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Abstract: In some socio-economic surveys, data are collected on sensitive or stigmatizing issues

such as tax evasion, criminal conviction, drug use, etc. In such surveys, direct questioning of

respondents is not of much use and the randomized response technique is used instead. A few

researchers have studied the issue of privacy protection or respondent jeopardy for surveys on

dichotomous populations, where the objective is to estimate the proportion of persons bearing

the sensitive trait. However, not much is yet known about respondent protection when the vari-

able under study takes discrete numerical values and the objective of the survey is to estimate

the population mean of this variable. In this article we study this issue. We first propose a

randomization device for this situation and give the corresponding estimation procedure. We

next propose a measure of privacy and show that given a certain stipulated level of this privacy

measure, we can determine the parameter of the randomization device so as to maximize the

efficiency of estimation, while guaranteeing the desired level of privacy protection. In particular,

our study also covers the case of polychotomous populations and we can estimate the propor-

tions of individuals belonging to the different classes. Consequently, results for dichotomous

populations follow as corollaries.

Keywords: Jeopardy measure, numerical stigmatizing variable, revealing probability.

1 Introduction

The randomized response technique is a useful method for collecting data on variables which

are considered sensitive, incriminating or stigmatizing for the respondents. Examples of such

situations are common in socio-economic surveys, for instance, we may need to collect data on

tax evasion, alcohol addiction, illegal drug use, criminal behaviour or past criminal convictions.

In such surveys, direct questions are not useful as the respondents will either refuse to answer

embarrassing questions or, even if they do, may give false answers. In a randomized response
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model, the respondents use a randomization device to generate a randomized response and the

parameter under study can be estimated from these responses. So, the respondent is not required

to disclose his true response and it is expected that this will lead to better participation in the

survey on sensitive issues.

Warner (1965) introduced the randomized response technique for estimating the proportion

of persons bearing a sensitive attribute in a dichotomous population. In Warner’s model, with

population categories A and Ac, a box with two types of cards labeled A and Ac (in proportion

p : 1 − p) is used as the randomization device. A respondent draws a card at random and

responds ‘yes’ or ‘no’ according as whether or not he belongs to the card type he draws. Since

then, several researchers have extensively contributed to this area, e.g., Kuk (1990), Ljungqvist

(1993), Mangat (1994), Chua and Tsui (2000), Van den Hout and Van der Heijden (2002),

Christofides (2005) and many others. For details on the results available on this technique we

refer to the review paper by Chaudhuri and Mukerjee (1987) and books by Chaudhuri and

Mukerjee (1988) and Chaudhuri (2011).

Lanke (1976) and Leysieffer and Warner (1976) initiated the study of efficiency versus privacy

protection in randomized response surveys where the population is divided into two complemen-

tary sensitive groups, A and Ac, and the objective is to estimate the proportions of persons

belonging to these groups. They suggested measures of jeopardy based on the ‘revealing prob-

abilities’, i.e., the posterior probabilities of a respondent belonging to groups A and Ac given

his randomized response. Since then, this dichotomous case has been widely studied. Loynes

(1976) extended the jeopardy measure of Leysieffer and Warner (1976) to polychotomous pop-

ulations. Ljungqvist (1993) gave a unified and utilitarian approach to measures of privacy for

the dichotomous case. Nayak and Adeshiyan (2009) proposed a measure of jeopardy for surveys

from dichotomous populations and developed an approach for comparing the available random-

ization procedures. These results are all based on samples drawn by simple random sampling

with replacement.

All the references given above are for sensitive variables which are categorial or qualitative

in nature. However, in randomized response surveys it is quite common to have situations where

the study variable X is quantitative, e.g. in studies on the number of criminal convictions of

a person, the number of induced abortions, the number of months spent in a correction centre,

the amount of undisclosed income, etc. Anderson (1977) studied the case of continuous sensitive

variables and considered the amount of information provided by the randomized responses. For
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ensuring more privacy he recommended that the expectation of the conditional variance of X

given the randomized response be made as large as possible. However, not much work seems to

have been done in studying the respondent privacy aspect for discrete-valued sensitive variables,

even though surveys are often undertaken on such variables.

To fill this gap, in this article we focus on studying the issue of privacy protection when

the underlying variable under study is quantitative and discrete. We propose the use of a

randomization device and give the associated estimation method. Then, we consider two separate

cases, one where all values of X are sensitive and another where not all values of X are sensitive.

