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ASSUMPTIONLESS CONSISTENCY OF THE LASSO

SOURAV CHATTERJEE

Abstract. The Lasso is a popular statistical tool invented by Robert
Tibshirani for linear regression when the number of covariates is greater
than or comparable to the number of observations. The validity of the
Lasso procedure has been theoretically established under a variety of
complicated-looking assumptions by various authors. This article shows
that for the loss function considered in Tibshirani’s original paper, the
Lasso is consistent under almost no assumptions at all.

1. Introduction

The Lasso is a penalized regression procedure introduced by Tibshirani [26]
in 1996. Given response variables y1, . . . , yn and p-dimensional covariates
x1, . . . ,xn, the Lasso fits the linear regression model

E(yi | xi) = β · xi

by minimizing the ℓ1 penalized squared error
n
∑

i=1

(yi − β · xi)
2 + λ

p
∑

j=1

|βj |,

where β = (β1, . . . , βp) is the vector of regression parameters and λ is a
penalization parameter. As λ increases, the Lasso estimates are shrunk
towards zero. An interesting and useful feature of the Lasso is that it is
well-defined even if p is greater than n. Not only that, often only a small
fraction of the estimated βi’s turn out to be non-zero, thereby producing
an effect of automatic variable selection. And thirdly, there is a fast and
simple procedure for computing the Lasso estimates simultaneously for all
λ using the Least Angle Regression (LARS) algorithm of Efron et. al. [14].
The success of Lasso stems from all of these factors.

There have been numerous efforts to give conditions under which the
Lasso ‘works’. Much of this work has its origins in the investigations of
ℓ1 penalization by David Donoho and coauthors (some of it predating Tib-
shirani’s original paper) [9, 10, 11, 12, 13]. Major advances were made by
Osborne et. al. [25], Knight and Fu [19], Fan and Li [15], Meinshausen and
Bühlmann [23], Yuan and Lin [29], Zhao and Yu [32], Zou [33], Greenshtein
and Ritov [17], Bunea et. al. [5, 6], Candès and Tao [7, 8], Zhang and Huang
[31], Lounici [21], Bickel et. al. [2], Zhang [30], Koltchinskii [20], Wainwright
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[28], Bartlett et. al. [1], and many other authors. Indeed, it is a daunting
task to compile a thorough review of the literature. Fortunately, this daunt-
ing task has been accomplished in the recent book of Bühlmann and van de
Geer [4], to which we refer the reader for an extensive bibliography and a
comprehensive treatment of the Lasso and its many variants.

A common feature of most of the above work is that they assume that only
a small number of the true βi’s are nonzero, and then look for conditions
under which this set is correctly identified with high probability by the
Lasso procedure with an appropriate choice of the penalization parameter.
This quest invariably leads to complicated non-degeneracy conditions on the
covariance matrix of the covariates. The conditions are usually unverifiable
or too artificial to hold for real data — and yet, it is known that sometimes
such conditions are actually necessary for certain kinds of consistency to
hold [33, 32, 24]. The article [27] can serve as a quick reference for the list
of all prominent assumptions and their inter-relations.

The main point of this paper is to show that for the loss function con-
sidered by Tibshirani in [26] (the ‘prediction loss’), the Lasso is consistent
under almost no assumptions beyond the bare minimum required for setting
up the ordinary least squares regression problem. Results that are similar
in spirit (but not the same) have appeared recently in the important works
of Bühlmann and van de Geer [4] and Bartlett et. al. [1]. Comparisons will
be given later.

2. The setup

Suppose that X1, . . . ,Xp are (possibly dependent) random variables, and
M is a constant such that

(1) |Xj | ≤ M

almost surely for each j. Let

(2) Y =

p
∑

j=1

β∗
jXj + ε,

where ε is independent of the Xj ’s and

(3) ε ∼ N(0, σ2).

Here β∗
1 , . . . , β

∗
p and σ2 are unknown constants.

Let Z denote the random vector (Y,X1, . . . ,Xp). Let Z1, . . . ,Zn be i.i.d.
copies of Z. We will write Zi = (Yi,Xi,1, . . . ,Xi,p). The set of vectors
Z1, . . . ,Zn is our data. The conditions (1), (2), (3) and the independence of
Z1, . . . ,Zn are all that we need to assume in this paper, besides the sparsity
condition that

∑n
j=1 |β

∗
j | is not too large.
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3. Prediction error

Suppose that in the vector Z, the value of Y is unknown and our task
is to predict Y using the values of X1, . . . ,Xp. If the parameter vector
β∗ = (β∗

1 , . . . , β
∗
p) was known, then best predictor of Y based on X1, . . . ,Xp

would be the linear combination

Ŷ :=

p
∑

j=1

β∗
jXj .

