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Abstract

This paper introduces an extension of the Markov switching ARCH model
where the volatility in each state is a convex combination of two different ARCH
components with time varying weights with different volatilities. The asymp-
totic behavior of the second moment is investigated and an appropriate up-
per bound for it is evaluated. The estimation of the parameters by using the
Bayesian method via Gibbs sampling algorithm is studied. We propose a dy-
namic programming algorithm for the forecasting. Finally we illustrate the
efficiency of the model by simulation and forecasting the volatility. We show
that this model provide much better forecast of the volatility than the Markov
switching ARCH model.

Keywords: ARCH models, Markov process, Stability, Component GARCH
models, Forecasting, Bayesian inference, Griddy Gibbs sampling.
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1 Introduction

In the past three decades, there has been a growing interest in using non linear time
series models in finance and economy. For financial time series, the ARCH model
and GARCH model , introduced by Engle [11] and Bollerslev [7], are surely the
most popular class of volatility models. Although these models have been applied
extensively in the modeling of financial time series, but the dynamic streucture
of volatility can not be captured passably by such models. For more consistent
volatility modelling, the models by time varying parameters are introduced. One
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class of such models is that of smooth transition GARCH models that presented
by Gonzalez-Rivera [15], (see also Hagerud [20] and Medeiros and Veiga [26]). An-
other class is that of Markov switching models. These models are obtained by by
Merging (G)ARCH model with a Markov process, where each state of the Markov
model allows a different (G)ARCH behavior. These models are introduced by Cai
[8] and Hamilton and Susmel [19]. This feature extends the dynamic formulation
of the model and potentially enables improving forecasts of the volatility [1]. Gray
[16], Klaassen [22], Haas, Mittnik and Paolella [18] proposed different variants of
Markov-Switching GARCH models. See also further studies, Abramson and Cohen
[1], Alexander and Lazar [2] and Bauwens et al. [6]. The component GARCH mod-
els, introduced first by Ding and Granger [10], are also a generalization of constant
parameter GARCH model. These models have been widely applied in modeling the
financial time series (e.g. [12], [25] and [13]). In the structure of component GARCH
model ([10]), two different ARCH component contribute to the overall conditional
variance at time t. One component has the high volatility (integrated variance com-
ponent) and the other component has the low volatility. A generalization of the
component GARCH model of Ding and Granger is the weighted GARCH model
that is peoposed by Bauwens and Storti [5]. In this model the weights of GARCH
components are the function of lagged values of the conditional standard deviation
or squared past observations.

In this paper we consider a Markov switching model that the volatility of each
state is a convex combination of two ARCH regimes with time varying coefficients
which is in effect of previous observation. This model has the potential to model
the effect of more complicated resources which are in effect of some volatility com-
ponents and the share of these components could change in time. We consider
different weight functions for each state that allow volatility in each state to react
differently to the shocks of equal size. As using all past observations for forecasting
could increase the complexity of the model, we reduce the volume of calculations by
proposing a dynamic programming algorithm. We derive necessary and sufficient
conditions for stability and obtain an upper bound for the limit of the second mo-
ment by using the method of Abramson and Cohen [1] and Medeiros [26]. For the
estimation of the parameters we use the Bayesian inference via the Gibbs sampling.
We compare the performance of our model to Markov switching ARCH model. The
Markov switching component ARCH model can forecast the conditional variance
much better than MS-ARCH model.

The paper is organized as follows: in section 2 we introduce the smooth transition
Markov switching ARCH model. Section 3 investigates the statistical properties of
the model. Section 4 is devoted to estimation of the parameters of the model.
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Section 5 dedicated to the analyzing of the efficiency of the proposed model through
simulation and the comparison of the forecast errors with the MS-ARCH model.
Section 6 concludes.