For each of these cases, we propose a measure for protecting the privacy of the respondents. We

finally show how one can choose the randomization device parameter in each case, so as to

guarantee a certain pre-specified level of respondent protection and then maximize the efficiency

of estimating the parameter of interest under this constraint. Our study also covers qualitative

sensitive variables, i.e., cases where the population is dichotomous or polychotomous, and allows

us to estimate the proportions of individuals belonging to each category.

In Section 2 we give some preliminaries. In Sections 3 and 4 we consider the issues of esti-

mation and privacy protection, respectively. In Section 5 we obtain the randomization device

parameter which allows efficient estimation while assuring the required level of respondent pro-

tection and illustrate with some numerical examples. In the concluding section we show how

our study covers the case of polychotomous variables.

2 Preliminaries

Consider a population with N individuals labeled 1, . . . , N . Let X denote the sensitive variable

of interest. We assume that X takes a finite number of values x1, . . . , xm and without loss of

generality, we may suppose these m values to be known. For 1 ≤ i ≤ m, let πi be the unknown

population proportion of individuals for whom X equals xi, i.e.,

Prob(X = xi) = πi, 1 ≤ i ≤ m, where πi ≥ 0,
m
∑

i=1

πi = 1, (1)

The objective of the survey is to estimate the population mean of X. For this, we suppose

as usual (cf. Warner (1965), Nayak and Adeshiyan (2009) and others), that a sample of n

individuals is drawn from the population by simple random sampling with replacement. As for

the randomization device, since we are interested in the numerical values of X, we propose the

use of a device as described below.
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Consider a box containing cards of (m+1) types, the ith type of card being marked ‘Report

xi as your response’, 1 ≤ i ≤ m, while the (m+ 1)th type of card is marked: ‘Report your true

value of X as your response.’ The box has a large number of cards, say M , there being Mp

cards of type (m+ 1) and M 1−p
m

cards of each of the types i, 1 ≤ i ≤ m, 0 < p < 1. A sampled

respondent is asked to draw a card at random from the box and then give a truthful response

according to the card drawn by him, without disclosing the label on the card to the investigator.

Thus the true value of X for the respondent is not known. The n responses so received are the

data from this survey.

Let R denote the randomized response variable. Clearly, with this device, the ranges of

R and X match. The efficiency in estimation and respondent protection will depend on the

choice of the value of p, which we call the device parameter. The above device is such that with

probability p, a respondent will report his true value, while with probability 1−p
m

, he will report

any one of the possible values x1, . . . , xm chosen at random, i.e.,

Prob(R = xi|X = xj) =
1− p

m
, 1 ≤ i 6= j ≤ m, (2)

Prob(R = xj|X = xj) = p+
1− p

m
, 1 ≤ j ≤ m. (3)

3 Estimation of population mean

The population mean and variance of X are given by

µX =
m
∑

i=1

xiπi and σ2
X =

m
∑

i=1

(xi − µX)2πi,

respectively. Our objective is to estimate µX from the n randomized responses collected as

described in Section 2. Let wi be the sample proportion of randomized responses which equal

xi, 1 ≤ i ≤ m. Hence, from (1)–(3),

E(wi) = Prob(R = xi) = pπi +
1− p

m
= λi, say. (4)

So, an unbiased estimator of πi will be given by π̂i = 1
p
(wi −

1−p
m

), leading to an unbiased

estimator of µX as

µ̂X =
m
∑

i=1

xiπ̂i =
1

p

m
∑

i=1

xiwi −
1− p

mp

m
∑

i=1

xi.

Then, on simplification using (4), and writing X̄ = 1
m

∑m
i=1 xi, the variance of µ̂X is given by

Var(µ̂X) =
1

p2
Var(

m
∑

i=1

xiwi) =
1

np2







m
∑

i=1

x2iλi(1− λi)−
∑

m
∑

i 6=j=1

xixjλiλj






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=
1

np2

{

p

m
∑

i=1

x2iπi +
1− p

m

m
∑

i=1

x2i −
(

pµX + (1− p)X̄
)2

}

=
1

np2

{

pσ2
X + (1− p)

1

m

m
∑

i=1

(xi − X̄)2 + p(p− 1)(µX − X̄)2
}

. (5)

Our aim is to estimate µX keeping Var(µ̂X) as small as possible. It is clear from the expression

on the right side of (5) that Var(µ̂X) is decreasing in p, irrespective of the values of π1, . . . , πm.

