

penalty method to all Pi = (iσ, θ) that eventually fall

in the non-feasible region S getting f
(1)
⋆,P (σ, θ), the pe-

nalized version of f(1)⋆ (σ, θ),

f
(1)
⋆,P (σ, θ) =

j−1
∑

i=1

f(1,i)⋆ (σ, θ)

where

f(1,i)⋆ =

{

log(θ + iσ) if θ + iσ > 0

(1 + bi) log(ǫ) if θ + iσ ≤ 0
, i = 1, . . . , j−1 ,

and bi is the euclidean distance between Pi = (iσ, θ) and

P̃i = (12 (iσ−θ+ǫ, 12 (θ−iσ+ǫ) determined as described

above. The penalized version f
(2)
⋆,P (σ, θ) of f(2)⋆ (σ, θ) is

simply defined as

f
(2)
⋆,P (σ, θ) =































f(2)⋆ (σ, θ) if θ + σ > 0

(1 + b1) f
(2)
⋆ (σ, θ) if θ + iσ ≤ 0

and f(2)⋆ (σ, θ) ≤ 0

(1− b1) f
(2)
⋆ (σ, θ) if θ + iσ ≤ 0

and f(2)⋆ (σ, θ) > 0

.

We observe that

1. p < q ⇒ bp > bq p, q = 1, . . . , j − 1;

2. b1 ≤
√
2
2 (1 + ǫ − 2δ). For δ = 0.01 and ǫ = .001 we

get b1 < 0.694.

Using the penalty method, an estimate (σ̂s, θ̂s) is ob-

tained finding the maximum of f⋆,P (σ, θ) = f
(1)
⋆,P (σ, θ)+

f
(2)
⋆,P (σ, θ).

4.4 Steps 5 and 6

The estimate of the discovery probability at the next

iteration, Ûs+0(0), is computed as described in Sect. 3,
Eq 4. If its value is lower than p⋆ the algorithm stops,

otherwise the next iteration s+1 is performed (if s+1 >

M⋆ the algorithm stops).

5 Conclusion

Given an optimality crierion φ, the problem of φ-optimal

design generation has been addressed. A methodology
to support the decision whether to continue or stop the

search for optimal designs has been developed. It com-

bines recent advances on discovery probability estima-

tion, based on a Bayesian non parametric approach,

Favaro et al (2012), with well known methods for opti-
mal design generation.

In principle, this methodology could be applied to
any discrete optimisation problem. This topic will be

part of future research.

A software code, written in SAS, that makes use of

the Proc Optex procedure, has been developed.
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