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Abstract

We observe a N ×M matrix of independent, identically distributed Gaussian ran-

dom variables which are centered except for elements of some submatrix of size n×m

where the mean is larger than some a > 0. The submatrix is sparse in the sense that

n/N and m/M tend to 0, whereas n, m, N and M tend to infinity.

We consider the problem of selecting the random variables with significantly large

mean values. We give sufficient conditions on a as a function of n, m, N and M and

construct a uniformly consistent procedure in order to do sharp variable selection. We

also prove the minimax lower bounds under necessary conditions which are comple-

mentary to the previous conditions. The critical values a∗ separating the necessary

and sufficient conditions are sharp (we show exact constants).

We note a gap between the critical values a∗ for selection of variables and that of

detecting that such a submatrix exists given by [7]. When a∗ is in this gap, consistent

detection is possible but no consistent selector of the corresponding variables can be

found.
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1 Introduction

We observe random variables that form an N ×M matrix Y = {Yij}i=1,...,N,j=1,...,M:

Yij = sij + ξij, i = 1, . . . , N, j = 1, . . . ,M, (1.1)

where {ξij} are i.i.d. random variables and sij ∈ R, for all i ∈ {1, ..., N}, j ∈ {1, ...,M}.
The error terms ξij are assumed to be distributed as standard Gaussian N (0, 1) random

variables.

Let us denote by

Cnm = {C = A×B ⊂ {1, . . . , N} × {1, . . . ,M}, Card(A) = n, Card(B) = m} , (1.2)

the collection of subsets of n rows and m columns of a matrix of size N ×M .

We assume that our data have mean sij = 0 except for elements in a submatrix of size

n×m, indexed by a set C0 in Cnm, where sij ≥ a, for some a > 0.

Our model means that, for some a > 0 which may depend on n, m, N and M ,

∃ C0 ∈ Cnm such that sij = 0, if (i, j) /∈ C0, and sij ≥ a, if (i, j) ∈ C0. (1.3)

Let Snm,a be the collection of all matrices S = SC , C ∈ Cnm that satisfy (1.3). Our

model implies also that there exists some C0 in Cnm such that S = SC0
belongs to Snm,a.

We discuss here only significantly positive means of our random variables. The problem

of selecting the variables with significantly negative means can be treated in the same way,

by replacing variables Yij with −Yij.

Denote by PC the probability measure that corresponds to observations (1.1) with

matrix S = SC = {sij}i=1,...,N, j=1,...,M , sij = 0 if (i, j) 6∈ C, sij ≥ a > 0 if (i, j) ∈ C. We

also denote P0 = PC0
and E0 the expected value with respect to the measure P0.

Our goal is to propose a consistent estimator of C0, that is to select the variables in the

large matrix of size N×M where the mean values are significantly positive. Our approach

is to find the boundary values of a > 0, as function of n, m, N and M , where consistent

selection is possible and separate them from the cases where consistent selection is not

possible anymore.

We are interested here in sparse matrices, i.e. the case when n is much smaller than

N and m is much smaller than M .

Large data sets of random variables appear nowadays in many applied fields such as

signal processing, biology and, in particular, genomics, finance etc. In genomic studies

of cancer we may require to detect sample-variable associations see [17]. Our problem

further adresses the question: if such an association is detected can we estimate the

sample components and the particular variables involved in this association?
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We may also view our problem as a matrix-mixture model, where each observation Yij

has distribution

Yij ∼ (1− p) · N (0, 1) + p · N (sij, 1),

with p = pn,N,m,M ∈ (0, 1) the mixture probability (small) and sij ≥ a for (i, j) ∈ C0. Such

models appear, for example, in multiple testing setup where Yij are test statistics, which

are i.i.d. under the null hypothesis and they have a Gaussian distribution. Benjamini

and Hochberg [5] proposed to study the false discovery rate and many models have been

proposed since for estimating p and the mixture density of the observations in the non

Gaussian case. In our approach the multiple tests are indexed by (i, j) ∈ {1, ..., N} ×
{1, ...,M} such that the mixture occurs with a submatrix structure. We address here the

question of selecting the multiple tests which are significant (have rejected the null) in a

matrix setup, and, as a particular case, in a vector setup as well. This problem is also

known as classification and it was known that in some cases classification is not possible

even though detection is possible, see [9]. Our result provides new rates for the matrix

case and sharp constants for the vector case.

Sparsity assumptions were introduced for vectors. There is a huge amount of literature

for variable selection in (sparse or not sparse) linear and nonparametric regression, gaus-

sian white noise and density models. Estimation of the sparse vector as well as hypothesis

testing for vectors were thoroughly studied under various sparsity assumptions as well. See

for example Bickel, Ritov and Tsybakov [6] and references therein, for estimation issues,

and Donoho and Jin [10], Ingster [12] and Ingster and Suslina [14], for testing.

In the context of matrices, different sparsity assumptions can be imagined. For exam-

ple, matrix completion for low rank matrices with the nuclear norm penalization has been

studied by Koltchinskii, Lounici and Tsybakov [15].

The detection problem was considered in this setting by Butucea and Ingster [7]. A

more general setup, where each observation is replaced by a smooth signal was considered

by Butucea and Gayraud [8]. We can apply our results to their setup in order to select

the signals with significant energy (norm larger than a).

We study here the variable selection problem in a matrix from a minimax point of

view. A selector is any measurable function of the observations, Ĉ = Ĉ({Yij}) taking

values in Cnm. For such a selector Ĉ = Ĉ(Y ), Y = {Yij} we denote the maximal risk by

Rnm,a(Ĉ) = sup
SC0

∈Snm, a

PC0
(Ĉ(Y ) 6= C0).

We define the minimax risk as

Rnm,a = inf
Ĉ
Rnm,a(Ĉ).

From now on, we assume in the asymptotics that N → ∞, M → ∞ and n = nNM →
∞, n≪ N, m = mNM → ∞, m≪M . Other assumptions will be given later.
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We say that a selector is consistent in the minimax sense, if Rnm,a(Ĉ) → 0.

