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Abstract

We consider the fundamental question of learnability of pdtlgeses class in
the supervised learning setting and in the general learsétigng introduced by
Vladimir Vapnik. We survey classic results characteriziegrnability in term of
suitable notions of complexity, as well as more recent teshlat establish the
connection between learnability and stability of a leagratgorithm.

1 Introduction

A key question in statistical learning is which hypothedas¢tion) spaces are learn-
able. Roughly speaking, a hypotheses space is learnabéé is a consistent learning
algorithm, i.e. one returning an optimal solution as the hanof sample goes to in-
finity. Classic results for supervised learning charaztetearnability of a function
class in terms of its complexity (combinatorial dimensi@hy, [16,[1,[2/9[B]. In-
deed, minimization of the empirical risk on a function claswing finite complexity
can be shown to be consistent. A key aspect in this approaéble isonnection with
empirical process theory results showing that finite comtainal dimensions charac-
terize function classes for which a uniform law of large n@rgtholds, namely uniform
Glivenko-Cantelli classes][7].

More recently, the concept of stability has emerged as anrative and effective
method to design consistent learning algorithinis [4]. Stglefers broadly to conti-
nuity properties of learning algorithm to its input and ikisown to play a crucial role
in in regularization theory|8]. Surprisingly, for certaitasses of loss functions, a suit-
able notion of stability of ERM can be shown to character@hability of a function
class[[10/ 1P, 11].

In this paper, after recalling some basic concepts (Se@)pmnve review results
characterizing learnability in terms of complexity andbslity in supervised learning
(Section 3) and in the so called general learning (SectioW) conclude with some
remarks and open questions.
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2 Supervised Learning, Consistency and Learnability

In this section, we introduce basic concepts in Statistiearning Theory (SLT). First,
we describe the supervised learning setting, and then edf@nnotions of consistency
of a learning algorithm and of learnability of a hypothedess.

Consider a probability spade?’, p), whereZ’ = 2" x %', with 2" a measurable
space and? a closed subset @&. A loss function is a measurable mapR x % —
[0,+). We are interested in the problem of minimizing the expedtid

inf &, &xf%:/;xyafWLde@J% (1)

where.Z ¢ ' is the set of measurable functions fra#i to # (endowed with the
product topology and the corresponding Baredlgebra). The probability distribution
p is assumed to be fixed but known only through a training set, & set of pairs
Zn = ((X1,Y1),---,(Xn,¥n)) € Z" sampled identically and independently according to
p. Roughly speaking, the problem of supervised learningas ¢ approximatively
solving Problem[{l1) given a training sBt.

Example 1 (Regression and Classification)n (bounded) regressiof# is a bounded
interval inRR, while in binary classificatio®” = {0,1}. Examples of loss functions are
the square losg(t,y) = (t —y)? in regression and the misclassification lo&s y) =
L1y in classification. See [16] for a more exhaustive list of lassctions.

In the next section, the notion of approximation consid@melLT is defined rigorously.
We first introduce the concepts of hypotheses space andrgalyorithm.

Definition 1 A hypotheses spade a set of functions? C .. We say that’# is
universalif inf z & = inf ,» &p, for all distributionsp on &

Definition 2 A learning algorithmA onJ# is a map,

A 2", e Ay =An),

neN

such that, for all n> 1, A 4 is measurable with respect to the completion of the product
o-algebra onZ™.

Empirical Risk Minimization (ERM) is arguably the most pdauexample of learning
algorithm in SLT.

Example 2 Given a training set, the empirical riské, : . — R is defined as

& (f) = %ilé(f(xi),)ﬁ)-

Given a hypotheses spag€, ERM onJ7 is defined by minimization of the empirical
risk on 7.

We add one remark.



