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A closed-form estimator for the multivariate
GARCH(1,1) model

Giacomo Sbrana
∗

and Federico Poloni
†

We provide a closed-form estimator based on the VARMA representation
for the unrestricted multivariate GARCH(1,1). We show that all parameters
can be derived using basic linear algebra tools. We show that the estimator is
consistent and asymptotically normal distributed. Our results allow also to
derive a closed form for the parameters in the context of temporal aggregation
of multivariate GARCH(1,1) by solving the equations as in Hafner [2008].

Keywords: Multivariate GARCH(1,1), VARMA, Temporal Aggregation, Es-
timation.

1. Introduction

Estimating a multivariate GARCH(1,1) model is a challenging task. The most common
tool for this purpose is the quasi maximum likelihood (QML) estimator which requires
rather sophisticated optimization techniques. In this paper we present a simple and fast
method of moments which makes the estimation of the multivariate GARCH(1,1) model
more accessible. Our results represent the multivariate generalization of the analytical
results already achieved by Kristensen and Linton [2006] for the scalar case.

Our estimator is consistent and, under additional assumptions on the moments, asymp-
totically normal distributed. Due to the difficulties in estimating multivariate GARCH(1,1)
models our estimator may then be used to provide a consistent initial estimate when im-
plementing numerical optimization techniques for the QML estimation. This is especially
true when large-scale models are employed.

Several restricted models have been proposed by the previous literature in order to re-
duce the number of parameters, such as Diagonal VEC (Bollerslev et al. [1988]), BEKK-
GARCH (Engle and Kroner [1995]), CCC-GARCH (Bollerslev [1990]). Interestingly,
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our results are valid in general. Therefore in the framework we stick to the unrestricted
multivariate GARCH(1,1).

Finally, our results extend the results of Hafner [2008] in the context of temporal
aggregation of multivariate GARCH(1,1). Indeed, our results allow to derive the pa-
rameters of the temporally aggregated GARCH for any aggregation frequency. In other
words, given the parameters of the disaggregated process, those of the aggregate one
are analytical functions of the disaggregate parameters. Alternatively, one can also use
the moments of the disaggregated GARCH to produce an initial estimate of the param-
eters of temporally aggregated processes. The former estimator is again consistent and
asymptotically normal when some moments conditions hold.

2. Framework

Consider the following unrestricted multivariate GARCH(1,1) model

yt =H
1/2
t ǫt, t = 1, 2, . . . , n,

where yt is a d-dimensional zero-mean, serially uncorrelated process. In addition, we
have that ǫt ∈ R

d×1 is an i.i.d. white noise vector with zero mean and variance Id.
Moreover, the conditional covariance matrix is given by

vech (Ht) =c + A vech(yt−1yT
t−1) + B vech(Ht−1), t = 2, 3, . . . , n, (1) garchrec

where vech(M) represents the operator that stacks the elements of the lower triangular

part of a symmetric matrix M to form a d̄ × 1 vector, with d̄ = d(d+1)
2 .

In what follows we make the following assumptions:

1. Ht is positive definite almost surely for each t.

2. All eigenvalues of the matrix A + B have modulus smaller than one.

3. The process yt is ergodic, β-mixing, and strictly stationary.

moments 4. The fourth moments of yt exist and are finite.

Boussama [2006] provides sufficient conditions that ensure a strictly stationary, er-
godic and β-mixing solution of the vector GARCH process (these can also be found in
[Francq and Zakoïan, 2010, Theorem 11.5]).

The following stronger assumption is used only in some central limit results:

5 The eighth moments of yt exist and are finite.

When the distribution of ǫt is spherical, [Hafner, 2003, Theorem 3] has given an algebraic
condition equivalent to Assumption 4 that is easy to test in practice. However, we do
not need to assume sphericity here.
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The VARMA(1,1) representation of the multivariate GARCH(1,1) is obtained by defin-
ing ht ≡ vech(Ht), xt ≡ vech(yty

T
t ) and ξt ≡ xt − ht; the recurrence relation (1) is

equivalent to

xt = c + Φxt−1 + ξt − Bξt−1.