We suppose that a > 0 is unknown. The aim of this paper is to give asymptotically

sharp boundaries for minimax selecting risk. It means that, first, we are interested in

the conditions on a = aNM which guarantee the possibility of selection i.e., the fact that

Rnm,a → 0. We construct the selecting procedure

Ĉ⋆(Y ) = arg max
C∈Cnm

∑

(i,j)∈C
Yij (1.4)

We investigate the upper bounds of the minimax selection risk of this procedure. Second,

we describe conditions on a for which we have the impossibility of selection, i.e., the lower

bounds Rnm,a → 1. These results are called the lower bounds. The two sets of condition

are partially complementary in a sense that violation of the upper bound conditions imply

either impossibility of selection or indistinguishability (see [7]).

Remark 1.1 Note that PC0
(Ĉ⋆(Y ) 6= C0) does not depend on C0 = C0(N,M,n,m, a).

Therefore, for any C0 we have

Rnm,a(Ĉ
⋆) = max

SC0
∈Snm, a

PC0
(Ĉ⋆(Y ) 6= C0) = PC0

(Ĉ⋆(Y ) 6= C0).

The problem of choosing a submatrix in a Gaussian random matrix has been previously

studied by Sun and Nobel [16]. They are interested in the largest squared submatrix in Y

under the null hypothesis such that its average is larger than some fixed threshold. The

algorithm of choosing such submatrices was previously introduced in Shabalin et al. [17].

The plan of the paper is as follows. In Section 2 we state the main results of this

paper: the upper bounds for the selection procedure Ĉ⋆ under conditions on a, as well

as inconsistency property of this procedure under complementary conditions on a, and,

finally, lower bounds for variable selection. We compare these results with the results

for detection in [7]. We give results for the vector case (m = M = 1) which are new

as far as the asymptotic constant is concerned. In Section 3 we prove the upper bounds

for the selection of variables, that is a bound from above on a, in which Rnm,a(Ĉ
⋆) =

supSC0

PC0
(Ĉ⋆ 6= C0) → 0. In Section 4 we prove lower bounds for variable selection,

that is, a bound on the parameter a from below which imply that the minimax estimation

risk Rnm,a tends to 1. Two techniques provide the sharp lower bounds. One method is

classical for nonparametric estimation, while the other makes a generalization of a well-

known result to testing L ≥ 2 hypotheses: the minimax risk is larger than the risk of the

maximum likelihood estimator.

Future extensions of this problem include several open problems. For example, consider

two-sided variable selection, i.e. finding C0 where the mean |sij| ≥ a, for (i, j) ∈ C0.

Another possibility is to consider non Gaussian observations, but having distribution in
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the exponential family. As mentioned, we may replace each observation with a smooth

signal and detect the active components (signals with significant total energy) in the

matrix.

2 Main Results

Let

N → ∞, n→ ∞, p = n/N → 0; M → ∞, m→ ∞, q = m/M → 0. (2.1)

We suppose that a > 0 is unknown. The aim of this paper is to give asymptotically

sharp boundaries for variable selection in a sparse high-dimensional matrix. Our approach

is to give, on the one hand, sufficient asymptotic conditions on a such that the probability

of wrongly selecting the variables in C0 tends to 0 and, on the other hand, conditions

under which no consistent selection is possible.

First, we are interested in the conditions on a = anmNM which guarantee consistent

variable selection, i.e., the fact that we construct the selector Ĉ⋆ in (1.4) and prove that

Rnm,a(Ĉ
⋆) → 0. The selector Ĉ⋆ is scanning the large N ×M matrix and maximizes the

sum of the inputs over all n×m submatrices.

The key quantities appearing in next theorems are

B = Bn,m,N,M = min{A1, A2, A}, where A = a
√
nm√

2(n log(p−1)+m log(q−1))
,

A1 =
a
√
m√

2(
√

log(n)+
√

log(N−n))
, A2 =

a
√
n√

2(
√

log(m)+
√

log(M−m))
.

(2.2)

Let us consider the particular case where the matrix and the submatrix are squared (N =

M and n = m) and, moreover, such that

log(n)

log(N)
=

log(m)

log(M)
→ 0.

Then, log(n(N − n)) ∼ log(N/n) and log(m(M − m)) ∼ log(M/m) which imply that

A1 = A2 ≥ A and, therefore, B = A. We need terms A1 = A2 in order to consider cases

where lim inf log(n)/ log(N) and lim inf log(m)/ log(M) are large enough and close to 1.

Another particular example is n ∼ NP or m ∼ MQ, for P, Q ∈ (0, 1) that we discuss

in more details later on.

For this reason, we distinguish the case of severe sparsity when B = A, from the case

of moderate sparsity when B = A1 or B = A2.

The following Theorem gives sufficient conditions for the boundary a = an,m,N,M such

that selection is consistent uniformly over tha class Snm,a. The selector which attains

these bounds is defined by (1.4).
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Theorem 2.1 Upper bounds. Assume (2.1) and assume B = Bn,m,N,M defined by

(2.2) is such that

lim inf Bn,m,N,M > 1, (2.3)

then the selector Ĉ⋆ given by (1.4) is consistent, that is

Rnm,a(Ĉ
⋆) = PC0

(Ĉ⋆ 6= C0) → 0.

Proof is given in Section 3.

Condition (2.3) is equivalent to saying that

lim inf A > 1 and lim inf A1 > 1 and lim inf A2 > 1.

The following proposition says that lim inf A1 > 1 and lim inf A2 > 1 are necessary condi-

tions for the consistency (in the minimax sense) of the selector Ĉ⋆ of C0.

Proposition 2.1 Assume (2.1) and let the selector Ĉ⋆ be the selector given by (1.4). If

lim supA1 < 1 or lim supA2 < 1

then, for any C0 such that SC0
∈ Snm,a,

PC0
(Ĉ⋆ 6= C0) → 1.