Remark 1 (ERM and Asymptotic ERM) In general some care is needed while defin-
ing ERM since a (measurable) minimizer might not be enswezkist. Wher® =
{0,1} and/ is the misclassification loss function, it is easy to see @hainimizer ex-
ists (possibly non unique). In this case measurabilityusligtd for example in Lemma
6.17 in [15]. When considering more general loss functionsegression problems
one might need to consider learning algorithms defined btablé (measurable) al-
most minimizers of the empirical risk (see e.g. Definifigh 10

2.1 Consistency and Learnability

Aside from computational considerations, the followindjion formalizes in which
sense a learning algorithm approximatively solves Prol{im

Definition 3 We say that a learning algorithm A o7’ is uniformly consistefttif

ve > 07 nirﬂmsll)‘lppn({zf'\ : é()p('A‘Zn) - géap > 8}) = 07

anduniversally uniformly consisterit .7Z is universal.
The next definition shifts the focus from a learning algaritbn 27, to J¢ itself.

Definition 4 We say that a spacg” is uniformly learnabléf there exists a uniformly
consistentlearning algorithm og?’. If 27 is also universal we say that itisiversally
uniformly learnable

Note that, in the above definitions, the term “uniform” reféo the distribution for
which consistency holds, whereas “universal” refers tgabsibility of solving Prob-
lem (@) without a bias due to the choice#f. The requirement of uniform learnability
implies the existence of a learning rate ff15] or equivalently a bound on the sample
complexity [2]. The following classical result, sometimealled the "no free lunch”
theorem, shows that uniform universal learnability of a dijygses space is too much
to hope for.

Theorem 1 Let# = {0,1}, and.2" such that there exists a measwen 2" having
an atom-free distribution. Let be the misclassification loss. J# is universal, then
2 is not uniformly learnable.

The proof of the above result is based on Theorem 7[1 in [6fghows that for each
learning algorithmA on J# and any fixed, there exists a measupeon 2 x % such
that the expected value &} (A;,) —inf » &, is greater than 44. A general form of the
no free lunch theorem, beyond classification, is givenifh (4&e Corollary 6.8). In par-
ticular, this result shows that the no free lunch theoremd$i@r convex loss functions,
as soon as there are two probability distributipaso, such that inf, &p, # inf ,» &),
(assuming that minimizers exist). Roughly speaking, if¢hexist two learning prob-
lems with distinct solutions, thed? cannot be universal uniformly learnable (this
latter condition becomes more involved when the loss is anvex).

1Consistency can de defined with respect to other convergestimns for random variables. If the loss
function is bounded, convergence in probability is eqemako convergence in expectation.



The no free lunch theorem shows that universal uniform sbeiscy is too strong
of a requirement. Restrictions on either the class of camsildistributiong or the
hypotheses spaces/algorithms are needed to define a miedupiraplem. In the fol-
lowing, we will follow the latter approach where assumps@m.s# (or A), but not on
the class distributiong, are made.

3 Learnability of a Hypotheses space

In this section we study uniform learnability by putting appriate restrictions on the
hypotheses spac#’. We are interested in conditions which are not only sufficien
also necessary. We discuss two series of results. The fickssical and character-
izes learnability of a hypotheses space in terms of suitadmeplexity measures. The
second, more recent, is based on the stability (in a suit®riee) of ERM ow?.

3.1 Complexity and Learnability

Classically assumptions os’ are imposed in the form of restrictions on its "size”
defined in terms of suitable notions of combinatorial diniens (complexity). The
following definition of complexity for a class of binary vad functions has been in-
troduced in[[17].

Definition 5 Assume? = {0,1}. We say that’#’ shattersSC 2" if for each EC S
there exists f € .2 such that £(x) =0, if x € E, and £(x) = 1is xe S\ E. The
VC-dimensionof /7 is defined as

VC(#)=max{d e N: 3S= {Xy,...Xq} shattered by}

The VC-dimension turns out to be related to a special claBswations, called uniform
Glivenko-Cantelli, for which a uniform form of the law of lge numbers hold§[7].

Definition 6 We say that’Z is a uniform Glivenko-Cantelli (uGC) clas$it has the
following property

Ve >0, nirﬂmsgpp”({zn : fselig|£p(f)—éazn(f)\ > e}) =0.

The following theorem completely characterizes learrigtiih classification.

