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Abstract

Splines are useful building blocks when constructing priors on nonparametric mod-
els indexed by functions. Recently it has been established in the literature that hier-
archical priors based on splines with a random number of equally spaced knots and
random coefficients in the B-spline basis corresponding to those knots lead, under
certain conditions, to adaptive posterior contraction rates, over certain smoothness
functional classes. In this paper we extend these results for when the location of the
knots is also endowed with a prior. This has already been a common practice in
MCMC applications, where the resulting posterior is expected to be more ”spatially
adaptive”, but a theoretical basis in terms of adaptive contraction rates was missing.
Under some mild assumptions, we establish a result that provides sufficient conditions
for adaptive contraction rates in a range of models.

Keywords:Adaptive estimation, bayesian non-parametric, optimal contrac-

tion rate, spline, random knots.

1 Introduction

The Bayesian approach in statistics has become quite popular in recent years as an al-
ternative to classical frequentist methods. The main appeal of the Bayesian methodology
is its conceptual simplicity: given a model for the observed data X ∼ Pf , f ∈ F , some
space of functions, put a prior on the unknown parameter f and draw inferences based on
the resulting posterior Π(f |X). Knowledge about the model under study can also be be
incorporated into the inference procedure via the prior. However, some seemingly ”cor-
rect” priors can lead to unreasonable posteriors, especially in nonparametric models. It is
therefore desirable to place ourselves in a setting where it is possible to assess the quality
of the resulting posterior from some objective point of view.

This gave rise to the development of the notion of contraction rate (cf. Ghosal et al.
(2000)), a Bayesian analog of a convergence rate: data is assumed to come from a fixed
probability measure P0 = Pf0 for a ”true” f0 ∈ F ; the contraction rate is then the smallest
radius such that the posterior mass in a Hellinger ball of probability measures around P0

converges to 1 in P0-probability as some information index such as a sample size goes to
infinity.

1

http://arxiv.org/abs/1303.3365v1


Some general results about posterior contraction rates establish sufficient conditions
on prior distributions such that the resulting posteriors attain a certain contraction rate.
In this spirit, when studying specific priors, some authors now choose to present their re-
sults in the form of say meta-theorems which claim that sufficient conditions (such as the
ones in Ghosal et al. (2000)) required to attain a certain range of contraction rates hold
for their choice of prior; cf. de Jonge and van Zanten (2012), Shen and Ghosal (2012),
van der Vaart and van Zanten (2008) and further references therein. We adopt this prac-
tice here as well.

In the case where f0 is a function from some functional space of smoothness α, the
posterior contraction rate is typically compared to the convergence rate of the minimax
risk (called optimal rate) over that space in the estimation problem. For example, if we
observe a sample of size n and want to estimate a univariate α-smooth function (e.g.,
density or regression function), the typical optimal rate is of order n−α/(2α+1), possibly up
to a logarithmic factor depending on the risk function. If the smoothness parameter α is
unknown, and one wants to build estimators which attain the optimal rate corresponding
to α but do not depend explicitly on α, one speaks of an adaptation problem. In a
Bayesian context, the adaptation problem consists in finding a prior which leads to the
optimal posterior contraction rate (usually up to a logarithmic factor) for any α-smooth
function of interest and does not depend on the smoothness parameter α. Such priors
are called rate adaptive. There is a growing number of papers, where this problem has
been studied in different settings; cf. de Jonge and van Zanten (2012), Shen and Ghosal
(2012), van der Vaart and van Zanten (2008), van der Vaart and van Zanten (2009) and
Belitser and Ghosal (2003) among others.