2 Markov switching Component ARCH model

The Markov switching component ARCH model, MS-CARCH, for time series {yt}
is defined as

yt = εt
√

Ht,Zt , Ht,Zt = wt,Zth1,t,Zt + (1− wt,Zt)h2,t,Zt , (2.1)

where {εt} are iid standard normal variables, {Zt} is an irreducible and aperiodic
Markov chain on finite state space E = {1, 2, · · · ,K} with transition probability
matrix P = ||pij||K×K , where pij = p(Zt = j|Zt−1 = i), i, j ∈ {1, · · · ,K}, and
stationary probability measure π = (π1, · · · , πK)′. Also

h1,t,Zt = a0,Zt + a1,Zty
2
t−1, h2,t,Zt, = b0,Zt + b1,Zty

2
t−1, (2.2)

and each of the weights (wt,i, i = 1, · · · ,K) is a function of past observation as

wt,i =
1− exp(−γi|yt−1|)

1 + exp(−γi|yt−1|)
γi > 0, (2.3)

which is bounded , 0 < wi,t−1 < 1. The parameter γi is called the slope parameters,
that explains the speed of transition from one component to the other one: the
higher γi, the faster the transition. Since γi > 0, when the absolute value of yt−1

increases, the impact of h1,i,t is increases and consequently the effect of h2,i,t decreses
and vice versa. For this reason we consider the first ARCH component in each state
with the high volatility and the second component with low volatility. So when γ

tending to zero or infinity and the MS-CARCH model tends to MS-ARCH model.
It is assumed that {εt} and {Zt} are independent. Sufficient conditions to guar-

antee strictly positive conditional variance are a0,i, b0,i to be positive and a1,i, a2,i, b1,i, b2,i
being nonnegative.

Let It be the observation set up to time t. The conditional density function of
yt given past information is obtained as follows:
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f(yt|It−1) =

K∑

i=1

f(yt, Zt = i|It−1)

=
K∑

i=1

p(Zt = i|It−1)f(yt|It−1, Zt = i)

=

K∑

i=1

α
(t)
i φ(

yt
√

Ht,i

) (2.4)

in which α
(t)
i = p(Zt = i|It−1) (that is obtained in next section), and φ(.) is the

probability density function of the standard normal distribution.

3 Statistical Properties of the model

In this section, the statistical properties of the MS-CARCH model are investigated
and the conditional variance of the process is obtained. We show that the model,
under some conditions on coefficients and transition probabilities , is asymptotically
stable in the second moment. An appropriate upper bound for the limiting value of
the second moment is obtained.

3.1 Forecasting

The forecasting volatility (conditional variance) of MS-CARCH model is given by

V ar(Yt|It−1) =

K∑

i=1

α
(t)
i Ht,i =

K∑

i=1

α
(t)
i (wt,ih1,t,i + (1− wt,i)h2,t,i) (3.5)

as Hk,t is the conditional variance of k-th state. This relation shows that the con-
ditional variance of this model is affected by the changes in states, the volatility of
components and the weight functions in each state.

At each time t, α
(t)
i (in equation (2.4), (3.5)) can be obtained from a dynamic pro-

gramming method based on forward recursion algorithm, proposed in remark (3.1).

Remark 3.1 The value of α
(t)
j is obtained recursively by

α
(t)
j =

∑K
m=1 f(yt−1|Zt−1 = m,It−2)p(Zt−1 = m|It−2)pm,j
∑K

m=1 f(yt−1|Zt−1 = m,It−2)p(Zt−1 = m|It−2)
. (3.6)
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Proof 3.1 As the hidden variables {Zt}t≥1 have Markov structure in MS-CARCH
model, so

α
(t)
j =p(Zt = j|It−1) =

K∑

m=1

P (Zt = j, Zt−1 = m|It−1)

=
K∑

m=1

p(Zt = j|Zt−1 = m,It−1)p(Zt−1 = m|It−1)

=

K∑

m=1

p(Zt = j|Zt−1 = m)p(Zt−1 = m|It−1)

=

∑K
m=1 f(It−1, Zt−1 = m)pm,j
∑K

m=1 f(It−1, Zt−1 = m)

=

∑K
m=1 f(yt−1|Zt−1 = m,It−2)p(Zt−1 = m|It−2)pm,j
∑K

m=1 f(yt−1|Zt−1 = m,It−2)p(Zt−1 = m|It−2)
, (3.7)

where

f(yt−1|Zt−1 = m,It−2) = φ(
yt−1

√
Ht−1,m

).