Proof is given in Section 4.2.

In the following theorem we give a sufficient condition on a under which consistent

selection of C0 is impossible uniformly over the set Snm,a. These are the minimax lower

bounds for variable selection.

Theorem 2.2 Assume (2.1). If, moreover, B = Bn,m,N,M defined by (2.2) is such that

lim supBn,m,N,M < 1, (2.4)

then there is no consistent selection of C0 uniformly over Snm,a, that is

inf
Ĉ

sup
SC0

∈Snm, a

PC0
(Ĉ(Y ) 6= C0) → 1,

asymptotically, where the infimum is taken over all measurable functions Ĉ = Ĉ(Y ).

Proof of this theorem is given in Section 4.1 and 4.2.

Theorems 2.1 and 2.2 imply that the critical value for a is

a∗ ∼ max

{

√

2 log(n) +
√

2 log(N − n)√
m

,

√

2 log(m) +
√

2 log(M −m)√
n

,

√

2(n log(N/n) +m log(M/m))√
nm

}

. (2.5)

6



By critical we mean in the sense that, for a such that lim inf a/a⋆ > 1, there is an esti-

mator which is uniformly consistent, while, for a such that lim sup a/a⋆ < 1, no uniformly

consistent estimator exists.

If we consider the particular case where n = NP and m =MQ grow polynomially, for

some fixed P, Q in (0, 1), the critical value becomes

(a∗)2 ∼ max

{

2(1 +
√
P )2 log(N)

m
,
2(1 +

√
Q)2 log(M)

n
,

2(1− P ) log(N)

m
+

2(1−Q) log(M)

n

}

.

If, moreover, n = m and N = M , we get (a∗)2 ∼ max{2(1 +
√
P )2, 4(1 − P )}log(N)/n.

So, the amount of sparsity depends on whether P is larger or smaller than 1/9. In this

particular example, we have moderate sparsity, B = A1 = A2 ≤ A, as soon as P ≥ 1/9.

2.1 Variable selection vs. detection

Let us compare the result in Theorem 2.1 and Theorem 2.2 with the upper bounds and

the lower bounds for detection of a set C0 where our observations have significant means,

i.e. above threshold a. The testing problem for our model can be stated as

H0 : sij = 0 for all (i, j)

and we call P0 the likelihood in this case, against the alternative

H1 : there exists C0 ∈ Cnm such that S = SC0
∈ Snm,a.

Recall the following theorems.

Theorem 2.3 Upper bounds for detection, see [7]. Assume (2.1) and let a be such

that at least one of the following conditions hold

a2nmpq =
(anm)2

NM
→ ∞ or lim inf A > 1.

Then distinguishability is possible, i.e.

inf
ψ(Y )

(

P0(ψ(Y ) = 1) + sup
SC0

∈Snm,a

PC0
(ψ(Y ) = 0)

)

→ 0,

where the infimum is taken over all measurable functions ψ taking values in {0, 1}.

It was also shown in [7], that the asymptotically optimal test procedure ψ∗ combines

the scan statistic based on our Ĉ⋆ with a linear statistic which sums all observations

Y = {Yij}i,j. The test procedure ψ∗ rejects the null hypothesis as soon as either the linear

or the scan test rejects.
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Theorem 2.4 Lower bounds for detection, see [7]. Assume (2.1) and

n log(p−1) ≍ m log(q−1),
log log(p−1)

log(q−1)
→ 0,

log log(q−1)

log(p−1)
→ 0. (2.6)

Moreover, assume that

a2nmpq =
(anm)2

NM
→ 0 and lim supA < 1.

Then, consistent detection is impossible, that is

inf
ψ(Y )

(

P0(ψ(Y ) = 1) + sup
SC0

∈Snm,a

PC0
(ψ(Y ) = 0)

)

→ 1,

where the infimum is taken over all measurable functions ψ taking values in {0, 1}.

We deduce that there is a gap between least conditions for testing that C0 exists and

selection of the actual variables (i, j) ∈ C0 (estimation of C0). In Table 2.1 we summarize

possible cases were consistent selection and/or consistent testing is possible or not. We

can prove that, if

lim supA < 1, lim inf A1 > 1 and lim inf A2 > 1

then a2nmpq → 0, hence Theorem 2.4. We used this in the conditions of the second case

where neither consistent selection, nor testing is possible.

Selection \ Test Yes No

Yes lim inf B > 1 -

No

1) lim supB < 1

and a2nmpq → ∞

2) lim inf A > 1 and

(lim supA1 < 1 or lim supA2 < 1)

Under (2.6) for the test:

1) lim supA < 1

and a2nmpq → 0

2) lim supA < 1 and

lim inf A1 > 1 and

lim inf A2 > 1

Table 1: Conditions for variable selection and/or testing

Let us consider the following example: N = n2, M = log(n), m = log log(n) (and,

for instance, a2 = log(n)/ log log(n)). For all a such that a2 ≫ log(n)/(log log(n))2 as

n→ ∞, we have a2nmpq = a2(log log(n))2/ log(n) → ∞. Therefore, on the one hand, dis-

tinguishability holds, see Theorem (2.3), i.e. we can construct a particular test procedure

ψ⋆ such that

P0(ψ
⋆(Y ) = 1) + sup

SC0
∈Snm,a

PC0
(ψ⋆(Y ) = 0) → 0.

8



On the other hand,

a2m

2(
√

log(n) +
√

log(N − n))2
=

a2 log log(n)

(2 +
√
2)2 log(n)

(1 + o(1)) < 1,

for all a such that a2 < (1 − δ)(2 +
√
2)2 log(n)/ log log(n), δ > 0. By Theorem 2.2, no

consistent selection is possible in this case.

2.2 Vector case

Previous results can also be proven for the vector case, that is for the gaussian independent,

observations

Xi = si + ξi, i = 1, ..., N,

where si ≥ a for all i in a set A0 of n elements and si = 0 otherwise. We suppose

n, N → ∞ such that n/N → 0. Similarly, we can show the following result.