Splines, in particular, can be used when constructing adaptive priors. A spline (cf.
de Boor (1978)) is a piecewise polynomial function designed to have a certain level of
smoothness which is referred to as its order. Splines are easy to store, differentiate, inte-
grate and evaluate on a computer, and are extensively used in practice for constructing
good, parsimonious approximations of smooth functions. The points at which the differ-
ent polynomial pieces of a spline connect are called knots. If an order (read: maximal
polynomial degree) and a set of knots is fixed, then the space of all splines with that order
and those knots forms a linear space which admits a basis of so called B-splines. Any
spline of a fixed order is consequently characterized by a set of knots and its coordinates
in the B-splines basis corresponding to those knots. Randomly generating a number of
knots and, given those, generating random coordinates in the corresponding B-spline basis
with equally spaced knots results in a random spline whose law can be used as a prior. If,
given the number of knots, the coordinates in the corresponding B-spline basis are chosen
to be independent and normally distributed, then the resulting spline has a conditionally
Gaussian law and was studied by de Jonge and van Zanten (2012) by using Reproducing
Kernel Hilbert Space techniques. Shen and Ghosal (2012) propose a more general, random
series prior: the coefficients in the series are not necessarily independent or Gaussian and
a basis other than the B-spline basis can also be used.

The case where the locations of the knots are also random is not covered by the results
of either de Jonge and van Zanten (2012) or Shen and Ghosal (2012). However when prac-
titioners put a prior on the number of knots they almost invariably also put a prior on the
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locations of the knots (e.g., Denison et al. (1998), Di Matteo et al. (2001), Sharef et al.
(2010)) – a Poisson process is a popular choice. Their motivation for allowing arbitrarily
located knots seems to be twofold. Firstly, this is attractive from the implementation
point of view: designing reversible jump MCMC samplers is much simpler if any collec-
tion of knots is allowed since new knots can be inserted at arbitrary positions causing only
localized changes in the spline. Secondly, the resulting posterior based on the prior with
random locations of the knots is expected to be more ”spatially adaptive”: the function of
interest may not have a fixed level of smoothness throughout its support, it may consist
of rough and smooth pieces. To sustain an adequate level of accuracy over the whole
support, more knots are needed in rough pieces and less in smooth ones. Therefore, to
make it at least possible for the resulting posterior to pick up eventual spatial features of
the function, the prior has to be flexible enough to model random locations of the knots.

In this paper, we extend the results of de Jonge and van Zanten (2012), and those of
Shen and Ghosal (2012) in respect to the prior with random knots: we add one more
level to the hierarchical spline prior by putting a prior on the location of the knots of
the spline as well, making, in fact, the basis functions also random. Under some mild
assumptions on the proposed hierarchical spline prior, we establish our main result for the
proposed prior, providing sufficient conditions for adaptive, optimal contraction rates of
the resulting posterior in a range of models (among others: density estimation, nonpara-
metric regression, binary regression, Poisson regression, and classification). In doing so,
we provide a theoretical basis for the common practice of using randomly located knots
in spline based priors.

2 Notation and preliminaries on splines

First we introduce some notation. For d ∈ N and 1 ≤ p < ∞ denote by ‖x‖p =
(
∑d

i=1 |xi|
p
)1/p

the lp-norm of x = (x1, . . . , xd) ∈ R
d and by ‖x‖∞ = maxi=1,...,d |xi|.

For 1 ≤ p < ∞ let the Lp-norm of a function f on [0,1] be ‖f‖p =
( ∫ 1

0 |f(x)|p dx)1/p and
‖f‖∞ = supx∈[0,1] |f(x)|.

We use . (respectively &) to denote smaller (respectively greater) or equal up to a
constant, the symbols a∨ b and a∧ b stand for max{a, b} and min{a, b} respectively. The
covering number N(ǫ, S, d) of a subset S of a metric space with balls of size ǫ is the smallest
number of balls (with respect to distance d) of radius ǫ needed to cover S.

Now we provide some preliminaries on splines, which can be found, for example, in
Schumaker (2007). A function is called a spline is of order q ∈ N, with respect to a certain
partition of its support, if it is q− 2 times continuously differentiable and when restricted
to each interval in this partition, coincides with a polynomial of degree at most q − 1.
Consider q ∈ N, q ≥ 2, which will be fixed throughout the remainder of this text. For any
j ∈ N, such that j ≥ q let Kj = {(k1, . . . , kj−q) ∈ (0, 1)j−q : 0 < k1 < · · · < kj−q < 1}.
We will refer to a vector k = kj ∈ Kj as a set of inner knots; the index j in kj will
sometimes be used to emphasize the dependence on j. A vector k ∈ Kj will be said to
induce the partition

{

[k0, k1), [k1, k2), . . . , [kj−q, kj−q+1]
}

, with k0 = 0 and kj−q+1 = 1.

