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Abstract

We consider the fundamental question of learnability of a hypotheses class in
the supervised learning setting and in the general learningsetting introduced by
Vladimir Vapnik. We survey classic results characterizinglearnability in term of
suitable notions of complexity, as well as more recent results that establish the
connection between learnability and stability of a learning algorithm.

1 Introduction

A key question in statistical learning is which hypotheses (function) spaces are learn-
able. Roughly speaking, a hypotheses space is learnable if there is a consistent learning
algorithm, i.e. one returning an optimal solution as the number of sample goes to in-
finity. Classic results for supervised learning characterize learnability of a function
class in terms of its complexity (combinatorial dimension)[17, 16, 1, 2, 9, 3]. In-
deed, minimization of the empirical risk on a function classhaving finite complexity
can be shown to be consistent. A key aspect in this approach isthe connection with
empirical process theory results showing that finite combinatorial dimensions charac-
terize function classes for which a uniform law of large numbers holds, namely uniform
Glivenko-Cantelli classes [7].

More recently, the concept of stability has emerged as an alternative and effective
method to design consistent learning algorithms [4]. Stability refers broadly to conti-
nuity properties of learning algorithm to its input and it isknown to play a crucial role
in in regularization theory [8]. Surprisingly, for certainclasses of loss functions, a suit-
able notion of stability of ERM can be shown to characterize learnability of a function
class [10, 12, 11].

In this paper, after recalling some basic concepts (Section2), we review results
characterizing learnability in terms of complexity and stability in supervised learning
(Section 3) and in the so called general learning (Section 4). We conclude with some
remarks and open questions.
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2 Supervised Learning, Consistency and Learnability

In this section, we introduce basic concepts in StatisticalLearning Theory (SLT). First,
we describe the supervised learning setting, and then, define the notions of consistency
of a learning algorithm and of learnability of a hypotheses class.

Consider a probability space(Z ,ρ), whereZ = X ×Y , with X a measurable
space andY a closed subset ofR. A loss function is a measurable mapℓ : R×Y →
[0,+∞). We are interested in the problem of minimizing the expectedrisk,

inf
F

Eρ , Eρ( f ) =
∫

X ×Y

ℓ( f (x),y)dρ(x,y), (1)

whereF ⊂ Y X is the set of measurable functions fromX to Y (endowed with the
product topology and the corresponding Borelσ -algebra). The probability distribution
ρ is assumed to be fixed but known only through a training set, i.e. a set of pairs
zn = ((x1,y1), . . . ,(xn,yn)) ∈ Z n sampled identically and independently according to
ρ . Roughly speaking, the problem of supervised learning is that of approximatively
solving Problem (1) given a training setzn.

Example 1 (Regression and Classification)In (bounded) regressionY is a bounded
interval inR, while in binary classificationY = {0,1}. Examples of loss functions are
the square lossℓ(t,y) = (t − y)2 in regression and the misclassification lossℓ(t,y) =
1{t 6=y} in classification. See [16] for a more exhaustive list of lossfunctions.

In the next section, the notion of approximation consideredin SLT is defined rigorously.
We first introduce the concepts of hypotheses space and learning algorithm.

Definition 1 A hypotheses spaceis a set of functionsH ⊆ F . We say thatH is
universalif infF Eρ = infH Eρ , for all distributionsρ onZ .

Definition 2 A learning algorithmA onH is a map,

A :
⋃

n∈N

Z
n → H , zn 7→ Azn = A(zn),

such that, for all n≥1, A|Z n is measurable with respect to the completion of the product
σ -algebra onZ n.

Empirical Risk Minimization (ERM) is arguably the most popular example of learning
algorithm in SLT.

Example 2 Given a training setzn the empirical riskEzn : F →R is defined as

Ezn( f ) =
1
n

n

∑
i=1

ℓ( f (xi),yi).

Given a hypotheses spaceH , ERM onH is defined by minimization of the empirical
risk onH .

We add one remark.
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Remark 1 (ERM and Asymptotic ERM) In general some care is needed while defin-
ing ERM since a (measurable) minimizer might not be ensured to exist. WhenY =
{0,1} andℓ is the misclassification loss function, it is easy to see thata minimizer ex-
ists (possibly non unique). In this case measurability is studied for example in Lemma
6.17 in [15]. When considering more general loss functions or regression problems
one might need to consider learning algorithms defined by suitable (measurable) al-
most minimizers of the empirical risk (see e.g. Definition 10).