3.2 Stability

In this subsection, we investigate the stability of second moment of MS-CARCH
model. Indeed we are looking for an upper bound for the second moment of our
model. The second moment of the model can be calculated as:

E(y2t ) = E(Ht,Zt) = EZt [Et−1(Ht,Zt |zt)]

=

K∑

zt=1

πztEt−1(Ht,Zt |zt). (3.8)

Et(·) denotes the expectation with respect to the information up to time t. Also
for summarization, we shall use E(·|zt) and p(·|zt) to represent E(·|Zt = zt) and
P (·|Zt = zt), respectively, where zt is the realization of the state at time t. We
investigate Et−1[Ht,Zt|zt] as follows:
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Et−1(Ht,Zt |zt) =Et−1([wt,zt(a0,zt + a1,zty
2
t−1) + (1−wt,zt)(b0,zt + b1,zty

2
t−1)]|zt)

= b0,zt
︸︷︷︸

I

+ b1,ztEt−1[y
2
t−1|zt]

︸ ︷︷ ︸

II

+(a0,zt − b0,zt)Et−1[wt,zt |zt]
︸ ︷︷ ︸

III

+ (a1,zt − b1,zt)Et−1[wt,zty
2
t−1|zt]

︸ ︷︷ ︸

IV

.

(3.9)

The relation (II) in (3.9) can be interpreted as follows:

Et−1[y
2
t−1|zt] =

K∑

zt−i=1

∫

SIt−1

y2t−1p(It−1|zt, zt−1)p(zt−1|zt)dIt−1

=
K∑

zt−1=1

p(zt−1|zt)Et−1[y
2
t−1|zt−1, zt], (3.10)

where SIt−1
is the support of It−1 = (y1, · · · , yt−1). Since the expected value of y2t−1

conditional on the present state is independent of any future state, so

Et−1[y
2
t−1|zt−1, zt] = Et−1[y

2
t−1|zt−1]. (3.11)

Also using the tower property of the conditional expectation, that is E[E(Y |X,Z)|X] =
E(Y |X) [see Grimmett and Stirzaker (2001, p. 69)], we have

Et−1[y
2
t−1|zt−1] = Et−2[Et−1(y

2
t−1|It−2, zt−1)|zt−1]

= Et−2[Ht−1,Zt−1
|zt−1]. (3.12)

The calculation of Et−1[wt,zt |zt] and Et−1[wt,zty
2
t−1|zt] is a problem that can not

be easily done, For this reason we will try to find an upper bound for them.

Upper bound to III. As 0 < wt,i < 1, so an upper bound for the relation III in
(3.9) is obtained by

(a0,zt − b0,zt)Et−1[wt,zt |zt] ≤ (a0,zt − b0,zt) < ∞. (3.13)

Upper bound to IV. Let 0 < M < ∞ be a constant, so

Et−1[wt,zty
2
t−1|zt] =Et−1[wt,zty

2
t−1I|yt−1|<M |zt]

+ Et−1[wt,zty
2
t−1I|yt−1|≥M |zt]
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in which

Ix<a =

{
1 if x < a

0 otherwise.

As by (2.3), 0 < wt,zt < 1 and so

Et−1[wt,zty
2
t−1|zt] ≤ M2 + Et−1[wt,zty

2
t−1I|yt−1|≥M |zt],

also

Et−1[wt,zty
2
t−1I|yt−1|≥M |zt] =

∫

SIt−2
,yt−1≤−M

y2t−1[wt,zt ]p(It−1|zt)dIt−1

+

∫

SIt−2
,yt−1≥M

y2t−1[wt,zt ]p(It−1|zt)dIt−1,

by (2.3),
lim

yt−1→+∞
wt,zt = 0, lim

yt−1→−∞
wt,zt = 0, (3.14)

therefore according to the definition of limit at infinity, for a small number δ > 0,
there will exist a finite constant M > 0 such that if yt−1 ≥ M , |wt,zt | ≤ δ and if
yt−1 ≤ −M , |wt,zt | ≤ δ. Hence

Et−1[wt,zty
2
t−1I|yt−1|≥M |zt] ≤ δ

∫

SIt−2
,yt−1≤−M

y2t−1p(It−1|zt)dIt−1

+ δ

∫

SIt−2
,yt−1≥M

y2t−1p(It−1|zt)dIt−1.

Since the distribution of the {εt} is symmetric, then

δ

∫

SIt−2
,yt−1≤−M

y2t−1p(It−1|zt)dIt−1 ≤δ

∫

SIt−2
,−∞<yt−1<0

y2t−1p(It−1|zt)dIt−1

= δ
Et−1[y

2
t−1|zt]

2

and

δ

∫

SIt−2
,yt−1≥M

y2t−1p(It−1|zt)dIt−1 ≤δ

∫

SIt−2
,0<yt−1<∞

y2t−1p(It−1|zt)dIt−1

= δ
Et−1[y

2
t−1|zt]

2
.
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Therefor
Et−1[wt,zty

2
t−1|zt] ≤ M2 + δEt−1[y

2
t−1|zt].