Theorem 2.5 Upper bounds In the previous model, if

lim inf
a

√

2 log(N) +
√

2 log(n)
> 1,

then the estimator Â⋆ = argmaxA
∑

i∈AXi is such that

sup
A0

PA0
(Â⋆ 6= A0) → 0.

Lower bounds If

lim sup
a

√

2 log(N) +
√

2 log(n)
< 1,

then

inf
Â

sup
A0

PA0
(Â 6= A0) → 1.

The critical value is a⋆ =
√
2 logN +

√

2 log(n). It is equivalent to
√
2 logN if

log(n)/ log(N) → 0 and a⋆ =
√
2(1 +

√
1− β)

√
logN if N = nβ for some β ∈ (0, 1).

This result follows from [13] (see Section 3.1, Remark 2 and references therein).

Note that in the vector case, variable selection was mostly studied for the regression

model with deterministic design, see e.g. [4], [19] and references therein.

Our results are sharp as they give also the asymptotic constant.

Let us stress the fact that the particular case we study here is fundamentally different

from the matrix setup. Indeed, an additional regime is observed according to the sparsity

structure of the submatrix (severe or moderate) and it cannot be obtained from previous

results for vectors by, say, vectorizing the matrix.
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3 Upper bounds

Proof of Theorem 2.1 Note that

PC0
(Ĉ⋆ 6= C0) = PC0

( max
C∈Cnm

∑

(i,j)∈C
Yij −

∑

(i,j)∈C0

Yij > 0).

We shall split the sets C according to the size of their common elements with the true

underlying C0. Let C = A×B and C0 = A0 ×B0 and let k be the number of elements in

A∩A0 and l the number of elements in B∩B0. Then, if we denote by Cnm,kl the collection
of such matrices C:

PC0
(Ĉ⋆ 6= C0) = PC0



 max
k=0,...,n

max
l=0,...,m

max
C∈Cnm,kl

∑

(i,j)∈C
Yij −

∑

(i,j)∈C0

Yij > 0





≤ PC0



 max
k=0,...,n

max
l=0,...,m

max
C∈Cnm,kl

(
∑

C\C0

ξij −
∑

C0\C
ξij − a(nm− kl)) > 0



 .

From now, we fix 0 < δ < 1 and separate two cases: when kl < (1 − δ)nm and when

kl ≥ (1 − δ)nm. As δ will be chosen small, it means that we treat differently the cases

where the matrix C overlaps C0 but weakly (or not at all) and where the matrices overlap

almost entirely. We write and deal successively with each term in

PC0
(Ĉ⋆ 6= C0)

≤ PC0



max
k,l

max
kl<(1−δ)nm

max
C∈Cnm,kl

(
∑

C\C0

ξij −
∑

C0\C
ξij − a(nm− kl)) > 0



 (3.1)

+PC0



max
k,l

max
kl≥(1−δ)nm

max
C∈Cnm,kl

(
∑

C\C0

ξij −
∑

C0\C
ξij − a(nm− kl)) > 0



 . (3.2)

3.1 Weak intersection

Let us fix k and l such that kl < (1 − δ)nm for some 0 < δ < 1. Equivalently, we have

nm− kl > δnm. In this case, we shall bound the probability in (3.1) as follows

PC0



max
k, l

max
kl<(1−δ)nm

max
C∈Cnm,kl

(
∑

C\C0

ξij −
∑

C0\C
ξij − a(nm− kl)) > 0





≤
n
∑

k=0

m
∑

l=0

Ikl<(1−δ)nmPC0



 max
C∈Cnm,kl

∑

C\C0

ξij + max
C∈Cnm,kl

∑

C∩C0

ξij −
∑

C0

ξij ≥ a(nm− kl)





≤
n
∑

k=0

m
∑

l=0

Ikl<(1−δ)nm(T1,kl + T2,kl + T3,kl),
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where we denote by Ikl<(1−δ)nm the indicator function of the set where kl < (1 − δ)nm

and by

T1,kl = PC0



 max
C∈Cnm,kl

∑

C\C0

ξij > (1− δ1)a(nm− kl)





T2,kl = PC0



 max
C∈Cnm,kl

∑

C∩C0

ξij >
δ1
2
a(nm− kl)





T3,kl = PC0



−
∑

C0

ξij >
δ1
2
a(nm− kl)



 ,

for some 0 < δ1 < 1.

Before continuing the proof, recall that, if n, N tend to infinity, such that n/N → 0,

we have

log(Cn−kN−n) ∼ (n− k) log

(

N − n

n− k

)

+ (N − 2n+ k) log

(

N − n

N − 2n+ k

)

∼ (n− k) log

(

N − n

n− k

)

and

log(Ckn) ≤ min

{

(n − k) log

(

ne

n− k

)

, k log
(ne

k

)

}

,

for all k = 1, ..., n − 1 and logCnn = 0.

In order to give an upper bound for T1,kl, we shall distinguish the case where k <

(1 − δ)n and l = m (the case k = n and l < (1 − δ)m is treated similarly) from the case

kl < (1− δ)nm, k < n and l < m. On the one hand, if k < (1− δ)n and l = m, we write,

for a generic standard gaussian random variable Z (which might change later on):

T1,km ≤ PC0



 max
A∈Cn,k

∑

(A\A0)×B0

ξij > (1− δ1)a(n− k)m





≤ Cn−kN−nP (Z > (1− δ1)a
√

(n− k)m)

≤ exp

(

−(1− δ1)
2

2
a2(n− k)m+ log(Cn−kN−n)

)

,

where we use repeatedly that P (Z > u) ≤ exp(−u2/2), for all u ≥ 0.

Now,

log(Cn−kN−n) ≤ (n− k) log

(

N − n

n− k

)

(1 + o(1)).