So, this variance may be decreased, or equivalently, the efficiency of estimation may be increased

by increasing p, whatever may be the proportions of the xi values in the population.

4 Privacy protection

To study the respondent privacy aspect for dichotomous populations, Leysieffer and Warner

(1976) studied the case where both A and Ac are sensitive categories while Lanke (1975) also

considered the case where only A is sensitive and there is no jeopardy in a ‘no’ answer to the

sensitive question. For polychotomous populations, Loynes (1976) studied two cases, one where

all categories are stigmatizing and another where one of the categories is not stigmatizing. In

line with these, we too consider the privacy issue for two situations, one where all the m values of

X are stigmatizing and another where not all values of X are stigmatizing. Both these situations

commonly arise in practice and we require separate privacy protection measures for them.

For a randomly chosen respondent from the population, the ‘true’ probability that the value

of X for this respondent equals xi is given by Prob(X = xi). On the other hand, when this

respondent gives a randomized response, say xj , then the probability that the value of X for

this respondent equals xi is now given by the conditional probability Prob(X = xi|R = xj), or

the ‘revealing’ probability.

4.1 All values of X are stigmatizing

Suppose all the values x1, . . . , xm are stigmatizing. In this case, a respondent would feel com-

fortable in participating in the survey if the perception of his having a value X = xi is not much

altered after knowing his randomized response, for all 1 ≤ i ≤ m. This would require that his

true and revealing probabilities be sufficiently close. Starting from this basic premise we define

αij = |Prob(X = xi|R = xj)− Prob(X = xi)| (6)
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and since each respondent would want αij to be as small as possible for all 1 ≤ i, j ≤ m, as a

measure of privacy protection we propose the following measure:

α = max
1≤i,j≤m

αij . (7)

A randomization device with a privacy protection value α = α0 would guarantee that the

discrepancies between the true and revealing probabilities will be at most α0 for all respondents,

irrespective of their true values. Thus a device which results in a lower value of α gives a higher

level of privacy protection than one with a higher value of α.

Suppose the scientist planning a certain survey would like to keep the privacy protection

available to respondents above a certain threshold, i.e., would like to achieve α ≤ ξ, where ξ is

a pre-assigned quantity, 0 < ξ < 1. Moreover, this bound on α should hold irrespective of the

unknown values of π1, . . . , πm. The following theorem shows how the device parameter can be

chosen to achieve this.

Theorem 1. For α as in (7) and a preassigned ξ, where 0 < ξ < 1, α ≤ ξ will hold, irrespective

of the values of π1, . . . , πm, if and only if p ≤ p0, where

p0 =
1

1 + m
ξ
(1−ξ

2 )2
. (8)

Proof. From (1)-(3), using Bayes’ Theorem it follows that for 1 ≤ i, j,≤ m,

Prob(X = xi|R = xj) =
(pδij +

1−p
m

)πi
∑m

u=1(pδju +
1−p
m

)πu
=

(pδij +
1−p
m

)πi

pπj +
1−p
m

, (9)

where δij is Kronecker Delta. Hence from (6) it follows that αij =
pπi|πj−δij |

pπj+
1−p

m

and for any i 6= j,

αij =
pπiπj

pπj +
1−p
m

≤
p(1− πj)πj

pπj +
1−p
m

= αjj, (10)

as πi + πj ≤ 1 for all i, j. Thus α = max
1≤j≤m

αjj = max
1≤j≤m

πj(1−πj)

πj+
1−p

mp

. Hence, α ≤ ξ if and only if

πj(1− πj)− ξπj ≤
ξ(1− p)

mp
for all 1 ≤ j ≤ m. (11)

First suppose p ≤ p0. Then for 1 ≤ j ≤ m,

πj(1− πj)− ξπj =

(

1− ξ

2

)2

−

(

1− ξ

2
− πj

)2

≤

(

1− ξ

2

)2

=
ξ(1− p0)

mp0
, using (8)

≤
ξ(1− p)

mp
.
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Thus the inequalities in (11) hold, or equivalently α ≤ ξ, irrespective of the values of π1, . . . , πm.

To prove the converse, suppose α ≤ ξ, or equivalently, the inequalities in (11) hold, irrespec-

tive of the values of π1, . . . , πm. Then, for π1 =
1−ξ
2 , π2 =

1+ξ
2 , π3 = . . . = πm = 0, in particular,

these inequalities will also hold. So, for this choice of πj values in (11) with j = 1, we have

(

1− ξ

2

)(

1 + ξ

2

)

− ξ

(

1− ξ

2

)

≤
ξ(1− p)

mp

i.e.,

(

1− ξ

2

)2

≤
ξ(1− p)

mp
.