By eliminating xt−1 recursively, we find that asymptotically the following formula holds

xt = h +
∞
∑

i=0

Θiξt−i,

where Φ = A + B; h = vech(H) = (I − Φ)−1c; Θ0 = Id and Θi = (A + B)i−1A for
i ≥ 1. The interest of this formulation lies in the fact that ξt is a martingale difference
sequence. We define Σ ≡ E[ξtξ

T
t ]; note that E[ξtξ

T
t+s] = 0 for s ≥ 1.

3. Closed form Estimation
sec:closedForm

Under Assumptions 1–4, the autocovariances of xt exist and are finite, and they are
given by

Mk = E[(xt+k − h)(xt − h)T ] =
∞
∑

i=0

Θi+kΣΘT
i .

From the VARMA(1,1) representation using the standard Yule-Walker results we have
that

Mk+1 = ΦMk, for all k ≥ 1,

thus Φ can be obtained analytically as

Φ = Mk+1M−1
k , for all k ≥ 1. (2) Phi

These results are well known and can also be found for example in the book of Reinsel
[1997] as well as in Hafner [2003] page 32 (for the univariate case see Kristensen and Linton
[2006]). Therefore, we can estimate Φ̂ = M̂2M̂−1

1 . Consider now the first-order moving
average vector

jt = xt − Φxt−1 = c + ξt − Bξt−1.

The autocovariances of jt are

Γ0 ≡ E[(jt − c)(jt − c)T ] = Σ + BΣBT = M0 − M1ΦT − ΦMT
1 + ΦM0ΦT ,

Γ1 ≡ E[(jt − c)(jt−1 − c)T ] = −BΣ = M1 − M2ΦT − ΦM0 + ΦM1ΦT = M1 − ΦM0.
(3) Gammas

We can combine the former two equations with simple manipulations to derive two
separate equations for B and Σ

Γ T
1 + Γ0BT + Γ1(BT )2 = 0, (4) pme

Γ0 = Σ + Γ1Σ−1Γ T
1 . (5) nme
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In the scalar case, (4) is a quadratic equation; the approach suggested by Kristensen and Linton
[2006] consists essentially in deriving an estimator by solving this equation.

This method, however, need not be restricted to the univariate GARCH. In the multi-
variate case, basic linear algebra techniques can be used to derive a closed form in terms
of eigenvalues and eigenvectors. We present them in the next section.

3.1. Closed formula for B

The following procedure can be used to obtain B as analytical function of Γ0 and Γ1.

1. Form the 2d̄ × 2d̄ matrix

P =

[

0 I

−Γ −1
1 Γ T

1 −Γ −1
1 Γ0

]

. (6) defP

2. One can prove (Lemma 5 in the following) that the eigenvalues of P come in pairs
(λ, 1/λ). Therefore, unless there are eigenvalues that lie exactly on the unit circle,
half of the 2d̄ eigenvalues satisfy |λ| < 1, and we may reorder them so that |λi| < 1
for i = 1, 2, . . . , d̄. Moreover, consider the associated eigenvectors wi and partition
them as

wi =

[

ui

vi

]

, ui, vi ∈ R
d̄.

3. Now, a solution to the matrix equation (4) is given by

B = (UT )−1DUT =
[

u1 u2 · · · ud̄

]−T













λ1

λ2

. . .

λd̄













[

u1 u2 · · · ud̄

]T
.

(7) B

In Section 5 and Appendix A, we recall the theoretical results in linear algebra that
ensure the functioning of this procedure.

3.2. Estimation using the closed formula

Using this formula, an estimation procedure can be derived as following:

1. Given the data, compute the observed average and the first three autocovariances
of xt:

ĥ =
1

n

n
∑

t=1

xt, M̂0 =
1

n

n
∑

t=1

[(xt − ĥ)(xt − ĥ)T ],

M̂1 =
1

(n − 1)

n−1
∑

t=1

[(xt+1 − ĥ)(xt − ĥ)T ], M̂2 =
1

(n − 2)

n−2
∑

t=1

[(xt+2 − ĥ)(xt − ĥ)T ].
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2. Evaluate Φ̂ = M̂2M̂−1
1 , Γ̂0 = M̂0 − M̂1Φ̂T − Φ̂M̂T

1 + Φ̂M̂0Φ̂T , and Γ̂1 = M̂1 − Φ̂M̂0,
as provided by (3).