2.1 Consistency and Learnability

Aside from computational considerations, the following definition formalizes in which
sense a learning algorithm approximatively solves Problem(1).

Definition 3 We say that a learning algorithm A onH is uniformly consistent1 if

∀ε > 0, lim
n→+∞

sup
ρ

ρn({zn : Eρ(Azn)− inf
H

Eρ > ε}
)
= 0,

anduniversally uniformly consistentif H is universal.

The next definition shifts the focus from a learning algorithm onH , to H itself.

Definition 4 We say that a spaceH is uniformly learnableif there exists a uniformly
consistent learning algorithm onH . If H is also universal we say that it isuniversally
uniformly learnable.

Note that, in the above definitions, the term “uniform” refers to the distribution for
which consistency holds, whereas “universal” refers to thepossibility of solving Prob-
lem (1) without a bias due to the choice ofH . The requirement of uniform learnability
implies the existence of a learning rate forA [15] or equivalently a bound on the sample
complexity [2]. The following classical result, sometimescalled the ”no free lunch”
theorem, shows that uniform universal learnability of a hypotheses space is too much
to hope for.

Theorem 1 LetY = {0,1}, andX such that there exists a measureµ onX having
an atom-free distribution. Letℓ be the misclassification loss. IfH is universal, then
H is not uniformly learnable.

The proof of the above result is based on Theorem 7.1 in [6], which shows that for each
learning algorithmA onH and any fixedn, there exists a measureρ onX ×Y such
that the expected value ofEρ(Azn)− infH Eρ is greater than 1/4. A general form of the
no free lunch theorem, beyond classification, is given in [15] (see Corollary 6.8). In par-
ticular, this result shows that the no free lunch theorem holds for convex loss functions,
as soon as there are two probability distributionsρ1,ρ2 such that infH Eρ1 6= infH Eρ2

(assuming that minimizers exist). Roughly speaking, if there exist two learning prob-
lems with distinct solutions, thenH cannot be universal uniformly learnable (this
latter condition becomes more involved when the loss is not convex).

1Consistency can de defined with respect to other convergencenotions for random variables. If the loss
function is bounded, convergence in probability is equivalent to convergence in expectation.
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The no free lunch theorem shows that universal uniform consistency is too strong
of a requirement. Restrictions on either the class of considered distributionsρ or the
hypotheses spaces/algorithms are needed to define a meaningful problem. In the fol-
lowing, we will follow the latter approach where assumptions onH (or A), but not on
the class distributionsρ , are made.

3 Learnability of a Hypotheses space

In this section we study uniform learnability by putting appropriate restrictions on the
hypotheses spaceH . We are interested in conditions which are not only sufficient but
also necessary. We discuss two series of results. The first isclassical and character-
izes learnability of a hypotheses space in terms of suitablecomplexity measures. The
second, more recent, is based on the stability (in a suitablesense) of ERM onH .

3.1 Complexity and Learnability

Classically assumptions onH are imposed in the form of restrictions on its ”size”
defined in terms of suitable notions of combinatorial dimensions (complexity). The
following definition of complexity for a class of binary valued functions has been in-
troduced in [17].

Definition 5 AssumeY = {0,1}. We say thatH shattersS⊆ X if for each E⊆ S
there exists fE ∈ H such that fE(x) = 0, if x ∈ E, and fE(x) = 1 is x∈ S\E. The
VC-dimensionof H is defined as

VC(H ) = max{d ∈ N : ∃S= {x1, . . .xd} shattered byH }

The VC-dimension turns out to be related to a special class offunctions, called uniform
Glivenko-Cantelli, for which a uniform form of the law of large numbers holds [7].

Definition 6 We say thatH is a uniform Glivenko-Cantelli (uGC) classif it has the
following property

∀ε > 0, lim
n→+∞

sup
ρ

ρn
({

zn : sup
f∈H

∣∣Eρ( f )−Ezn( f )
∣∣> ε

})
= 0.

The following theorem completely characterizes learnability in classification.