Therefore,

T1,km ≤ exp

(

−(n− k)

(

(1− δ1)
2

2
a2m− log

(

N − n

n− k

)

(1 + o(1))

))

.
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By assumption (2.3) we can say that

min

{

a2nm

2(n log(p−1) +m log(q−1))
,

a2m

2(
√

log(N − n) +
√

log(n))2
,

a2n

2(
√

log(M −m) +
√

log(m))2

}

≥ 1 + α, (3.3)

for some fixed small α > 0. Therefore, if δ1 > 0 is small enough, we have some α1 > 0

such that

(1− δ1)
2

2
a2m ≥ (1 + α1)(log((N − n)n)) > log

(

N − n

n− k

)

(1 + o(1)) + log(n), (3.4)

asymptotically. Indeed, it is sufficient that (1− δ1)
2(1 + α) ≥ 1 + α1.

We get

T1,km ≤ exp(−(n− k) log(n)).

We conclude that

∑

k:(n−k)>δn
T1,km ≤ n max

k:(n−k)>δn
{exp(−(n− k) log(n)} < n−δn+1 = o(1).

On the other hand, if kl < (1− δ)nm, k < n and l < m, note first that the maximum

is taken over all C in Cnm,kl, but only the lines and columns outside C0 actually play a

role over the sum
∑

C\C0
ξij . There are Cn−kN−n · Cm−l

M−m · Ckn · C lm different values of this

sum. We write:

T1,kl ≤ Cn−kN−n · Cm−l
M−m · Ckn · C lmP

(

Z > (1− δ1)a
√
nm− kl

)

≤ Cn−kN−n · Cm−l
M−m · Ckn · C lm exp

(

−(1− δ1)
2

2
a2(nm− kl)

)

≤ exp

(

−(1− δ1)
2

2
a2(nm− kl) + log(Cn−kN−nC

m−l
M−mC

k
nC

l
m)

)

. (3.5)

As we have n, m, N, M tend to infinity, then

log(Cn−kN−n · Cm−l
M−m · Ckn · C lm) ≤

(

(n− k) log
N − n

n− k
+ (m− l) log

M −m

m− l

)

(1 + o(1))

+(n− k) log
ne

n− k
+ (m− l) log

me

m− l

≤
(

(n− k) log
N − n

n
+ (m− l) log

M −m

m

)

(1 + o(1))

+

(

(n− k) log
n

n− k
+ (m− l) log

m

m− l

)

(1 + o(1))

+(n− k) log
ne

n− k
+ (m− l) log

me

m− l
.

Let us see that (N − n)/n = N/n(1 + o(1)) and that

(n− k) log

(

n2e

(n− k)2

)

= n

(

1− k

n

)(

1− 2 log

(

1− k

n

))

≤ 2√
e
n,
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as x(1− 2 log(x)) ≤ 2/
√
e for all x in [0, 1].

Let us denote X := n log(p−1) and Y := m log(q−1). We have

log
(

Cn−kN−n · Cm−l
M−m · Ckn · C lm

)

≤
((

1− k

n

)

X +

(

1− l

m

)

Y +
2√
e
(n+m)

)

(1 + o(1)).

Analogously to (3.4) we have

(1 − δ1)
2

2
a2nm ≥ (1 + α1)(X + Y),

asymptotically.

Finally, we get, for large enough n, m, N, M

−(1− δ1)
2a2

2
(nm− kl) + log

(

Cn−kN−n · Cm−l
M−m · Ckn · C lm

)

≤ −α1

(

1− kl

nm

)

(X + Y)

−
(

1− kl

nm

)

(X + Y) +
((

1− k

n

)

X +

(

1− l

m

)

Y +
2√
e
(n +m)

)

(1 + o(1))

≤ −α1

2

(

1− kl

nm

)

(X + Y) + k

n

(

l

m
− 1

)

X +
l

m

(

k

n
− 1

)

Y +
2√
e
(n+m)(1 + o(1))

≤ −α1

2
δ(X + Y) + 2√

e
(n+m)(1 + o(1)).

Therefore, we replace this bound in (3.5) and get

n
∑

k=0

m
∑

l=0

Ikl<(1−δ)nmT1,kl

≤ 2 exp

(

−α1

2
δ(n log(p−1) +m log(q−1)) +

2√
e
(n+m)(1 + o(1)) + log(nm)

)

= o(1).

For T2,kl, only the common elements of C and C0 play a role on the random variable
∑

C∩C0
ξij and there are Ckn · C lm such choices. Note that we cannot have here neither

k = 0 nor l = 0, as T2,kl = 0 in this cases. Therefore,

n
∑

k=1

m
∑

l=1

Ikl<(1−δ)nmT2,kl ≤
n
∑

k=1

m
∑

l=1

Ckn · C lmP
(

Z >
δ1a(nm− kl)

2
√
kl

)

≤
n
∑

k=1

m
∑

l=1

Ckn · C lmP
(

Z >
δ1δanm

2
√

(1− δ)nm

)

≤
n
∑

k=1

m
∑

l=1

exp

(

−δ
2
1δ

2a2nm

8(1− δ)
+ k log

(ne

k

)

+ l log
(me

l

)

)

≤ exp

(

−δ
2
1δ

2a2nm

8(1− δ)
+ n+m+ log(nm)

)

= o(1).
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Here, we have used the fact that x log(x−1) is bounded from above by e−1 for all

x ∈ [0, 1] and used it for x = k/n and for x = l/m, respectively. Use (3.3) in order to

conclude.

Finally, for T3,kl, we write that −∑C0
ξij/

√
nm behaves like some standard Gaussian

random variable Z and get

n
∑

k=0

m
∑

l=0

T3,kl ≤
n
∑

k=0

m
∑

l=0

exp

(

−δ
2
1a

2(nm− kl)2

8nm

)

≤ exp

(

−δ
2
1δ

2a2

8
nm+ log(nm)

)

= o(1),

as a2nm tends to infinity faster than log(nm) due to (3.3) in our setup.