3. Use the above procedure based on eigenvalue computation to get an estimated B̂.

4. Finally, recover the other two parameters as Â = Φ̂ − B̂ and ĉ = (I − Â − B̂)ĥ.

3.3. Asymptotic properties

In this section and the following, the symbols
p→ and

dist→ stand for convergence in prob-
ability and distribution, respectively.

The consistency of the QML estimator has been shown by Jeantheau [1998] while
Comte and Lieberman [2003] provides the asymptotic normality of the QML estima-
tor in the context of BEKK formulation. However, as noted in Bauwens et al. [2006]:
The asymptotic properties of ML and QML estimators in multivariate GARCH mod-
els are not yet firmly established, and are difficult to derive from low level assump-
tions [...] Asymptotic normality of the QMLE is not established generally. [...] Re-
searchers who use MGARCH models have generally proceeded as if asymptotic normality
holds in all cases. Here we provide the asymptotic properties of our closed-form es-
timator Λ = (c, vec(A), vec(B)), which is function of the moments of xt only, that is,
Λ = F (h, M0, M1, M2).

Convergence Lemma 1. Let

m =











h
vec M0

vec M1

vec M2











.

Under Assumptions 1–4, m̂
p→ m. In addition, if Assumption 5 holds, we have

√
n(m̂ − m)

dist→ N(0, Ψ), (8)

where Ψ = Cov[m].

Proof. Under these assumptions, both h and Mk are finite, in addition ĥ and M̂k are
consistent given the law of large numbers for stationary and ergodic processes. Finally,
the joint distribution converges to a normal distribution thanks to the standard central
limit theory for strongly mixing sequences.

Note that m is consistent even if Assumption 5 does not hold; in this case, however,
m̂ converges with a slower rate (see the discussion in Kristensen and Linton [2006]).
Moreover, the limit joint distribution of the moments is not Gaussian.

If the noise distribution is spherical, then, as noted by Hafner [2003], the cross-
covariance between h and vec(Mk) vanishes for each k, as it is an odd-power function of
the noise ǫt. In this case, the explicit expression for Ψ is

Ψ =

[

Cov[h] 0d̄×3d̄2

03d̄2×d̄ Cov[Mk, Ml]

]

5



where:

Cov[h] = M0 +
∞
∑

k=1

Mk +
∞
∑

k=1

MT
k

and

Cov[Mk, Ml] = E

[

(

vec [(xt+k − h)(xt − h)T ] − vec Mk

)(

vec [(xt+l − h)(xt − h)T ] − vec Ml

)T
]

for k, l = 0, 1, 2.
The following theorem represents a direct consequence of Lemma 1.

Normality Theorem 2. Under Assumptions 1–4, the estimator Λ̂ = (ĉ, vec(Â), vec(B̂)) = F (m) is

consistent, i.e. Λ̂
p→ Λ. In addition, if Assumption 5 holds,

√
n(Λ̂ − Λ)→N(0, Ξ) with

Ξ =

(

∂F (m)

∂m

)

Ψ

(

∂F (m)

∂m

)T

. (9) usesPartialDeriva

Proof. The theorem follows from the continuous mapping theorem; in addition, the
explicit expression for the covariance is obtained using the delta method. It remains to
show that the partial derivative ∂F (m)

∂m exists, which is proven in the end of Section 5.

Note that the asymptotic properties of the closed form estimator might be employed
to prove these of the QML in general (as discussed by Bauwens et al. [2006]). However,
we leave this for future research.

4. Temporal aggregation

An interesting consequence of the results above is the direct extension to the temporal
aggregation. In fact, we can now derive (as well as estimate) the parameters of the
temporally aggregated multivariate GARCH(1,1) as discussed in Hafner [2008].