Theorem 2 Let Y = {0,1} and ℓ be the misclassification loss. Then the following
conditions are equivalent:

1. H is uniformly learnable,

2. ERM onH is uniformly consistent,

3. H is a uGC-class,

4. the VC-dimension ofH is finite.
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The proof of the above result can be found for example in [2] (see Theorems 4.9, 4.10
and 5.2). The characterization of uGC classes in terms of combinatorial dimensions is
a central theme in empirical process theory [7]. The resultson binary valued functions
are essentially due to Vapnik and Chervonenkis [17]. The proof that uGC ofH implies
its learnability is straightforward. The key step in the above proof is showing that
learnability is sufficient for finite VC-dimension, i.e. VC(H ) < ∞. The proof of this
last step crucially depends on the considered loss function.
A similar result holds for bounded regression with the square [1, 2] and absolute loss
functions [9, 3]. In this case, a new notion of complexity needs to be defined since
theVC-dimension of real valued function classes is not defined. Here, we recall the
definition ofγ-fat shattering dimension of a class of functionsH originally introduced
in [9].

Definition 7 Let H be a set of functions fromX to R and γ > 0. Consider S=
{x1, . . . ,xd} ⊂X . Then S isγ-shattered byH if there are real numbers r1, . . . , rd such
that for each E⊆ S there is a function fE ∈ H satisfying

{
fE(x)≤ r i − γ ∀x∈ S\E

fE(x)≥ r i + γ ∀x∈ E.

We say that(r1, . . . , rd) witnesses the shattering. Theγ-fat shattering dimension ofH
is

fatH (γ) = max{d : ∃S= {x1, . . . ,xd} ⊆ X s.t. S isγ-shattered byH }.

As mentioned above, an analogous of Theorem 2 can be proved for bounded regres-
sion with the square and absolute losses, if condition 4) is replaced by fatH (γ)< +∞
for all γ > 0. We end noting that is an open question proving that the above results
holds for loss function other than the square and absolute loss.

3.2 Stability and Learnability

In this section we show that learnability of a hypotheses spaceH is equivalent to the
stability (in a suitable sense) of ERM onH . It is useful to introduce the following
notation. For a given loss functionℓ, let L : F ×Z → [0,∞) be defined asL( f ,z) =
ℓ( f (x),y), for f ∈ F andz= (x,y) ∈ Z . Moreover, letzi

n be the trainingzn with the
i-th point removed. With the above notation, the relevant notion of stability is given by
the following definition.

Definition 8 A learning algorithm A onH is uniformly CVloo stableif there exist
sequences(βn,δn)n∈N such thatβn → 0, δn → 0 and

sup
ρ

ρn{|L(Azi
n
,zi)−L(Azn,zi)| ≤ βn} ≥ 1− δn , (2)

for all i ∈ {1, . . . ,n}.
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Before illustrating the implications of the above definition to learnability we first add
a few comments and historical remarks. We note that, in a broad sense, stability refers
to a quantification of the continuity of a map with respect to its input. The key role of
stability in learning has long been advocated on the basis ofthe interpretation of super-
vised learning as an ill-posed inverse problems [11]. Indeed, the concept of stability
is central in the theory of regularization of ill-posed problem [8]. A first quantitative
connection between the performance of a symmetric learningalgorithm2 and a notion
of stability is derived in the seminal paper [4]. Here a notion of stability, called uniform
stability, is shown to be sufficient for consistency. If we let zi,u

n be the trainingzn with
the i-th point replaced byu, uniform stability is defined as,

|L(Azi,u
n
,z)−L(Azn,z)| ≤ βn, (3)

for all zn ∈ Z n, u,z∈ Z n and i ∈ {1, . . . ,n}. A thorough investigation of weaker
notions of stability is given in [10]. Here, many different notions of stability are shown
to be sufficient for consistency (and learnability) and the question is raised of whether
stability (of ERM onH ) can be shown to be necessary for learnability ofH . In
particular a definition ofCV stability for ERM is shown to be necessary and sufficient
for learnability in a Probably Approximate Correct (PAC) setting, that is whenY =
{0,1} and for someh∗ ∈ H , y= h∗(x), for all x∈ X . Finally, Definition 8 ofCVloo

stability is given and studied in [11]. When compared to uniform stability, we see
that: 1) the “replaced one” training setzi,u

n is considered instead of the “leave one out”
training setzi

n; 2) the error is evaluated on the pointzi which is left out, rather than
any possiblez∈ Z ; finally 3) the condition is assumed to hold for a fraction 1− δn of
training sets (which becomes increasingly larger asn increases) rather than uniformly
for any training setzn ∈ Z n.