In conclusion, the probability in (3.1) tends to 0:

PC0



max
k, l

max
kl<(1−δ)nm

max
C∈Cnm,kl

(
∑

C\C0

ξij −
∑

C0\C
ξij − a(nm− kl)) > 0



 = o(1). (3.6)

3.2 Large intersection

Let us fix k and l such that kl ≥ (1− δ)nm, or, equivalently, nm−kl ≤ δnm. Note that it

implies both k ≥ (1− δ1)n and l ≥ (1− δ1)m for some δ1 depending on δ small as δ → 0.

The case n = k and m = l gives an event with 0 probability.

We decompose as follows

∑

C\C0

ξij −
∑

C0\C
ξij =





∑

(A\A0)×B0

ξij −
∑

(A0\A)×B0

ξij





+





∑

A0×(B\B0)

ξij −
∑

A0×(B0\B)

ξij





+





∑

(A\A0)×(B\B0)

ξij −
∑

(A\A0)×(B0\B)

ξij +
∑

(A0\A)×(B0\B)

ξij −
∑

(A0\A)×(B\B0)

ξij





= S1 + S2 + S3, say.

We shall bound from above as follows

PC0



 max
k≥(1−δ1)n

max
l≥(1−δ1)m

max
C∈Cnm,kl

(
∑

C\C0

ξij −
∑

C0\C
ξij − a(nm− kl)) > 0





≤ PC0

(

max
k≥(1−δ1)n

max
l≥(1−δ1)m

max
A∈Cn,k

(S1 − (1− δ̃)a(n − k)
m+ l

2
) > 0

)

+PC0

(

max
k≥(1−δ1)n

max
l≥(1−δ1)m

max
B∈Cm,l

(S2 − (1− δ̃)a(m− l)
n+ k

2
) > 0

)

+PC0

(

max
k≥(1−δ1)n

max
l≥(1−δ1)m

max
C∈Cnm,kl

(S3 − δ̃a(nm− kl)) > 0

)

,
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where Cn,k is the set of n rows in 1, ..., N having k values in common with A0 and similarly

for Cm,l set of m columns in 1, ...,M having l values in common with B0. Moreover, the

previous sum can be bounded from above by

∑

k≥(1−δ1)n
PC0

(

max
A∈Cn,k

S1 > (1− δ̃)a(n− k)m(1 − δ1/2)

)

+
∑

l≥(1−δ1)m
PC0

(

max
B∈Cm,l

S2 > (1− δ̃)a(m− l)n(1− δ1/2)

)

+
∑

k≥(1−δ1)n

∑

l≥(1−δ1)m
PC0

(

max
C∈Cnm,kl

S3 > δ̃a(nm− kl)

)

=
∑

k≥(1−δ1)n
U1,k +

∑

l≥(1−δ1)m
U2,l +

∑

k≥(1−δ1)n

∑

l≥(1−δ1)m
U3,kl say,

Let us now deal with U1,kl. Note, first, that the case k = n gives probability 0. For

(1 − δ1/2)n ≤ k ≤ n − 1, we put pn,N =
√

log(N − n)/(
√

log(N − n) +
√

log(n)) and

qn,N = 1− pn,N ,

U1,k ≤ PC0



 max
A∈Cn,k

∑

(A\A0)×B0

ξij > (1− δ)(1 − δ1/2)a(n − k)mpn,N





+PC0



 max
A∈Cn,k

∑

(A0\A)×B0

(−ξij) > (1− δ)(1 − δ1/2)a(n − k)mqn,N





and, for some independent standard gaussian r.v. Z1 and Z2, using l ≥ (1− δ1)m

U1,k ≤ Cn−kN−nP (Z1 > (1− δ)(1 − δ1/2)pn,Na
√

(n− k)m)

+CknP (Z2 > (1− δ)(1 − δ1/2)qn,Na
√

(n− k)m)

≤ exp

(

−(1− δ̃)2

2

a2m(n− k) log(N − n)

(
√

log(N − n) +
√

log(n))2
+ log(Cn−kN−n)

)

+exp

(

−(1− δ̃)2

2

a2m(n− k) log(n)

(
√

log(N − n) +
√

log(n))2
+ log(Ckn)

)

,

with 1− δ̃ = (1 − δ)(1 − δ1/2). Note that log(Cn−kN−n) ≤ (n− k) log(N − n)(1 + o(1)) and

that log(Ckn) ≤ (n− k) log(n)(1 + o(1)). We obtain

U1,k ≤ exp

(

−(n− k) log(N − n)

(

(1− δ̃)2

2

a2m

(
√

log(N − n) +
√

log(n))2
− (1 + o(1))

))

+exp

(

−(n− k) log(n)

(

(1− δ̃)2

2

a2m

(
√

log(N − n) +
√

log(n))2
− (1 + o(1))

))

.

We use (3.3), for small enough δ

(1− δ̃)2a2m ≥ (1 + 2α2)2(
√

log(n) +
√

log(N − n))2,
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for some α2 > 0 and this means

(1− δ̃)2

2

a2m

(
√

log(N − n) +
√

log(n))2
− (1 + o(1)) ≥ 2α2 − o(1) ≥ α2.

Finally,

∑

(1−δ1)n≤k<n
U1,k ≤

∑

(1−δ1)n≤k<n
(e−α2 log(N−n)(n−k) + e−α2 log(n)(n−k))

≤
∑

1≤j≤δ1n
(e−α2 log(N−n)j + e−α2 log(n)j)

= (e−α2 log(N−n) + e−α2 log(n))(1 + o(1)) = o(1).

The term U2,l is similar.