For any k ∈ Kj we will call M(k) = maxj−q+1
i=1 |ki − ki−1| the mesh size of the partition
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induced by k and m(k) = minj−q+1
i=1 |ki − ki−1| the sparseness of the partition induced by

k. For a k ∈ Kj , denote by Sk = Sk
q the linear space of splines of order q on [0, 1] with

simple knots k (see the definition of knot multiplicity in Schumaker (2007)). This space
has dimension j and admits a basis of so called B-splines {Bk

1 , . . . , B
k
j }. The construction

of {Bk
1 , . . . , B

k
j } involves the knots k−q+1, . . . , k−1, k0, k1, . . . , kj−q, kj−q+1, kj−q+2, . . . , kj ,

with arbitrary extra knots k−q+1 ≤ · · · ≤ k−1 ≤ k0 = 0 and 1 = kj−q+1 ≤ kj−q+2 ≤ · · · ≤
kj. Usually one takes k−q+1 = · · · = k−1 = k0 = 0 and 1 = kj−q+1 = · · · = kj , and we
adopt this choice here as well. These basis functions are nonnegative: Bk

i (x) ≥ 0, for all
x ∈ [0, 1]. Besides, they have local support and form a partition of unity:

Bk

i (x) = 0 for x 6∈ [k−q+i, ki],

j
∑

i=1

Bk

i (x) = 1 for all x ∈ [0, 1]. (1)

To refer explicitly to the coordinates a = (a1, . . . , aj) ∈ R
j of a spline on a specific

B-spline basis with inner knots k, we write sa,k(x) =
∑j

i=1 aiB
k
i (x), x ∈ [0, 1]. Since

∑j
i=1B

k
i (x) = 1, it is easy to see that for any sa,k, sb,k ∈ Sk

q

‖sa,k − sb,k‖2 ≤ ‖sa,k − sb,k‖∞ ≤ ‖a− b‖∞ ≤ ‖a − b‖2. (2)

Splines have good approximation properties for sufficiently smooth functions provided
they are defined on a partition with appropriately small mesh size. We say that a function
f on [0, 1] belongs to a generic smoothness class Fα, α > 0, if for any set of inner knots k
there exists a spline sa,k ∈ Sk

q such that for some bounded Cf

‖f − sa,k‖∞ ≤ CfM
α(k). (3)

We will also be assuming that Fα is contained in a Lipschitz class: Fα ⊆ L(κα, Lα) = {f :
|f(x1)− f(x2)| ≤ Lα|x1 − x2|

κα , x1, x2 ∈ [0, 1]} for some κα, Lα > 0.
A leading example of a smoothness class Fα is the Hölder space Hα = Hα(L, [0, 1]),

0 < α ≤ q, which is the collection of all functions f that have bounded derivatives up
to order α0 = ⌊α⌋ = max{z ∈ Z : z < α} and such that the α0-th derivative satisfies
the Hölder condition |f (α0)(x) − f (α0)(y)| ≤ L|x − y|α−α0 , for L > 0 and x, y ∈ [0, 1]. In
this case, a well-known spline approximation result (cf. de Boor (1978)) claims that (3)
holds with Cf = Cq‖f

(α)‖∞ for some constant Cq depending only on q. Other examples
of smoothness classes for which the approximation property (3) hold, include α-times
continuously differentiable functions, Sobolev and Besov spaces; cf. Theorems 6.21, 6.25
and 6.31 in Schumaker (2007).