However β∗
1 , . . . , β

∗
p are unknown, and so we need to estimate them from

the data Z1, . . . ,Zn. The ‘mean squared prediction error’ of any estimator
β̃ = (β̃1, . . . , β̃p) is defined as the expected squared error in estimating Ŷ

using β̃, that is,

(4) MSPE(β̃) := E(Ŷ − Ỹ )2,

where

Ỹ :=

p
∑

j=1

β̃jXj .

Note that here β̃1, . . . , β̃p are computed using the data Z1, . . . ,Zn, and are
therefore independent of X1, . . . ,Xp. By this observation it is easy to see
that the prediction error may be alternatively expressed as follows. Let Σ
be the covariance matrix of (X1, . . . ,Xp), and let ‖ · ‖Σ be the norm (or
seminorm) on Rp induced by Σ, that is,

‖x‖2Σ = x · Σx.

With this definition, the mean squared prediction error of any estimator β̃

may be written as

MSPE(β̃) = E‖β∗ − β̃‖2Σ.

While this alternative representation of the mean squared prediction error
may make it more convenient to connect it to, say, the ℓ2 loss, the original
definition (4) is more easily interpretable and acceptable from a practical
point of view.

As mentioned before, the mean squared prediction error was the measure
of error considered by Tibshirani in his original paper [26] and also previously
by Breiman [3] in the paper that served as the main inspiration for the
invention of the Lasso (see [26]). Although this gives reasonable justification
for proving theorems about the prediction error of the Lasso, this measure of
error is certainly not the last word in judging the effectiveness of a regression
procedure. Indeed, as Tibshirani [26] remarks, “There are two reasons why
the data analyst is often not satisfied with the OLS [Ordinary Least Squares]
estimates. The first is prediction accuracy .... The second is interpretation.”
Proving that the Lasso has a small prediction error will take care of the first
concern, but not the second.
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4. Prediction consistency of the Lasso

Take any K > 0 and define the estimator β̃
K

= (β̃K
1 , . . . , β̃K

p ) as the
minimizer of

n
∑

i=1

(Yi − β1Xi,1 − · · · − βpXi,p)
2

subject to the constraint
p

∑

j=1

|βj | ≤ K.

If there are multiple minimizers, choose one according to some predefined
rule. While this definition of the Lasso is not the same as the one given in
Section 1, this is in fact the original formulation introduced by Tibshirani
in [26]. The two definitions may be shown to equivalent under a simple
correspondence between K and λ, although the correspondence involves
some participation of the data.

The following theorem shows that the Lasso estimator defined above is
‘prediction consistent’ if K is correctly chosen and n ≫ log p. This is the
main result of this paper.

Theorem 1. Consider the setup defined in Section 2. Let K be any constant

such that

(5)

p
∑

j=1

|β∗
j | ≤ K.

Let MSPE stand for the mean squared prediction error, defined in Section 3.

If β̃
K

is the Lasso estimator defined above, then

MSPE(β̃
K
) ≤ KMσ

√

2 log(2p)

n
+ 8K2M2

√

2 log(2p2)

n
.

Remarks. (1) Close cousins of Theorem 1 have appeared very recently in the
literature. The two closest results are possibly Corollary 6.1 of Bühlmann
and van de Geer [4] and Theorem 1.2 of Bartlett et. al. [1]. However, these
results do not actually give bounds on the mean squared prediction error
defined in Section 3. Indeed, to the author’s knowledge, Theorem 1 is the
only result till date that gives a bound on the prediction error used by
Tibshirani [26] and Breiman [3]. The results of [4] and [1] are more closely
related to the notion of ‘persistence’ defined in Greenshtein and Ritov [17].
See also Foygel and Srebro [16] and Massart and Meynet [22] for some other
related results.

(2) The explicit clean bound in terms of K, M , σ, n and p is a new
contribution of Theorem 1.

(3) Suppose that a given value of K is used to compute the estimate β̃
K
.