As for the last term, U3,kl, we compare each sum in S3 to δ̃a(nm − kl)/4. The most

difficult (the largest) upper bound is for the first sum, as it gives the largest number of

choices Cn−kN−nC
m−l
M−m. Note that this term is 0 if k = n or l = m. Therefore, we only

explain this term, for k ≤ n− 1 and l ≤ m− 1,

U31,kl = PC0



 max
C∈Cnm,kl

∑

(A\A0)×(B\B0)

ξij >
δ̃

4
a(nm− kl)





≤ Cn−kN−nC
m−l
M−m exp

(

−(δ̃/4)2

2

a2(nm− kl)2

(n− k)(m− l)

)

≤ exp

(

−(δ̃/4)2a2(n(m− l)Pk,n + (n− k)mPl,m)
2

2(n − k)(m− l)

+(n− k) log(N − n) + (m− l) log(M −m)) ,

where Pk,n = 1− (n− k)/(2n) and Pl,m = 1− (m− l)/(2m). Recall that n− k ≤ δ1n and

that m− l ≤ δ1m. We get

U31,kl ≤ exp

(

−(δ̃/4)2a2

2
(H + 2nmPk,nPl,m) + δ1(n log(N − n) +m log(M −m))

)

,

where

H =
n2

n− k
(m− l)P 2

k,n + (n− k)
m2

m− l
P 2
l,n ≥ 1

δ1
(nP 2

k,n +mP 2
l,n).

Recall that Pk,n ≥ 1− δ1/2 and Pl,m ≥ 1− δ1/2. We get for (δ̃/4)2 = δ1:

U31,kl ≤ exp

(

−a
2

2
(nP 2

k,n +mP 2
l,n)− δ1(a

2nmPk,nPl,m − (n log(N − n) +m log(M −m))

)

,

with

a2nmPk,nPl,m ≥ (1− δ1/2)
2(
1

2
a2nm+

1

2
a2nm)

≥ (1− δ1/2)
2(1 + α)(n log(n(N − n)) +m log(m(M −m))),
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by (3.3). By taking δ1 small enough, we may find δ2 > 0 such that (1−δ1/2)2(1+α) ≥ 1+δ2.

This is enough to conclude that

a2nmPk,nPl,m − (n log(N − n) +m log(M −m)) > 0

and that

U31,kl ≤ exp

(

−a
2

2
(n+m)(1 − δ1/2)

2

)

≤ exp
(

−(1− δ1/2)
2(1 + α)(log(m(M −m)) + log(n(N − n)))

)

≤ exp (−(1 + δ2)(log(m(M −m)) + log(n(N − n)))) .

In conclusion,

∑

(1−δ1)n≤k<n

∑

(1−δ1)m≤l<m
U31,kl ≤ exp (−(1 + δ2) log((M −m)(N − n))− δ2 log(nm)) = o(1).

Here, we have proven that

PC0



max
k, l

max
kl≥(1−δ)nm

max
C∈Cnm,kl

(
∑

C\C0

ξij −
∑

C0\C
ξij − a(nm− kl)) > 0



 = o(1). (3.7)

From (3.7) and (3.6) we deduce that the probability PC0
(Ĉ⋆ 6= C0) tends to 0 and this

concludes the proof of the upper bounds. ✷

Remark 3.1 We have investigated the upper limits of the selector Ĉ⋆ under the assump-

tion that sij = a, (i, j) ∈ C0. It follows that, when sij ≥ a, (i, j) ∈ C0, statements of

upper bounds stated in this section are valid.

Indeed, the random part of the expansion YC −YC0
is independent of sij. The absolute

value of the deterministic part (the difference of expectations) attains its minimum when

sij = a.

4 Lower bounds

Let (2.1) and (2.4). We shall call the case when B = A the case of severe sparsity, while

the case where either B = A1 or B = A2 will be designated by moderately sparse cases.

Let us first consider a set Θ of matrices having size N ×M and containing SC , for all

C ∈ Cnm, such that [SC ]ij = a · I((i, j) ∈ C). This set is on the border of Snm,a, as we

replace [SC ]ij ≥ a with equality, for all (i, j) ∈ C. The set Θ has L = CnN · CmM elements.

Let P0 denote the likelihood of N ×M standard gaussian observations and, as previously,

PC the likelihood of our observations under parameter SC . The minimax risk is bounded

from below by the minimax risk over Θ:

inf
Ĉ

sup
SC∈Snm,a

PC(Ĉ(Y ) 6= C) ≥ inf
Ĉ

sup
SC∈Θ

PC(Ĉ(Y ) 6= C).
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4.1 Severe sparsity

Proof of Theorem 2.2 for severely sparse case

In this case, we shall apply Theorem 2.4 in [18]: if there exists τ > 0 and 0 < α < 1

such that
1

L

∑

SC∈Θ
PC

(

dP0

dPC
≥ τ

)

≥ 1− α,

then

inf
Ĉ

sup
SC∈Θ

PC(Ĉ(Y ) 6= C) ≥ τL

1 + τL
(1− α).

In our model, the likelihood ratio is

dP0

dPC
= exp



−a
∑

(i,j)∈C
Yij +

a2nm

2



 . (4.1)

This implies that

PC

(

dP0

dPC
≥ τ

)

= PC



−a
∑

(i,j)∈C
Yij +

a2nm

2
≥ log(τ)





= P0



− 1√
nm

∑

(i,j)∈C
ξij −

a
√
nm

2
≥ log(τ)

a
√
nm





= P

(

Z ≥ log(τ)

a
√
nm

+
a
√
nm

2

)

,

where Z is standard gaussian. Let z1−α be the quantile of probability 1−α of a standard

gaussian distribution, such that P (Z ≥ −z1−α) = 1− α. In order to check (4.1), we need

log(τ) ≤ −a2nm/2− z1−αa
√
nm.

On the one hand, if a
√
nm = O(1) we take τ as solution of the equation log(τ) =

−a2nm/2− z1−αa
√
nm. Therefore, we have τ ≍ 1 and then

τL

1 + τL
(1− α) ≥ (1− α)2 > 0, as L→ ∞.