Temporal aggregation of a GARCH can be conducted in two different forms, depending
on whether we are interested in stock or flow variables. We are interested in deriving a
GARCH representation for the process y(m) aggregated over m periods, which is defined
in the two cases as

y
(m)
mt = ymt, (stock variables)

y
(m)
mt = ymt + ymt−1 . . . + ymt−m+1 + w

(m)
mt . (flow variables)

We denote x
(m)
mt = vech(y

(m)
mt y

(m)T
mt ). While in the stock case x

(m)
mt = xmt, the relation

between the second moments is more involved for flow variables.
Hafner [2008] shows that the temporally aggregated process follows a weak VARMA(1,1)

x
(m)
mt = c(m) + Φ(m)x

(m)
m(t−1) + ξ

(m)
mt − B(m)ξ

(m)
m(t−1). (10)
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Then, equations for B(m) formally analogous to (3) are derived:

Γ
(m)
0 = Σ(m) + B(m)Σ(m)(B(m))T ,

Γ
(m)
1 = −B(m)Σ(m),

with

Γ
(m)
0 =

m
∑

i=0

Js
i ΣJsT

i ,

Γ (m)
v = Js

mΣ,

Js
0 = Id̄,

Js
i = Φi−1A,

Js
m = −Φm−1B,

for the case of stock variables, and

Γ
(m)
0 =

2m−1
∑

i=0

Jf
i ΣJfT

i + Σm
w + ΦmΣm

w (ΦT )m,

Γ
(m)
1 =

m−1
∑

i=0

Jf
i+mΣJfT

i − ΦmΣm
w ,

Jf
0 = Id̄,

Jf
i = Id̄ + A + ΦA + · · · + Φi−1A, i = 1, · · · , m − 1

Jf
i = [Id̄ + Φ + · · · + Φm−2]A − Φm−1B, i = m

Jf
i = [Φi−m + Φi−m+1 + · · · + Φm−2]A − Φm−1B, i = m + 1, · · · , 2m − 2,

Jf
2m−1 = −Φm−1B,

for the case of flow variables (where an explicit expression for Σm
w can be found in

Hafner [2008] eq.19). The author, however, rearranges them to eliminate Σ(m) in a form
that differs slightly from our (4), and for which deriving an explicit solution is more
complicated. In his words, “As of B(m), (29) is a system of nonlinear equations that
cannot be solved explicitly.”. With the tools provided in this paper, an explicit solution
is now available. Equation (29) in Hafner [2008] can be replaced with (4) in this paper.
Therefore using

P (m) =

[

0 I

−Γ
(m)−1
1 Γ

(m)T
1 −Γ

(m)−1
1 Γ

(m)
0 ,

]

. (11) defPm

we can carry on the procedure described in Section 3. Again, the eigenvalues to choose
are those inside the unit circle.
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Hafner [2008] shows that Γ
(m)
0 and Γ

(m)
1 are analytical functions of A, B and E(ξtξ

T
t )

and these are are function of the moments of xt only. It turns out that a closed form
estimator of the temporally aggregated GARCH(1,1) can be derived as an analytical
function Λ(m) = (c(m), vec A(m), vec B(m)) = G(m)(h, vec M0, vec M1, vec M2). In par-
ticular, we can use for the estimation of the aggregated GARCH(1,1) the estimated
moments of the high-frequency data, for which more information is available.

The estimator enjoys the same asymptotic properties.

NormalityAggregate Theorem 3. Under Assumptions 1–4, the estimator Λ̂(m) = (ĉ(m), vec ˆA(m), vec ˆB(m)) =

G(m)(m) is consistent, i.e. Λ̂(m) p→ Λ(m). In addition, if Assumption 5 holds as well, we
have:

√
n(Λ̂(m) − Λ)→N(0, Ξ(m)), with

Ξ(m) =

(

∂G(m)(m)

∂m

)

Ψ

(

∂G(m)(m)

∂m

)T

. (12) usesPartialDeriva

Hafner and Rombouts [2007] discuss the estimation of temporally aggregated multi-
variate GARCH(1,1). Our estimator can be employed as a simple estimator when the
number of observations is sufficiently high. Alternatively, it can be used as a consistent
starting value for the QML estimation.