By replacing the obtained upper bounds and relations (3.10)-(3.12) in (3.9), the
upper bound for Et−1(Ht,Zt |zt) is aquired as:

Et−1(Ht,Zt |zt) ≤ a0,zt + (a1,zt − b1,zt)M
2

+
K∑

zt−1=1

[b1,zt + (a1,zt − b1,zt)δ]p(zt−1|zt)Et−2[Ht,Zt−1
|zt−1], (3.15)

in which by Bayes’ rule

p(zt−i|zt) =
πzt−i

πzt
{Pzt−izt},

where P is the transition probability matrix. Let

Ω = [a0,1 + (a1,1 − b1,1)M
2, · · · , a0,K + (a1,K − b1,K)M2)]′, (3.16)

be a vector with K component, C be a K-by-K matrix with elements

{Cjk} = [b1,j + (a1,j − b1,j)δ]
πk

πj
{Pkj}, (3.17)

and
At = [Et−1(Ht,1|Zt = 1), · · · , Et−1(Ht,K |Zt = K)]′, (3.18)

be a K-by-1 vector.
Hence by (3.16)-(3.18) we have the following recursive inequality,

At ≤ Ω+CAt−1, t ≥ 0. (3.19)

with some initial conditions A−1.

Suppose ρ(A) denotes the spectral radius of a matrix A, then we have the following
theorem.

Theorem 3.1 Let {Yt}
∞
t=0 follows the MS-CARCH model, defined by (2.1)-(2.3),

the process is asymptotically stable in variance and limt→∞E(Y 2
t ) ≤ π′(I−C)Ω if

and only if ρ(C) < 1.

Proof 3.2 [1], By recursive inequality (3.19),

At ≤ Ω

t−1∑

i=0

C
i +C

t
A0 := Bt

(3.20)
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By the matrix convergence theorem [23] , a necessary and sufficient condition for
the convergence of Bt when t → ∞ is ρ(C) < 1 ( the value of δ can be considered
small enough to be negligible). Under this condition, Ct converges to zero as t goes
to ∞ and

∑t−1
i=0 C

i converges to (I−C)−1 provided that matrix (I−C) is invertible.
So if ρ(C) < 1,

lim
t→∞

At ≤ (I −C)−1
Ω

and by (3.8) we attain the upper bound for the asymptotic behaviour of unconditional
variance,

limt→∞E(y2t ) ≤ π′(I−C)Ω.

4 Estimation

In this section we describe the estimation of the parameters of the MS-CARCH
model. We consider Bayesian MCMC method using Gibbs algorithm by following
methods of sampling of a hidden Markov process ([9] and [21]), MS-GARCH model
and weighted GARCH model ([5] and [6] ) for estimation of parameters.

Let Yt = (y1, · · · , yt) and Zt = (z1, · · · , zt). For the case of two states, the
transition probabilities are η = (η11, η12, η21, η22) and the parameters of the model
are θ = (θ1, θ2), where θk = (a0k, b0k, a1k, b1k, γk) for k = 1, 2.

The purpose of Bayesian inference is to simulate from the distributions of the
parameters and the state variables given the observations. As Z = (z1, · · · , zT ) and
Y = (y1, · · · , yT ) the posterior density of our model is:

p(θ, η, Z|Y ) ∝ p(θ, η)p(Z|θ, η)f(Y |θ, η, Z), (4.21)

in which p(θ, η) is the prior of the parameters. The conditional probability mass
function of Z given the (θ, η) is independent of θ, so

p(Z|θ, η) =p(Z|η00, η11)

=
T∏

t=1

p(zt+1|zt, η00, η11)

= pn00

00 (1− p00)
n01pn11

11 (1− p11)
n10 , (4.22)
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where nij = #{zt = j|zt−1 = i}. The conditional density function of Y given the
realization of Z and the parameters is factorized in the following way:

f(Y |η, θ, Z) =

T∏

t=1

f(yt|θ, zt = k, Yt−1), k = 1, 2, (4.23)

where the one step ahead predictive densities are:

f(yt|θ, zt = k, Yt−1) =
1

√
2πHt,k

exp(−
y2t
Ht,k

). (4.24)