So from (8), p ≤ p0. Hence theorem. ✷

Remark 1. It is clear from (8) that in order to maintain the same level of protection, the

value of p0 monotonically decreases with the number of possible values of X. Again, for a given

number of possible values of X, p0 monotonically increases with ξ. We may reiterate that these

values of p do not depend on how the values of X are distributed in the population.

4.2 Not all values of X are stigmatizing

In many surveys it may so happen that not all values of X are sensitive or stigmatizing. For

instance, in a survey for estimating the average number of criminal convictions of persons in a

certain population, the value X = 0 is not stigmatizing but any value of X ≥ 1 could well be

stigmatizing. Similarly, for a survey for estimating the average of the number (X) of induced

abortions, the values X = 0 or X = 1 might not be considered as stigmatizing values while

other larger values might be considered stigmatizing by the respondents.

To study the respondents’ privacy protection for such surveys, we present here the simpler

case where only one of the values of X, say x1, is not stigmatizing, while values x2, . . . , xm are

considered stigmatizing. We develop the protection measure for this case in detail. Later we

remark that the results obtained for this case may be easily extended to the case where X has

more than one non-stigmatizing values.

As before, the data collection and estimation proceeds as in Sections 2 and 3. To study the

respondent protection we note that since the value x1 is non-stigmatizing, respondents will feel

comfortable with a randomization device for which the ‘revealing’ probability of their having a

true value x1 will be large. So, we propose the following measure of privacy:

β = min
1≤j≤m

P (X = x1|R = xj) = min
1≤j≤m

(pδ1j +
1−p
m

)π1

pπj +
1−p
m

, (12)
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on simplification using (9). A device with a privacy protection value β will guarantee that all

respondents are perceived to have X = x1 with probability at least β. So, a device leading to a

larger value of β will ensure greater privacy to respondents than one with a smaller β.

Let ξ, 0 < ξ < 1, denote a preassigned level of respondents’ privacy. Then in order to achieve

this level of protection we require that β ≥ ξ, irrespective of the values of π1, . . . , πm. Thus we

should have

(pδ1j +
1− p

m
)π1 ≥ ξ(pπj +

1− p

m
), 1 ≤ j ≤ m,

or equivalently, the following inequalities should hold:

[p(1− ξ) +
1− p

m
]π1 ≥

ξ(1− p)

m
(13)

and
1− p

m
π1 − ξpπj ≥

ξ(1− p)

m
, 2 ≤ j ≤ m. (14)

Clearly, no p can satisfy (13) irrespective of π1, . . . , πm for any given ξ since (13) fails as π1 → 0.

So we assume that π1 > 0 and we also assume some prior knowledge about a lower bound on

π1. This assumption is quite realistic because in most populations there will be an appreciable

number of persons with a non-stigmatizing variable value and hence, a lower bound to the

proportion of such stigma-free persons in the population will be available.

Thus, suppose we have prior knowledge that π1 ≥ c. We work with ξ < c. This is again

realistic because if the only knowledge about π1 is that π1 ≥ c, it is impractical to demand that

P (X = x1|R = xj) ≥ ξ(≥ c) for all j. Now, the following theorem gives the value of the device

parameter p which will guarantee the desired level of respondent protection ξ.

Theorem 2. Let β be as in (12) and π1 ≥ c for some known c. Then given a preassigned ξ,

where 0 < ξ < c, β ≥ ξ will hold, irrespective of the values of π1, . . . , πm, if and only if p ≤ p0,

where

p0 =
c−ξ
m

c−ξ
m

+ ξ(1− c)
. (15)

Proof. Since π1 ≥ c, it is clear that πj ≤ 1− c for 2 ≤ j ≤ m and we have

[p(1− ξ) +
1− p

m
]π1 ≥ [p(1− ξ) +

1− p

m
]c

and
1− p

m
π1 − ξpπj ≥

1− p

m
c− ξp(1− c), 2 ≤ j ≤ m.