5. Palindromic matrix equations and eigenvalue problems
sec:linearAlgebra

In this section, we present the linear algebra results that lead to the estimator of B
(as well as B(m)). These matrix equations have been studied by many authors in linear
algebra literature, see e.g. Gohberg et al. [1982], Engwerda et al. [1993], Meini [2002]
and the references therein; we focus here on providing a non-technical exposition. Proofs
of some of the results are presented in Appendix A.

The problem of computing one or more pairs (λ, u) satisfying

(λ2Γ1 + λΓ0 + Γ T
1 )u =0, u 6=0, (13) pep

is known as palindromic quadratic eigenvalue problem Mackey et al. [2006]. The complex
numbers λ are called generalized eigenvalues and the vectors u generalized eigenvectors.
It is indeed a generalization of the standard eigenvalue problem, i.e., given a matrix A
finding pairs (λ, u) satisfying (A − λI)u = 0.

First, we show that all the solutions to (4) can be constructed from generalized eigen-
values and eigenvectors of (13).

solGenEig Lemma 4. Let (λ1, u1), (λ2, u2), . . . , (λd̄, ud̄) be d̄ different pairs of generalized eigenval-
ues and eigenvectors of the problem (13), such that the matrix U (as in (7)) is invertible.
Then, B = (UT )−1DUT is a solution of (4). All the solutions of (4) can be obtained in
this way.

Moreover, in our problem the possible values of λ can be “paired”.
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pairinglemma Lemma 5. Let Γ0 and Γ1 be real matrices, with Γ0 symmetric. If λ 6= 0 is a generalized
eigenvalue of (13), then 1/λ is one as well.

Finally, the following result shows that we can reduce the palindromic eigenvalue
problem to a standard eigenvalue problem.

eigenlemma Lemma 6. Suppose that the matrix Γ1 is invertible.

1. Let (λ, u) be a solution of (13). Then, λ is an eigenvalue of P , with corresponding
eigenvector

w =

[

u
λu

]

2. Conversely, if λ is an eigenvalue of P with eigenvector w, then (λ, u) satisfy (13),
where u is the vector formed by the first d̄ entries of w.

By combining all the above results, we can obtain a closed form for B. Note that
different solutions are possible; namely, every choice of d̄ eigenvalues out of the 2d̄ of
P gives a different B satisfying (4); however, only the one with |λi| < 1, i = 1, 2, . . . , d̄
results in a B with all its roots inside the unit circle.

Remark 7. The invertibility of Γ1 is not a crucial assumption. If Γ1 is singular, we can
obtain in a similar way not an eigenvalue problem of the form Mv = λv, but the slightly
more general form Mv = λNv. This is known as generalized eigenvalue problem, and
there are plenty of algorithms to find a closed-form solution to it. For instance, the
Matlab command eig(M,N). Similarly, if P is not diagonalizable, solutions B to the
matrix equation (4) can be defined in terms of its Jordan canonical form.

The existence of the partial derivatives ∂F (h,vec M0,vec M1,vec M2)
∂(h,vec M0,vec M1,vec M2) that are needed in The-

orem 2 can be shown, again under the condition that P has no unimodular eigenvalues.

analytical Lemma 8. Suppose that the matrix P has no eigenvalues on the unit circle. Then, B
is an analytical function of the equation coefficients Γ0, Γ1.

Since Γ0 and Γ1 are in turn analytical functions of the Mi, the partial derivative
exists. A sketch of proof of this result is in the appendix, together with a more explicit
expression for the Jacobian.

6. Small sample issues
unimodular

The results provided in this paper should be employed with caution whenever the sample
size n is not large enough. The closed-form estimator is based on the sample estimates
of M̂0, M̂1, M̂2. However, it may be the case that the sample moments do not respect
all the stated assumptions. More specifically, three different kind of issues can arise:

Positivity ĉ, Â and B̂ do not guarantee that Ht is positive definite.

Stationarity The roots of Φ̂ = M̂k+1M̂−1
k lie on or outside the unit circle.

9



Invertibility B̂ has unimodular eigenvalues (i.e., on the unit circle).