If the true parameter vector β∗ does not obey the condition (5), we cannot
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hope that β̃
K

will be a good estimate of β∗. There does not seem to be a
way to avoid the condition (5).

(4) Theorem 1 does not give a prescription for choosing an appropriateK.
But that is a separate problem. One may use, for instance, one of the
approaches outlined in [26] to choose a value of K. If K is chosen based
on the data, the error bound has to be recomputed to incorporate this
knowledge. Theorem 1 can serve as a starting point for such a computation.

(5) In most papers on the Lasso, it is assumed that all but a small number
of the β∗

j ’s are zero. Theorem 1 makes no such assumption.

(6) If K, M and σ remain bounded as n and p tend to infinity, the
only condition required for prediction consistency of the Lasso as given by
Theorem 1 is that n grows faster than log p. This condition occurs in most
modern treatments of the Lasso. The log p factor arises due to the Gaussian
error assumption. Actually, the assumption of Gaussianity is not strictly
required; Gaussian tail is enough. A different assumption about the error
would lead to a different factor.

(7) The uniform boundedness of the covariates is not strictly necessary,
because M may be allowed to grow slowly with n and p. Similarly, if M
remains fixed then K can also grow with n and p, as long it grows slower
than (n/ log p)1/4.

(8) Theorem 1 may be used to get error bounds for other loss functions
under additional assumptions. For example, if we assume that the smallest
eigenvalue of Σ is bounded below by some number λ, then the inequality

‖β̃
K
− β∗‖2 ≤ λ−1‖β̃

K
− β∗‖2Σ,

together with Theorem 1 gives a bound on the ℓ2 error. Similarly, assuming
that β∗ has only a small number of nonzero entries may allow us to derive
stronger conclusions from Theorem 1.

5. Estimated prediction error

Instead of the prediction error defined in Section 3, one may alternatively
consider the ‘estimated mean squared prediction error’ of an estimator β̃,
defined as

M̂SPE(β̃) :=
1

n

n
∑

i=1

(Ŷi − Ỹi)
2,

where

Ŷi =

p
∑

j=1

β∗
jXi,j and Ỹi =

p
∑

j=1

β̃jXi,j.

Alternatively, this may be expressed as

M̂SPE(β̃) = ‖β̃ − β∗‖2
Σ̂
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where
‖x‖2

Σ̂
= x · Σ̂x,

and Σ̂ is the sample covariance matrix of the covariates, that is, the matrix
whose (j, k)the element is

1

n

n
∑

i=1

Xi,jXi,k.

The slight advantage of working with the estimated mean squared prediction
error over the actual mean squared prediction error is that consistency in
the estimated error holds if K grows slower than (n/ log p)1/2, rather than

(n/ log p)1/4 as demanded by the mean squared prediction error. This is
made precise in the following theorem.

Theorem 2. Let all notation be as in Theorem 1, and suppose that (5)

holds. Let M̂SPE denote the estimated mean squared prediction error, as

defined above. Then

E
(

M̂SPE(β̃
K
)
)

≤ KMσ

√

2 log(2p)

n
.

Incidentally, the above theorem is related to the notion of persistence
defined in [17] and thoroughly investigated in [1]. Corollary 6.1 of [4] and
Theorem 3.1 of [22] are other closely related results.

6. Proofs of Theorems 1 and 2

Let Y := (Y1, . . . , Yn), and ỸK := (Ỹ K
1 , . . . , Ỹ K

n ), where

Ỹ K
i :=

p
∑

j=1

β̃K
j Xi,j .

Similarly, let

Ỹ K :=

p
∑

j=1

β̃K
j Xj .

For each 1 ≤ j ≤ p, letXj := (X1,j , . . . ,Xn,j). Finally, let Ŷ := (Ŷ1, . . . , Ŷn),
where

Ŷi :=

p
∑

j=1

β∗
jXi,j ,

Given Z1, . . . ,Zn, define the set

C := {β1X1 + · · ·+ βpXp : |β1|+ · · · + |βp| ≤ K}.

Note that C is a compact convex subset of Rn. By definition, ỸK is the
projection of Y on to the set C. Since C is convex, it follows that for any
x ∈ C, the vector x−ỸK must be at an obtuse angle to the vector Y−ỸK .
That is,

(x− ỸK) · (Y − ỸK) ≤ 0.
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The condition (5) ensures that Ŷ ∈ C. Therefore

(Ŷ − ỸK) · (Y − ỸK) ≤ 0.