The importance ofCVloo stability is made clear by the following result.

Theorem 3 Let Y = {0,1} and ℓ be the misclassification loss function. Then the
following conditions are equivalent,

1. H is uniformly learnable,

2. ERM onH is CVloo stable

The proof of the above result is given in [11] and is based on essentially two steps.
The first is proving thatCVloo stability of ERM onH implies that ERM is uniformly
consistent. The second is showing that ifH is a uGC class then ERM onH is CVloo

stable. Theorem 3 then follows from Theorem 2 (since uniformconsistency of ERM
onH andH being uGC are equivalent).

Both steps in the above proof can be generalized to regression as long as the loss
function is assumed to be bounded. The latter assumption holds for example if the
loss function satisfies a suitable Lipschitz condition andY is compact (so thatH
is a set of uniformly bounded functions). However, generalizing Theorem 3 beyond
classification requires the generalization of Theorem 2. For the the square and absolute
loss functions andY compact, the characterization of learnability in terms ofγ-fat

2We say that a learning algorithmA is symmetric if it does not depend on the order of the points inzn.
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shattering dimension can be used. It is an open question whether there is a more direct
way to show that learnability is sufficient for stability, independently to Theorem 2 and
to extend the above results to more general classes of loss functions. We will see a
partial answer to this question in Section 4.

4 Learnability in the General Learning Setting

In the previous sections we focused our attention on supervised learning. Here we ask
whether the results we discussed extend to the so called general learning [16].

Let (Z ,ρ) be a probability space andF a measurable space. A loss function is
a mapL : F ×Z → [0,∞), such thatL( f , ·) is measurable for allf ∈ F . We are
interested in the problem of minimizing the expected risk,

inf
H

Eρ , Eρ( f ) =
∫

Z

L( f ,z)dρ(z), (4)

whenρ is fixed but known only through a training set,zn = (z1, . . . ,zn) ∈ Z n sampled
identically and independently according toρ . Definition 2 of a learning algorithm on
H applies as is to this setting and ERM onH is defined by the minimization of the
empirical risk

Ezn( f ) =
1
n

n

∑
i=1

L( f ,zi).

While general learning is close to supervised learning, there are important differences.
The data spaceZ has no natural decomposition,F needs not to be a space of func-
tions. Indeed,F andZ are related only via the loss functionL. For our discussion
it is important to note that the distinction betweenF and the hypotheses spaceH

becomes blurred. In supervised learningF is the largest set of functions for which
Problem (1) is well defined (measurable functions inY X ). The choice of a hypothe-
ses corresponds intuitively to a more ”manageable” function space. In general learning
the choice ofF is more arbitrary as a consequence the the definition of universal hy-
potheses space is less clear. The setting is too general for an analogue of the no free
lunch theorem to hold. Given these premises, in what followswe will simply identify
F =H and consider the question of learnability, noting that the definition of uniform
learnability extends naturally to general learning. We present two sets of ideas. The
first, due to Vapnik, focuses on a more restrictive notion of consistency of ERM. The
second, investigates the characterization of uniform learnability in terms of stability.

4.1 Vapnik’s Approach and Non Trivial Consistency

The extension of the classical results characterizing learnability in terms of complexity
measure is tricky. SinceH is not a function space the definitions ofVC or Vγ dimen-
sions do not make sense. A possibility is to consider the class L ◦H := {z∈ Z 7→
L( f ,z) for somef ∈ H } and the corresponding VC dimension (ifL is binary valued)
or Vγ dimension (ifL is real valued). Classic results about the equivalence between
the uGC property and finite complexity apply to the classL ◦H . Moreover, uniform
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learnability can be easily proved ifL◦H is a uGC class. On the contrary, the reverse
implication does not hold in the general learning setting. Acounterexample is given
in [16] (Sec. 3.1) showing that it is possible to design hypotheses classes with infinite
VC (or Vγ ) dimension, which are uniformly learnable with ERM. The construction is
as follows. Consider an arbitrary setH and a lossL for which the classL ◦H has
infinite VC (orVγ ) dimension. Define a new spacẽH := H ∪{h̃} by adding toH an