Theorem 2 Let % = {0,1} and /¢ be the misclassification loss. Then the following
conditions are equivalent:

1. 27 is uniformly learnable,

2. ERM ons7 is uniformly consistent,
3. s is auGC-class,

4. the VC-dimension of? is finite.



The proof of the above result can be found for exampl&lin [@& (Bheorems 4.9, 4.10
and 5.2). The characterization of uGC classes in terms obauatorial dimensions is
a central theme in empirical process theaory [7]. The resultsinary valued functions
are essentially due to Vapnik and Chervonerikis [17]. Thefttmt uGC ofs# implies
its learnability is straightforward. The key step in the @d@roof is showing that
learnability is sufficient for finite VC-dimension, i.e. (@#) < . The proof of this
last step crucially depends on the considered loss function

A similar result holds for bounded regression with the sqUér2] and absolute loss
functions [98]. In this case, a new notion of complexity d&¢o be defined since
theV C-dimension of real valued function classes is not definedreHee recall the
definition of y-fat shattering dimension of a class of functio#soriginally introduced

in [9].

Definition 7 Let J# be a set of functions fron®” to R andy > 0. Consider S=
{X1,..., X4} C Z". Then S ig~-shattered by? if there are real numbersr...,rq such
that for each EC S there is a functiongf € 7 satisfying

feE(x) <ri—y VxeS\E
fe(x) >ri+y VxeE.

We say thatrs,...,rq) witnesses the shattering. Theat shattering dimension o#’
is

fatyy(y) = max{d : 3S= {x1,...,Xq} € 2 s.t. Sisy-shattered by#’}.

As mentioned above, an analogous of Thedrem 2 can be provieddaded regres-
sion with the square and absolute losses, if condition 4ptaced by faj, (y) < +o
for all y > 0. We end noting that is an open question proving that the ebesults
holds for loss function other than the square and absolsg lo

3.2 Stability and Learnability

In this section we show that learnability of a hypothesesspd is equivalent to the
stability (in a suitable sense) of ERM o#’. It is useful to introduce the following
notation. For a given loss functioh letL : % x Z — [0,) be defined a&(f,z) =
((f(x),y), for f € .# andz= (x,y) € 2. Moreover, letz, be the training, with the
i-th point removed. With the above notation, the relevaniomotf stability is given by
the following definition.

Definition 8 A learning algorithm A ons# is uniformly CViy, Stableif there exist
sequence§Bn, n)nen such thaiB, — 0, &, — 0 and

sgpp”{lL(Azin,z)—L(AZn,z)lSBn}zl—én, ()

foralli e {1,...,n}.



Before illustrating the implications of the above definitito learnability we first add
a few comments and historical remarks. We note that, in adsease, stability refers
to a quantification of the continuity of a map with respectisoimput. The key role of
stability in learning has long been advocated on the bagtsedhterpretation of super-
vised learning as an ill-posed inverse problems [11]. Iddége concept of stability
is central in the theory of regularization of ill-posed pieh [8]. A first quantitative
connection between the performance of a symmetric Ieamgrgithnlﬂ and a notion
of stability is derived in the seminal papef [4]. Here a notxd stability, called uniform
stability, is shown to be sufficient for consistency. If wedg" be the training, with
thei-th point replaced by, uniform stability is defined as,

|L(Aziﬁ“vz) - L(Ava Z)| < an (3)

for all zy € ", u,ze 2" andi € {1,...,n}. A thorough investigation of weaker
notions of stability is given if[10]. Here, many differendtions of stability are shown
to be sufficient for consistency (and learnability) and thesjion is raised of whether
stability (of ERM on.#) can be shown to be necessary for learnabilitys6t In
particular a definition o€V stability for ERM is shown to be necessary and sufficient
for learnability in a Probably Approximate Correct (PAC}ts®, that is wher?? =
{0,1} and for soméh* € 27, y = h*(x), for all x e 2. Finally, Definition[8 ofCVjoo
stability is given and studied in [11]. When compared to amif stability, we see
that: 1) the “replaced one” training sa{"' is considered instead of the “leave one out”
training setz; 2) the error is evaluated on the pomtwhich is left out, rather than
any possible € Z; finally 3) the condition is assumed to hold for a fractior &, of
training sets (which becomes increasingly largen ascreases) rather than uniformly
for any training sek, € 2.