When the GARCH parameters are estimated via maximum likelihood, the constraints of
respecting these conditions are usually imposed when solving the optimization problem;
see for instance Chrétien and Ortega [2012]. Since black-box optimization routines are
used, additional constraint are easy to impose, but they make the resulting problem
more complicated to solve. On the plus side, they guarantee that the resulting model
has the desired properties, provided that the iterative optimization procedure does not
fail. Instead, with an exact moment-based estimator, if one or more of these conditions
fail, then the best way out is modifying the sample moments or the estimates a posteriori
to make sure that they satisfy these constraints. We discuss briefly these problems that
may arise when our closed form estimation is employed.

6.1. Positivity

Sufficient conditions for positivity are discussed by several authors (see Gouriéroux [1997],
Chrétien and Ortega [2012], Francq and Zakoïan [2010]). However, as far as we know,
the problem of finding necessary conditions has not been dealt with in literature. Indeed,
even the simpler problem of finding all linear maps among symmetric matrix spaces that
preserve positive semi-definiteness has no simple solution, see for instance [Bhatia, 2007,
Chapters 2 and 3]. Our estimation procedure does not always produce an estimated
GARCH satisfying the sufficient conditions cited above. We do not deal here with the
problem of finding a weaker set of conditions that can be preserved.

6.2. Stationarity

In small samples the estimate of Φ̂ = M̂k+1M̂−1
k can have eigenvalues on or outside

the unit circle; moreover, the values Φ̂(k) computed by choosing different values of k in
the former expression will in general be different. The choice described above of taking
Φ̂(1) and ignoring all the other autocovariances ratios is the simplest way out of the
latter problem. Kristensen and Linton [2006] discuss this problem in the scalar case,

and suggest as another valid approach taking 1
3

(

Φ̂(1) + Φ̂(2) + Φ̂(3)
)

, or in general any

convex combination
∑

wiΦ
(i).

To avoid problems with noninvertibility or outliers, in the multivariate case it is more
advisable use instead a least-square solution Φ̂∗ of the system

Φ̂∗

[

w1M̂1 w2M̂2 · · · wn−1M̂n−1

]

=
[

w1M̂2 w2M̂3 · · · wn−1M̂n

]

,

again with suitably-chosen weights wi. None of these solutions (and no choice of weights)
clearly stands out. In particular, all of them may result in estimates Φ̂ with eigenvalues
equal or larger than 1. When this happens, a simple fix is projecting the estimate on the
space of acceptable GARCH solutions by altering the eigenvalues that lie on or outside
the unit circle.
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6.3. Invertibility

Our assumptions on the solution B guarantee that it has all eigenvalues inside the unit
disc, and thus that the matrix P has no unimodular eigenvalues. However, once again the
sample autocovariances from a finite-time realization of a GARCH process may lead to
sample estimates of Γ̂0 and Γ̂1 that do no necessarily guarantee that P̂ has no eigenvalues
on the unit circle. This is especially true when the process is close to a non-invertible
one. When B̂ has unimodular eigenvalues the invertibility condition does not hold. In
addition the following theorem sheds light on the consequences of having eigenvalues
lying on the unit disk.

Theorem 9. The following results hold.

1. If P has no eigenvalues lying on the unit circle, then there exist unique solutions
B and Σ, where Σ = ΣT and |λ| < 1 for each eigenvalue λ of B, and they can be
computed with the above procedure.

2. If P has eigenvalues lying on the unit circle, then B and a positive definite Σ satis-
fying (5) exist only if some strong additional conditions are satisfied (in particular,
all unimodular eigenvalues should have even multiplicity). In this case, B always
has unimodular eigenvalues.

A full proof is more technical than those for the other linear algebra results that we
reported; we omit it and refer to Engwerda et al. [1993] for a complete presentation.
However, the last assertion is clear in view of our derivation: since the eigenvalues of
B are a subset of those of P , B cannot have all its eigenvalues inside the unit circle
if P has less than d̄ eigenvalues in that domain. If the existence conditions are not
satisfied, we can still compute solutions B with ρ(B) = 1 with the procedure of Section 3;
there are multiple solutions, according to which unimodular eigenvalues we choose, but
none of them will result in a symmetric Σ. Ad-hoc modifications of P can be made
when unimodular eigenvalues are detected, but in general the accuracy of the computed
solution is expected to decrease. Indeed, we show in Appendix B that the derivative of
B with respect to the moments can become unbounded when it has eigenvalues equal
to 1.