element̃h such thatL(h̃,z)≤ L(h,z) for all z∈ Z andh∈ H 3 . The spaceL◦ H̃ has
infinite VC, orVγ , dimension and is trivially learnable by ERM, which is constant and
coincides withh̃ for each probability measureρ . The previous counterexample proves
that learnability, and in particular learnability via ERM,does not imply finite VC orVγ
dimension. To avoid these cases of “trivial consistency” and to restore the equivalence
between learnability and finite dimension, the following stronger notion of consistency
for ERM has been introduced by Vapnik [16].

Definition 9 ERM onH is strictly uniformly consistentif and only if

∀ε > 0, lim
n→∞

sup
ρ

ρn( inf
Hc

Ezn( f )− inf
Hc

Eρ( f ) > ε) = 0,

whereHc = { f ∈ H : Eρ( f )≥ c}.

The following result characterizes strictly uniform consistency in terms of uGC prop-
erty of the classL◦H (see Theorem 3.1 and its Corollary in [16]])

Theorem 4 Let B> 0 and assume L( f ,z) ≤ B for all f ∈ H and z∈ Z . Then the
following conditions are equivalent,

1. ERM onH is strictly consistent,

2. L◦H is a uniform one-sided Glivenko-Cantelli class.

The definition of one-sided Glivenko-Cantelli class simplycorresponds to omitting the
absolute value in Definition 6.

4.2 Stability and Learnability for General Learning

In this section we discuss ideas from [14] extending the stability approach to general
learning. The following definitions are relevant.

Definition 10 A uniform Asymptotic ERM (AERM) algorithmA onH is a learning
algorithm such that

∀ε > 0, lim
n→∞

sup
ρ

ρn({zn : Ezn(Azn)− inf
H

Ezn > ε}) = 0.

Definition 11 A learning algorithm A onH is uniformly replace one (RO) stableif
there exists a sequenceβn → 0 such that

1
n

n

∑
i=1

|L(Azi,u
n
,z)−L(Azn,z)| ≤ βn .

for all zn ∈ Z n, u,z∈ Z n and i∈ {1, . . . ,n}.

3Note that this construction is not possible in classification or in regression with the square loss.
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Note that the above definition is close to that of uniform stability (3), although the latter
turns out to be a stronger condition. The importance of the above definitions is made
clear by the following result.

Theorem 5 Let B> 0 and assume L( f ,z) ≤ B for all f ∈ H and z∈ Z . Then the
following conditions are equivalent,

1. H is uniformly learnable,

2. there exists an AERM algorithm onH which is RO stable.

As mentioned in Remark 1, Theorem 3 holds not only for exact minimizers of the
empirical risk, but also for AERM. In this view, there is a subtle difference between
Theorem 3 and Theorem 5. In supervised learning, Theorem 3 shows that uniform
learnability implies thateveryERM (AERM) is stable, while in general learning, The-
orem 5 shows that uniform learnability implies theexistenceof a stable AERM (whose
construction is not explicit).

The proof of the above result is given in Theorem 7 in [14]. Thehard part of the
proof is showing that learnability implies existence of aROstable AERM. This part of
the proof is split in two steps showing that: 1) if there is a uniformly consistent algo-
rithm A, then there exists a uniformly consistent AERMA′ (Lemma 20 and Theorem
10); 2) every uniformly consistent AERM is alsoROstable (Theorem 9). Note that the
results in [14] are given in expectation and with some quantification of how different
convergence rates are related. Here we give results in probability to be uniform with
the rest of the paper and state only asymptotic results to simplify the presentation.

5 Discussion

In this paper we reviewed several results concerning learnability of a hypotheses space.
Extensions of these ideas can be found in [5] (and referencestherein) for multi-category
classification, and in [13] for sequential prediction. It would be interesting to devise
constructive proofs in general learning suggesting how stable learning algorithms can
be designed. Moreover, it would be interesting to study universal consistency and
learnability in the case of samples from non stationary processes.
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