The importance o€V, stability is made clear by the following result.

Theorem 3 Let # = {0,1} and ¢ be the misclassification loss function. Then the
following conditions are equivalent,

1. 27 is uniformly learnable,

2. ERM onsZ is C\{o, Stable

The proof of the above result is given in [11] and is based @emsally two steps.
The first is proving tha€Vio, stability of ERM on.# implies that ERM is uniformly
consistent. The second is showing tha#4f is a uGC class then ERM o#f” is CVjgo
stable. Theoreml3 then follows from TheorEm 2 (since unifoamsistency of ERM
on.# and.# being uGC are equivalent).

Both steps in the above proof can be generalized to regreasitong as the loss
function is assumed to be bounded. The latter assumptiais Hol example if the
loss function satisfies a suitable Lipschitz condition @ids compact (so that#’
is a set of uniformly bounded functions). However, geneiadj Theoreni 13 beyond
classification requires the generalization of Thedrém 2 tf@the square and absolute
loss functions and? compact, the characterization of learnability in termsydat

2We say that a learning algorithfis symmetric if it does not depend on the order of the pointz,in



shattering dimension can be used. It is an open questiorhehtstere is a more direct
way to show that learnability is sufficient for stabilitydependently to Theoreh 2 and
to extend the above results to more general classes of lostidos. We will see a
partial answer to this question in Sect[dn 4.

4 Learnability in the General Learning Setting

In the previous sections we focused our attention on sugpeshiearning. Here we ask
whether the results we discussed extend to the so calledajésarning [16].

Let (Z,p) be a probability space an# a measurable space. A loss function is
a maplL : F x & — [0,»), such thatL(f,-) is measurable for alf € .. We are
interested in the problem of minimizing the expected risk,

nféo, (1) = [ LT.2dp(@) (4)

whenp is fixed but known only through a training sef,= (z,...,z,) € Z" sampled
identically and independently accordinggo Definition[2 of a learning algorithm on
2 applies as is to this setting and ERM gff is defined by the minimization of the
empirical risk

While general learning is close to supervised learninggtiaee important differences.
The data spac&” has no natural decompositiotf, needs not to be a space of func-
tions. Indeed,# and 2 are related only via the loss functian For our discussion
it is important to note that the distinction betweéh and the hypotheses spag€
becomes blurred. In supervised learnifgis the largest set of functions for which
Problem[(1) is well defined (measurable functiongir ). The choice of a hypothe-
ses corresponds intuitively to a more "manageable” funcifpace. In general learning
the choice of# is more arbitrary as a consequence the the definition of tsalay-
potheses space is less clear. The setting is too general fanalogue of the no free
lunch theorem to hold. Given these premises, in what folla@swill simply identify
F = 2 and consider the question of learnability, noting that té#énition of uniform
learnability extends naturally to general learning. Wesprg two sets of ideas. The
first, due to Vapnik, focuses on a more restrictive notionarfsistency of ERM. The
second, investigates the characterization of uniformmiglaitity in terms of stability.

4.1 Vapnik’s Approach and Non Trivial Consistency

The extension of the classical results characterizingnbdality in terms of complexity
measure is tricky. Since? is not a function space the definitions\6€ or V,, dimen-
sions do not make sense. A possibility is to consider thestlas’ := {z€ 2 —
L(f,z) for somef € s’} and the corresponding VC dimensionl(ifs binary valued)
or Vy dimension (ifL is real valued). Classic results about the equivalence dmiw
the uGC property and finite complexity apply to the class7#’. Moreover, uniform



learnability can be easily provedlifo ./# is a uGC class. On the contrary, the reverse
implication does not hold in the general learning settingcointerexample is given
in [16] (Sec. 3.1) showing that it is possible to design hyyeses classes with infinite
VC (orV,) dimension, which are uniformly learnable with ERM. The styaction is