We are currently working on developing a general procedure for computing a small-
norm modification of the M̂k that makes the estimated model invertible, rooted on results
in linear algebra and eigenvalue perturbation theory.

We point out that the same problem arises in the scalar case treated by Kristensen and Linton
[2006]: when (in our notation) Γ0/Γ1 > 2, the scalar quadratic equation (4) has two com-
plex conjugate solutions with modulus 1, and the procedure breaks down.
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A. Proofs
secproofs

Proof of Lemma 4

Proof. Using the fact that the (λi, ui) are generalized eigenvalues, one can check directly
that each column of the matrix

Γ1UD2 + Γ0UD + Γ T
1 U

is zero; therefore,

0 = (Γ1UD2 + Γ0UD + Γ T
1 U)U−1 = Γ (UDU−1)(UDU−1) + Γ0(UDU−1) + Γ T

1 ,

as required. For the converse implication, let BT = (UDU−1) be the spectral decom-
position of a solution; we can reverse all the steps and obtain that each (λi, ui) is a
generalized eigenpair.

Proof of Lemma 5

Proof. Let λ satisfy (13) for some choice of u 6= 0. Since Γ0, Γ1 are real, we can take the
complex conjugate of every term and get

(λ̄2Γ1 + λ̄Γ0 + Γ T
1 )ū = 0,

where λ̄ and ū denote (componentwise) complex conjugation. In particular, this implies
that

det(λ̄2Γ1 + λ̄Γ0 + Γ T
1 ) = 0.

Then the determinant of its conjugate transpose must be 0 as well, and thus

det(λ2Γ T
1 + λΓ0 + Γ1) = 0.

Multiply everything by 1
λ2 , to obtain

0 = det
1

λ2
(λ2Γ T

1 + λΓ0 + Γ1) = det

(

Γ T
1 +

1

λ
Γ0 +

(

1

λ

)2

Γ1

)

.

Since this determinant is zero, the matrix is singular and there must be a vector ũ such
that

(

Γ T
1 +

1

λ
Γ0 +

(

1

λ

)2

Γ1

)

ũ = 0.

But this equation shows that the pair
(

1
λ , ũ

)

is also a generalized eigenpair of the poly-

nomial eigenvalue problem.
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Proof of Lemma 6

Proof. 1. Let λ, u be a solution to (13). We may verify explicitly that the equation

[

0 I

−Γ −1
1 Γ T

1 −Γ −1
1 Γ0

] [

u
λu

]

= λ

[

u
λu

]

holds.

2. Let w be an eigenvector of P with eigenvalue λ, and partition it as

w =

[

u
v

]

.

From the eigenvalue condition Pw = λw we obtain

[

0 I

−Γ −1
1 Γ T

1 −Γ −1
1 Γ0

] [

u
v

]

= λ

[

u
v

]

.

Expanding the two blocks and eliminating v from the resulting equations, one gets
(13).

Proof of Lemma 8

The proof follows from some classical results in matrix polynomials that can be found,
for instance, in Gohberg et al. [1982]. We give the sketch of a self-contained proof here.
We start from a classical result in complex analysis, the Cauchy integral formula

1

2πi

∫

|z|=1
(z − λ)−1 dz =

{

1 |λ| < 1,

0 |λ| > 1.

From this, a matrix version of the same integral follows for diagonal matrices

1

2πi

∫

|z|=1
(zI − D)−1 dz = Π,

where Π is the diagonal matrix such that Πii is zero if |Dii| > 1 and one if |Dii| < 1. Now
a change of bases in both sides of the equation yields for all diagonalizable A without
unimodular eigenvalues

1

2πi

∫

|z|=1
(zI − A)−1 dz = ΠA, (14) intformula

with ΠA the projector on the invariant subspace of A associated to the eigenvalues inside
the unit circle.