This may be written as

‖Ŷ − ỸK‖2 ≤ (Y − Ŷ) · (ỸK − Ŷ)

=
n
∑

i=1

εi

( p
∑

j=1

(β̃K
j − β∗

j )Xi,j

)

=

p
∑

j=1

(β̃K
j − β∗

j )

( n
∑

i=1

εiXi,j

)

.

By the condition (5) and the definition of β̃
K
, the above inequality implies

that

‖Ŷ − ỸK‖2 ≤ 2K max
1≤j≤p

|Uj |,(6)

where

Uj :=
n
∑

i=1

εiXi,j.

Let F be the sigma algebra generated by (Xi,j)1≤i≤n, 1≤j≤p. Let E
F denote

the conditional expectation given F . Conditional on F ,

Uj ∼ N

(

0, σ2
n
∑

i=1

X2
i,j

)

.

Since |Xi,j| ≤ M almost surely for all i, j, it follows from the standard results
about Gaussian random variables (see Lemma 3 in the Appendix) that

E
F( max

1≤j≤p
|Uj |) ≤ Mσ

√

2n log(2p).

Since the right hand side is non-random, it follows that

E( max
1≤j≤p

|Uj |) ≤ Mσ
√

2n log(2p).

Using this bound in (6), we get

E‖Ŷ − ỸK‖2 ≤ 2KMσ
√

2n log(2p).(7)

This completes the proof of Theorem 2. For Theorem 1, we have to work a

bit more. Note that by the independence of Z and β̃
K
,

E
F (Ŷ − Ỹ K)2 =

p
∑

j,k=1

(β∗
j − β̃K

j )(β∗
k − β̃K

k )E(XjXk).
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Also, we have

1

n
‖Ŷ − ỸK‖2

=
1

n

n
∑

i=1

p
∑

j,k=1

(β∗
j − β̃K

j )(β∗
k − β̃K

k )Xi,jXi,k.

Therefore, if we define

Vj,k := E(XjXk)−
1

n

n
∑

i=1

Xi,jXi,k,

then

E
F (Ŷ − Ỹ K)2 −

1

n
‖Ŷ − ỸK‖2 =

p
∑

j,k=1

(β∗
j − β̃K

j )(β∗
k − β̃K

k )Vj,k

≤ 4K2 max
1≤j,k≤p

|Vj,k|.(8)

Since |E(XjXk)−Xi,jXi,k| ≤ 2M2 for all i, j and k, it follows by Hoeffding’s
inequality (see Lemma 5 in the Appendix) that for any β ∈ R,

E(eβVj,k) ≤ e2β
2M4/n.

Consequently, by Lemma 4 from the Appendix,

E( max
1≤j,k≤p

|Vj,k|) ≤ 2M2

√

2 log(2p2)

n
.

Plugging this into (8) and combining with (7) completes the proof of Theo-
rem 1.

Appendix

The following inequality is a well-known result about the size of the max-
imum of Gaussian random variables.

Lemma 3. Suppose that ξi ∼ N(0, σ2
i ), i = 1, . . . ,m. The ξi’s need not be

independent. Let L := max1≤i≤m σi. Then

E( max
1≤i≤m

|ξi|) ≤ L
√

2 log(2m).
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Proof. For any β ∈ R, E(eβξi) = eβ
2σ2

i /2 ≤ eβ
2L2/2. Thus, for any β > 0,

E( max
1≤i≤m

|ξi|) =
1

β
E(log emax1≤i≤m β|ξi|)

≤
1

β
E

(

log

m
∑

i=1

(eβξi + e−βξi)

)

≤
1

β
log

m
∑

i=1

E(eβξi + e−βξi) ≤
log(2m)

β
+

βL2

2
.

The proof is completed by choosing β = L−1
√

2 log(2m). �

The result extends easily to the maximum of random variables with
Gaussian tails.

Lemma 4. Suppose that for i = 1, . . . ,m, ξi is a random variable such that

E(eβξi) ≤ eβ
2L2/2 for each β ∈ R, where L is some given constant. Then

E( max
1≤i≤m

|ξi|) ≤ L
√

2 log(2m).

Proof. Exactly the same as the proof of Lemma 3. �

The following lemma is commonly known as Hoeffding’s inequality [18].
The version we state here is slightly different than the commonly stated
version. For this reason, we state the lemma together with its proof.