Since the posterior density (4.21) is not standard we can not sample it in a
straightforward manner. Gibbs sampling of Gelfand and Smith [14] is a repetitive
algorithm to sample consecutively from the posterior distribution. Under regularity
conditions, the simulated distribution converges to the posterior distribution, (see
e.g Robert and Casella [27]). The blocks of parameters are θ, η and the realizations
of Z.
A brief description of the Gibbs algorithm: Let use the superscript (r) on Z, θ and
η to denote the estimators of Zt), η, and θ at the r-th iteration of the algorithm.
Each iteration of the algorithm consist of three steps:
(i) Drawing an estimator random sample of the state variable Z(r) given , η(r−1), θ(r−1).
(ii) Drawing a random sample of the transition probabilities η(r) given Z(r).
(iii) Drawing a random sample of the θ(r) given Zr and η(r).

These steps are repeated until the convergency is obtained. In what follows
sampling of each block are explained.

4.1 Sampling zt

The purpose of this step is to obtain the sample of p(zt|η, θ, Yt) that is performed
by Chib[9], (see also [21]). Suppose p(z1|η, θ, Y0, ) be the stationary distribution of
the chain,

p(zt|η, θ, Yt) ∝ f(yt|θ, zt = k, Yt−1)p(zt|η, θ, Yt−1), (4.25)

where the predictive density f(yt|θ, zt = k, Yt−1) is calculated by the relation (4.24)
and by the law of total probability p(zt|η, θ, Yt−1) is given by:

p(zt|η, θ, Yt−1) =
K∑

zt−1=1

p(zt−1|η, θ, Yt−1)ηzt−1zt . (4.26)

10



Given the filter probabilities (p(zt|η, θ, Yt)), we run a backward algorithm, start-
ing from t = T that zT is derived from p(zT |η, θ, Y ). For t = T −1, · · · , 0 the sample
is derived from p(zt|zt+1, · · · , zT , θ, η, Y ),which is obtained by

p(zt|zt+1, · · · , zT , θ, η, Y ) ∝ p(zt|η, θ, Yt)ηzt,zt+1
.

To derive zt from p(zt|·) = pzt is by sampling from the conditional probabilities
qj = p(Zt = j|Zt ≥ j, .) which are given by

p(Zt = j|Zt ≥ j, .) =
pj

∑K
l=j ql

.

After generating a uniform (0,1) number U , if U ≤ qj then zt = j, otherwise increase
j to j + 1 and generate another uniform (0,1) and compare it by qj+1.

4.2 Sampling η

This stage is devoted to sample η = (η11, η22) from the posterior probability p(η|θ, Yt, Zt)
that is independent of Yt, θ. We consider independent beta prior density for each of
η11 and η22. For example,

p(η11|Zt) ∝ p(η11)p(Zt|η11) = ηc11+n11−1
11 (1− η11)

c12+n12−1,

where c11 and c12 are the parameters of Beta prior, nij is the number of transition
from zt−1 = i to zt = j. In the same way the sample of η22 is obtained.

4.3 Sampling θ

The posterior density of θ given the prior p(θ) is given by:

p(θ|Y,Z, η) ∝ p(θ)

T∏

t=1

f(yt|θ, zt = k, Yt−1) = p(θ)

T∏

t=1

1
√

2πHt,k

exp(−
y2t
Ht,k

), (4.27)

which is independent of η. Since the conditional distribution of θ does not have a
closed-form (because for example p(a0k|Yt, Zt, θ−a0k), in which θ−a0k is the param-
eter vector without a0k, contains Hk,i, which is also a function of a0k. Therefor it
isn’t a normal density.) using the Gibbs sampling in this situation may be compli-
cated. The Griddy Gibbs algorithm, that introduced by Ritter and Tanner (1992),
can be a solution of this problem. This method is very applicable in researches (for
example [4] , [5] and [6]).

Given samples at iteration r the Griddy Gibbs at iteration r + 1 proceeds as
follows:

11
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Figure 1: Simulated time series of MS-CARCH model.