We may generalize further this formula to all A without unimodular eigenvalues, re-
moving the diagonalizability of A from the requirements. Indeed, for a non-diagonalizable
A, let us consider a sequence of matrices Ak, each of them diagonalizable, that converge
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uniformly to A. Such a sequence exists because diagonalizable matrices are dense in
C

n×n. Since the integrand function is olomorphic on the integration contour, limits
and derivatives can be moved inside the integral. This shows that ΠA is an analytical
function of A.

In particular, we apply the formula for A equal to the 2d̄ × 2d̄ matrix P in (6), for
which ΠP has rank d̄ due to the eigenvalue pairing. Let us take any 2d̄ × d̄ matrix V

such that ΠP V has full rank and spans the range im ΠP . Since

[

I
BT

]

is another basis

for the same subspace, it follows that

BT =
([

0 Id̄

]

ΠP V
)([

Id̄ 0
]

ΠP V
)−1

. (15) BTformula

Since invertibility is a condition that holds on an open domain, (15) holds locally with
a constant V and provides an analytical expression for B in terms of ΠP and thus of P .
The matrix P is in turn a function of Γ0, Γ1.

B. Expressions for the derivatives
appDer

In this section, we give a computable form for the Jacobian of F : (h, M0, M1, M2) 7→
(c, A, B), the function considered in Theorem 2. Rather than using vectorization to give
an unwieldy matrix expression, we focus on describing its action as a linear map that
takes a first-order perturbation of the moments (denoted by (ḣ, Ṁ0, Ṁ1, Ṁ2)) to one of
the parameters (ċ, Ȧ, Ḃ). We shall use several times the expression for the derivative of
the matrix inverse d

dt(M
−1) = −M−1( d

dtM)M−1.
The relation between (ḣ, Ṁ0, Ṁ1, Ṁ2) and Γ̇0, Γ̇1 is easy to compute, by simply differ-

entiating (3):

Γ̇1 = Ṁ1 − Φ̇M0 − ΦṀ0,

Γ̇0 = Ṁ0 − Ṁ1ΦT − M1Φ̇T − Φ̇MT
1 − ΦṀT

1 + Φ̇M0ΦT + ΦṀ0ΦT + ΦM0Φ̇T ,
(16) der1

with Φ̇ = Ṁ2M−1
1 − M2M−1

1 Ṁ1M−1
1 = Ṁ2M−1

1 − ΦṀ1M−1
1 , obtained by differentiat-

ing (2) for k = 1.
We now differentiate (5) to obtain

Σ̇ − BΣ̇BT = Σ̇ − Γ1Σ−1Σ̇Σ−1Γ T
1 = Γ̇0 − Γ̇1Σ−1Γ T

1 − Γ1Σ−1Γ̇ T
1 = Γ̇0 + Γ̇1BT + BΓ̇ T

1 .
(17) der2

This is a discrete-time Lyapunov equation (see for instance Gajic and Qureshi [1995])
for Σ̇, which can be solved in closed form by vectorization or numerically by procedures
such as Matlab’s dlyap. The equation is uniquely solvable since we are assuming that
ρ(B) < 1.

Once we have Σ̇, we differentiate B = −Γ1Σ−1 to obtain

Ḃ = −Γ̇1Σ−1 + Γ1Σ−1Σ̇Σ−1 = −(Γ̇1 + BΣ̇)Σ−1. (18) der3
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The derivatives of the remaining two parameters are given by Ȧ = Φ̇ − Ḃ and ċ =
(I − Φ̇)h + (I − Φ)ḣ.

Putting together (16), (17), (18), one can get to an expression for (ċ, Ȧ, Ḃ) as a function
of (ḣ, Ṁ0, Ṁ1, Ṁ2). It does not look like there are any significant simplifications in the
resulting expressions. The main message to infer from this computation is that the norm
of (I − B ⊗ B)−1, which appears when solving the discrete-time Lyapunov equation, has
an impact on the magnitude of the derivatives; the closer B is to having unimodular
eigenvalues, the more ill-conditioned the solution becomes.
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