On the other hand, if a
√
nm→ ∞, we take τ−1 = L/ log(L), with L = CnNC

m
M , which

gives τL→ ∞ and log(τ−1) ∼ log(L). We can prove that

log(τ−1) ≥ a2nm

2
+ z1−αa

√
nm =

a2nm

2

(

1 +
2z1−α
a
√
nm

)

.

Indeed, we known that log(L) ∼ n log(p−1) +m log(q−1) and, by assumption (2.4),

a2nm

2(n log(p−1) +m log(q−1))
≤ 1− δ,

asymptotically, for some δ > 0. It implies that

a2nm

2 log(τ−1)
≤
(

1 +
2z1−α
a
√
nm

)−1

,
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asymptotically. This gives the lower bound

τL

1 + τL
(1− α) ≥ (1− α)2 > 0.

As α > 0 can be chosen arbitrarly small, we obtain the result

inf
Ĉ

sup
SC∈Θ

PC(Ĉ(Y ) 6= C) → 1.

✷

4.2 Moderate sparsity

Lemma 4.1 If η1, ..., ηJ are i.i.d. random variables with standard gaussian law, then

if t < 1, P ( max
j=1,...,J

ηj ≥ t
√

2 log(J)) → 1, as J → ∞,

and

if t > 1, P ( max
j=1,...,J

ηj ≥ t
√

2 log(J)) → 0, as J → ∞.

Proof This Lemma is an obvious consequence of the limit behaviour of the normalized

maximum of i.i.d. Gaussian random variables as follows:

VJ := max
j=1,...,J

ηj
√

2 log(J)− 2 log(J) +
1

2
log(log(J)) +

1

4
log(4π) →d U,

where U has the Gumbel law with distribution function P (U ≤ x) = exp(− exp(−x)) for
all real number x, see [11]. Therefore, if t < 1,

P ( max
j=1,...,J

ηj ≥ t
√

2 log(J)) = P (VJ ≥ (t− 1)2 log(J) +
1

2
log(log(J)) +

1

4
log(4π)),

which tends to 1 when J → ∞. The other limit is obtained by a similar argument. ✷

Proof of Proposition 2.1 Let us assume that lim supA1 < 1 and treat the other

case similarly. This means that A1 ≤ 1 − α, for some fixed 0 < α < 1. Equivalently,

a
√
m ≤ (1− α)(

√

2 log(n) +
√

2 log(N − n)).

In this case we shall reduce the set of matrices C to those matrices having the same

columns as C0 and n− 1 rows in common with C0. Then we sum up each line over these

columns and reduce the problem to the vector case. Thus,

PC0
(Ĉ⋆ 6= C0) = PC0

( max
C∈Cnm

∑

C

Yij −
∑

C0

Yij > 0)

≥ PC0
( max
C=A×B0

∑

C

Yij −
∑

C0

Yij > 0)

≥ PC0
(max

A

∑

A

Yi· −
∑

A0

Yi· > 0),
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where the maximum over A is taken over all sets of n rows having n− 1 rows in common

with A0 and

Yi· :=
∑

j∈B0

Yij = amI(i ∈ A0) +
∑

j∈B0

ξij .

Denote by ηi = m−1/2
∑

j∈B0
ξij for i = 1, ..., N , which are i.i.d. random variables of

standard gaussian law. Therefore, we get

PC0
(Ĉ⋆ 6= C0) ≥ PC0

(max
A

∑

A

ηi −
∑

A0

(ηi + a
√
m) > 0)

≥ PC0
(max
i 6∈A0

ηi + max
k∈A0

(−ηk) > a
√
m)

≥ PC0
(max
i 6∈A0

ηi + max
k∈A0

(−ηk) > (1− α)(
√

2 log(N − n) +
√

2 log(n)))

= 1− PC0
(max
i 6∈A0

ηi + max
k∈A0

(−ηk) ≤ (1− α)(
√

2 log(N − n) +
√

2 log(n))),

by the assumption on A1. Moreover

PC0
(max
i 6∈A0

ηi + max
k∈A0

(−ηk) ≤ (1− α)(
√

2 log(N − n) +
√

2 log(n)))

≤ PC0
(max
i 6∈A0

ηi ≤ (1− α)
√

2 log(N − n)) + PC0
(max
k∈A0

(−ηk) ≤ (1− α)
√

2 log(n)),

which tends to 0, by Lemma 4.1. ✷

Proof of Theorem 2.2 for moderately sparse case.

In this case we check that the minimax risk is bounded from below by the risk of the

maximum likelihood estimator Ĉ⋆ and that its risk tends to 1 under our assumptions by

Proposition 2.1. Let us see that

inf
Ĉ

sup
SC∈Θ

PC(Ĉ(Y ) 6= C) ≥ inf
Ĉ

1

L

L
∑

k=1

PCk
(Ĉ(Y ) 6= Ck)

≥ inf
Ĉ

(

1− 1

L

L
∑

k=1

PCk
(Ĉ(Y ) = Ck)

)

≥ 1− sup
Ĉ

1

L

L
∑

k=1

E0(I(Ĉ(Y ) = Ck)
dPCk

dP0
(Y )),

where L = CnNC
m
M is the number of elements in Θ. In the previous supremum, we may

replace the arbitrary measurable function Ĉ(Y ) by a test function ψ(Y ) taking values in

1, ..., L. The test maximising

sup
ψ(Y )

1

L

L
∑

k=1

E0(I(ψ(Y ) = k)
dPCk

dP0
(Y ))

will choose k such that Ck has maximal likelihood: {Y :
dPCk

dP0
(Y ) ≥ dPCj

dP0
(Y ), for all j =

20



1, ..., L}. Thus, we get the risk of a maximum likelihood estimator,

inf
Ĉ

sup
SC∈Θ

PC(Ĉ(Y ) 6= C) ≥ 1− 1

L

L
∑

k=1

PCk
(Ĉ⋆(Y ) = Ck)

≥ 1

L

L
∑

k=1

PCk
(Ĉ⋆(Y ) 6= Ck),

which tends to 1 by Proposition 2.1.

✷
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