Lemma 5. Suppose that η1, . . . , ηm are independent, mean zero random

variables, and L is a constant such that |ηi| ≤ L almost surely for each i.
Then for each β ∈ R,

E(eβ
∑m

i=1
ηi) ≤ eβ

2mL2/2.

Proof. By independence,

E(eβ
∑m

i=1
ηi) =

m
∏

i=1

E(eβηi).

Therefore it suffices to prove the result for m = 1. Note that

E(eβη1) =

∫ L

−L
eβxdµ1(x),

where µ1 is the law of η1. By the convexity of the map x 7→ eβx, it follows
that for each x ∈ [−L,L],

(9) eβx = eβ(tL+(1−t)(−L)) ≤ teβL + (1− t)e−βL,

where

t = t(x) =
x

2L
+

1

2
.

Since E(η1) = 0, therefore
∫

t(x)dµ1(x) = 1/2. Thus by (9), E(eβη1) ≤

cosh(βL). The inequality coshx ≤ ex
2/2 completes the proof. �
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[4] Bühlmann, P. and van de Geer, S. (2011). Statistics for high-dimensional data.

Methods, theory and applications. Springer Series in Statistics. Springer, Heidelberg.
[5] Bunea, F., Tsybakov, A. and Wegkamp, M. (2006). Sparsity oracle inequalities

for the Lasso. Electron. J. Statist., 1, 169–194.
[6] Bunea, F., Tsybakov, A. and Wegkamp, M. (2007). Aggregation for Gaussian

regression. Ann. Statist. 35 no. 4, 1674–1697.
[7] Candes, E. and Tao, T. (2005). Decoding by linear programming. IEEE Trans.

Inform. Theory, 51 no. 12, 4203-4215.
[8] Candes, E. and Tao, T. (2007). The Dantzig selector: Statistical estimation when

p is much larger than n. Ann. Statist., 35 no. 6, 2313–2351.
[9] Donoho, D. (2004). For Most Large Underdetermined Systems of Equations, the

Minimal ℓ1-Norm Solution is the Sparsest Solution. Comm. on Pure and Appl. Math.,

59 no. 7, 907–934.
[10] Donoho, D. and Elad, M. (2002). Optimally Sparse Representation in General

(Nonorthogonal) Dictionaries via ℓ1-Norm Minimizations. Proc. of National Acad. of

Science USA, 1005, 2197–2202.
[11] Donoho, D. and Huo, X. (2002). Uncertainty Principles and Ideal Atomic Decom-

positions. IEEE Transactions on Information Theory, 47, 2845–2863.
[12] Donoho, D. and Johnstone, I. (1994). Ideal Spatial Adaptation via Wavelet

Shrinkages. Biometrika, 81, 425–455.
[13] Donoho, D., Johnstone, I., Kerkyacharian, G. and Picard, D. (1995).Wavelet

Shrinkage: Asymptopia? J. of the Royal Statist. Soc., Ser. B, 57, 301–337.
[14] Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least angle

regression. Ann. Statist., 32 no. 2, 407–499.
[15] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood

and its oracle properties. J. Amer. Statist. Assoc., 96 no. 456, 1348–1360.
[16] Foygel, R. and Srebro, N. (2011). Fast-rate and optimistic-rate error bounds for

L1-regularized regression. Preprint. Available at http://arxiv.org/abs/1108.0373
[17] Greenshtein, E. and Ritov, Y. A. (2004). Persistence in high-dimensional linear

predictor selection and the virtue of overparametrization. Bernoulli, 10 no. 6, 971–
988.

[18] Hoeffding, W. (1963). Probability inequalities for sums of bounded random vari-
ables. J. Amer. Statist. Assoc., 58, 13–30.

[19] Knight, K. and Fu, W. (2000). Asymptotics for lasso-type estimators. Ann. Statist.,
28 no. 5, 1356–1378.

[20] Koltchinskii, V. (2009). The Dantzig selector and sparsity oracle inequalities.
Bernoulli, 15, 799–828.

[21] Lounici, K. (2008). Sup-norm convergence rate and sign concentration property of
Lasso and Dantzig estimators. Elec. J. Statist., 2, 90–102.



ASSUMPTIONLESS CONSISTENCY OF THE LASSO 11

[22] Massart, P. and Meynet, C. (2011). The Lasso as an ℓ1-ball model selection
procedure. Elec. J. Statist., 5, 669–687.
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