as follows. Consider an arbitrary set” and a losd. for which the class o .7 has
infinite VC (orV,) dimension. Define a new spM U {h} by adding tos# an

elementh such that.(h,z) < L(h,z) forall ze 2 andh e 8. The spacé o.# has
infinite VC, orVy, dimension and is trivially learnable by ERM, which is cargtand
coincides withh for each probability measuge The previous counterexample proves
that learnability, and in particular learnability via ERMpes not imply finite VC oW,
dimension. To avoid these cases of “trivial consistency enrestore the equivalence
between learnability and finite dimension, the followingpsger notion of consistency
for ERM has been introduced by Vapnik [16].

Definition 9 ERM onJ# is strictly uniformly consistenif and only if
. s . B
ve >0, nlgrgosgpp (!}nflc‘gzn(f) —Ijr;{éap(f) >¢€)=0,

wheresze = {f € 7 : &(f) > c}.

The following result characterizes strictly uniform catsincy in terms of uGC prop-
erty of the clast o .7 (see Theorem 3.1 and its Corollary in [16]])

Theorem 4 Let B> 0 and assume (f,z) < B for all f € # and ze 2. Then the
following conditions are equivalent,

1. ERM ons7 is strictly consistent,

2. Lo 7 is a uniform one-sided Glivenko-Cantelli class.

The definition of one-sided Glivenko-Cantelli class simpdyresponds to omitting the
absolute value in Definitionl 6.

4.2 Stability and Learnability for General Learning

In this section we discuss ideas from|[14] extending theilétalpproach to general
learning. The following definitions are relevant.

Definition 10 A uniform Asymptotic ERM (AERM) algorithnf on.2# is a learning
algorithm such that

ve >0, Am sgpp”({zn D &g (Ag) — i}j@@zn >¢e})=0.

Definition 11 A learning algorithm A onsZ is uniformly replace one (RO) stabit
there exists a sequenfg — 0 such that

Z|LA'U7 Ava )|<Bn

forall zy e 2", u,ze Z"andie {1,...,n}.

3Note that this construction is not possible in classifigatio in regression with the square loss.



Note that the above definition is close to that of uniform #itgi{B), although the latter
turns out to be a stronger condition. The importance of trevallefinitions is made
clear by the following result.

Theorem 5 Let B> 0 and assume (f,z) < B for all f € # and ze 2. Then the
following conditions are equivalent,

1. 27 is uniformly learnable,
2. there exists an AERM algorithm o which is RO stable.

As mentioned in Remarkl 1, Theordih 3 holds not only for exactimizers of the
empirical risk, but also for AERM. In this view, there is a fleldifference between
Theoren{B and Theoreld 5. In supervised learning, Thebleno@ssthat uniform
learnability implies thaeveryERM (AERM) is stable, while in general learning, The-
oren{® shows that uniform learnability implies tvdstencef a stable AERM (whose
construction is not explicit).

The proof of the above result is given in Theorem [14]. Tiaed part of the
proof is showing that learnability implies existence d@@stable AERM. This part of
the proof is split in two steps showing that: 1) if there is @ommly consistent algo-
rithm A, then there exists a uniformly consistent AER¥(Lemma 20 and Theorem
10); 2) every uniformly consistent AERM is alDstable (Theorem 9). Note that the
results in [14] are given in expectation and with some gtiaation of how different
convergence rates are related. Here we give results in pilitpdo be uniform with
the rest of the paper and state only asymptotic results tplgynthe presentation.

5 Discussion

In this paper we reviewed several results concerning I&dlityeof a hypotheses space.
Extensions of these ideas can be foundin [5] (and refereheesin) for multi-category

classification, and i [13] for sequential prediction. Itwla be interesting to devise
constructive proofs in general learning suggesting howlstizarning algorithms can
be designed. Moreover, it would be interesting to study ensial consistency and
learnability in the case of samples from non stationary gsees.
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