As a result, (13) and (14) will hold, irrespective of the true values of π1(≥ c), π2, . . . , πm iff

[p(1− ξ) +
1− p

m
]c ≥ ξ

1− p

m
(16)

and
1− p

m
c− ξp(1− c) ≥ ξ

1− p

m
(17)
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hold. Now, (16) reduces to

(p +
1− p

m
)c ≥ ξ(cp+

1− p

m
)

which will always hold for every p since ξ(cp + 1−p
m

) ≤ ξ(p + 1−p
m

) < c(p + 1−p
m

) as ξ < c and

p+ 1−p
m

> 0. So, it is enough to only consider (17). Note that

(17) ⇔
c− cp

m
− ξp(1− c) ≥

ξ − ξp

m

⇔ p ≤ =
c−ξ
m

c−ξ
m

+ ξ(1− c)
= p0,

thus proving the theorem. ✷

Remark. The above discussion can be extended to include the more general case where X

has t non-stigmatizing values x1, . . . , xt, say, while its remaining m− t values are stigmatizing,

1 < t < m. In that case too, it can be shown that p0 takes the form as in Theorem 2, but now

with

β = min1≤j≤mP (X = x1 or x2 or . . . xt|R = xj) and π1 + . . .+ πt ≥ c with ξ < c.

5 Privacy protection together with efficiency in estimation

We now consider the issue of efficiency in estimation together with privacy protection in ran-

domized response surveys. It was seen from (5) that, irrespective of the values of π1, . . . , πm,

the efficiency of estimation may be increased by increasing p. On the other hand, for a given ξ

and irrespective of the values of π1, . . . , πm, Theorems 1 and 2 show that a protection of α ≤ ξ

or β ≥ ξ may be guaranteed iff p ≤ p0, where p0 is as in (8) or (15), respectively. So, the

best choice of p with regard to maximizing the efficiency of estimation of µX , subject to the

stipulated level of privacy protection ξ, is p = p0. The following examples illustrate this.

Example 5.1 Let X take four values which are all sensitive. Suppose ξ = 0.1 Then by Theorem

1, p0 = 0.1099. So, if we use a randomization device with p = 0.1099 then the efficiency of

estimation can be maximized while guaranteeing that the maximum discrepancy between the

true probability and the revealing probability of all respondents will be at most 0.1. ✷

The following table gives the p0 values in (8) for some choices of ξ and m.
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m ξ p0 m ξ p0 m ξ p0

3 0.1 0.1413 4 0.1 0.1099 5 0.1 0.0899

3 0.2 0.2941 4 0.2 0.2381 5 0.2 0.2000

3 0.3 0.4494 4 0.3 0.3797 5 0.3 0.3288

3 0.4 0.5970 4 0.4 0.5263 5 0.4 0.4706

Example 5.2 Let X take one nonsensitive value and two sensitive values. Suppose it can be

assumed that at least 15% of the individuals in the population possess the nonsensitive value

and suppose it is stipulated that ξ = 0.10. Then by Theorem 2, p0 = 0.1639. So, if we use

a device with p = 0.1639 then estimation efficiency will be maximum while guaranteeing that

all respondents will have at least a 10% probability of being revealed as belonging to the non-

stigmatizing class. ✷

6 Estimation of population proportions

As mentioned in Section 1, several researchers have estimated the proportions of individuals

belonging to the two categories in dichotomous populations, while Loynes (1976) extended this

to estimating the different proportions in a polychotomous population. In our case where X

takes m numerical values, we may also readily estimate the population proportions π1, . . . , πm

from the responses collected as in Section 2 and again use the measures of privacy as given in

(7) and (12) to achieve the stipulated level of privacy protection.

As seen in Section 3, an unbiased estimate of πi is

π̂i =
1

p
(wi −

1− p

m
), 1 ≤ i ≤ m.

Suppose, in the spirit of A−optimality commonly used in optimal design theory, we would like

to minimize the average variance of these estimates. For this, we can show that

m
∑

i=1

V ar(π̂i) =
1

np2

m
∑

i=1

λi(1− λi) =
1

n

{

1

p2
−

m
∑

i=1

π2
i +

1

m
(
1

p2
− 1)

}

, (18)

on simplification, using (4). Clearly, (18) is decreasing in p, irrespective of the true values of

π1, . . . , πm. So as in the case of estimating the mean, here too, given some ξ, subject to the

constraint on protection of privacy, the best choice for p for minimizing the average variance of

the estimates of the proportions, is p = p0, with p0 being given by (8) or (15), as the case may

be. The popular case of dichotomous populations follow by taking m = 2 in the above.
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