Table 1: Descriptive statistics for the simulated data (sample size=200)

Mean Standard deviation Skewness Maximum Minimum Kurtosis

.051 .632 .445 2.893 -1.833 5.777

1. Select a grid of points, such as a10i, a
2
0i, · · · , a

G
0i. Using (4.27), evaluate the condi-

tional posterior density function k(a0i|Zt,Yt,θ−a0i
) over the grid points to obtain the

vector Gk = (k1, · · · , kG).
2. By a deterministic integration rule using the G points, computeGΦ = (0,Φ2, · · · ,ΦG)
with

Φj =

∫ a
j
0i

a1
0i

k(a01|θ
(r)
−a0i

, Z
(r)
t , Yt)da0i, i = 2, · · · , G. (4.28)

3. Simulate u ∼ U(0,ΦG) and invert Φ(a0i|θ
(r)
−a0i

, Z
(r)
t , Yt) by numerical interpola-

tion to obtain a sample a
(r+1)
0i from a0i|θ

(r)
−a0i

, Z
(r)
t , Yt.

4. Repeat steps 1-3 for other parameters.

For the prior densities of all elements of θ, it can be can considered independent
uniform densities over the finite intervals.

5 Simulation results

In this section we provide some simulation results of MS-CARCH model defined
by equations (2.1)-(2.3) for two states. We simulate 200 sample from the following
MS-CARCH model:

yt = εt
√

Ht,Zt , (5.29)
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Figure 2: Squared observations of the simulated time series (blue), forecasts by MS-ARCH model (red)
and forecasts by MS-CARCH model (green)
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Figure 3: Forecast Errors of square of the observations in the MS-ARCH model (red) and in MS-CARCH
model (green).
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Table 2: Results of the Bayesian Estimation of the simulated MS-ARCH model

True values Mean Std. dev.

a01 0.10 0.097 0.049
a11 0.40 0.397 0.164
b01 0.20 0.199 0.053
b11 0.90 0.845 0.190
a02 0.10 0.158 0.081
a12 0.05 0.124 0.067
b02 0.30 0.298 0.110
b12 0.20 0.200 0.108
γ1 5 5.994 .272
γ2 0.10 0.106 0.057
η11 0.90 0.892 0.078
η22 0.85 0.709 0.159

where {εt} is an iid sequence of standard normal variables, {Zt} is a Markov chain
on finite state space E = {1, 2} with transition probability matrix

P =

(
.90 .10
.05 .85

)

,

and

Ht,1 =(1− wt,1)(.1 + .4y2t−1) + wt,1(.2 + .9y2t−1), wt,1 =
1− exp(−5|yt−1|)

1 + exp(−5|yt−1|)

Ht,2 =(1− wt,2)(.1 + .05y2t−1) + wt,2(.3 + .2y2t−1), wt,2 =
1− exp(−.1|yt−1|)

1 + exp(−.1|yt−1|)
(5.30)

The first state implies a higher conditional variance than the second one and
in each state, the first component has the lower volatility than another component.
By theorem (1), the assumption for the exictence an upper bound for the second
moment is checked.

In table 1, we report summery statistics for simulated data and figure 1 shows
the plot of the simulated time series.

Using the Bayesian inference, we estimate the parameters of the MS-CARCH
model. The prior density of each parameter is assumed to be uniform restricted
over a finite interval (except for η11 and η22, since they are drawed from the beta
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distribution). The number of iterations of the Gibbs sampler was 20000 and the
initial 10000 draws were discarded. Table 2 demonstrates the performance of our
estimation methods for the model. The results of these tables show that the stan-
dard deviation are small enough in most cases.

For clarifying the performane of MS-CARCH model toward MS-ARCH model,
We compare the forecasting volatility (E(Y 2

t |Ft−1)) of each model to the squared
observations. The forecast error (the difference between the forecasting volatility
and the squared observations) of our model is more smaller than the MS-ARCH
model especially in picked points.

6 Conclusion

In this paper a generalization of the MS-ARCH model has been presented where the
conditional variance in each state is a convex combination of two different ARCH
components with time varying coefficients, one of the component with higher volatil-
ity than other component. Our model can providemore better forecast of volatility
toward MS-ARCH model. For the estimation of parameters we have applied the
Bayesian estimation algorithm. We provide simple necessary and sufficient condi-
tion for the existence of an upper bound for second moment.

This work has the potential to be applied in the context of financial time se-
ries. The empirical distribution of daily returns doesn’t generally have a Gaussian
distribution. They have fat tails densities (they are called leptokurtic). One of
the extending of this work is considering the fat tail densities instead of Gaussian
distribution, that can cause better modeling of the financial time series. Also we
can generalize this model by using of the GARCH structure instead of the ARCH
structure for the better results.
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