3 Main Result

We begin by describing a hierarchical prior on S = Sq = ∪∞
j=q ∪k∈Kj

Sk
q : first draw a

number J ∈ N, J ≥ q; then, given J , generate independently (J − q) inner knots KJ ∈ Kj

and also independently, J B-spline coefficients θ ∈ R
J . Our prior on S will be the law of
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the random spline sθ,KJ
. We impose the following conditions on this prior. For c1, c2 > 0,

0 ≤ t1, t2 ≤ 1 and all sufficiently large j,

P(J > j) . exp
(

− c1j log
t1 j

)

, (4)

P(J = j) & exp
(

− c2j log
t2 j

)

. (5)

For some τ ≥ 1, c3 > 0, 0 ≤ t3 ≤ 1, and all j ≥ q,

P
(

m(Kj) < δ(j)|J = j
)

= 0, (6)

P
(

M(Kj) ≤ τ/j|J = j
)

& exp
(

− c3j log
t3 j

)

, (7)

where δ(i) is a positive, strictly decreasing function on N. Without loss of generality
assume that δ(i) ≤ 1, i ∈ N. For each j ≥ q, the conditional distribution of θ ∈ R

j

satisfies the following condition: for any M > 0 there exists c0 = c0(M) such that

P
(

‖θ − θ0‖∞ ≤ ǫ|J = j
)

& exp
(

− c0j log(1/ǫ)
)

(8)

for all ǫ > 0 and all θ0 ∈ R
j such that ‖θ0‖∞ ≤ M .

For examples of particular choices on the components of our hierarchical prior which
verify these conditions we refer the reader to Section 5.

Denote Cj(M) = [−M,M ]j . The following theorem is our main result.

Theorem 1. Let ‖f0‖∞ < M and f0 ∈ Fα so that (3) holds with Cf0 . Let ǫn, ǭn be two
positive sequences such that ǫn ≥ ǭn, ǫn → 0 as n → ∞ and nǭ2n > 1. Assume that there
exist sequences Jn, J̄n > q, Mn > 0 and a constant cM ≥ c1 satisfying:

Jn log
[Jn(Mn ∨ 1)

ǫnδ(Jn)

]

. nǫ2n, (9)

nǭ2n
logt1 Jn

≤ Jn, P
(

θ 6∈ Cj(Mn)|J = j
)

. exp(−cMnǭ2n), q ≤ j ≤ Jn, (10)

[ ǭn
ταCf0

]−1/α
≤ J̄n, logt2∨t3 J̄n . log

1

ǭn
. (11)

Let Sn = ∪Jn
j=q ∪k∈K

δ(j)
j

{

sθ,k ∈ Sk
q : ‖θ‖∞ ≤ Mn

}

, where Kδ
j = {k ∈ Kj : m(k) > δ}.

Then it holds that

logN(ǫn,Sn, ‖ · ‖2) . nǫ2n, (12)

P
(

sθ,KJ
6∈ Sn

)

. exp
(

− c1nǭ
2
n

)

, (13)

P
(

‖sθ,KJ
− f0‖∞ ≤ 2ǭn

)

& exp
{

− (c0(M) + c2 + c3)J̄n log(1/ǭn)
}

. (14)

Remark 1. Consider constants c4, c5 > 0 and a function δ(·) as above. If condition (6)
is replaced by

Jn
∑

j=q

P
(

J = j
)

P
(

m(Kj) < δ(j)|J = j
)

≤ c5 exp(−c4n), (6’)

then the conclusions of Theorem 1 remain valid so long as Jn is a sequence satisfying (9)
and (10) (cf. Section 5 and Remark 4 for a comparison of (6) and (6’).)
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Proof. First we establish (12). Let Ln(j) = 4Mnj(q + 1)(δ(j))−(q+1) and j > q. Let
{θ1, . . . ,θm1} be an ǫn/2-net of the set {θ ∈ R

j : ‖θ‖∞ ≤ Mn} and let {x1, . . . ,xm2}
be an ǫn/(2Ln(j))-net of {x ∈ R

j−q : x ∈ (0, 1)j−q}, both with respect to the ‖ · ‖∞-
norm. Then, by using (2) and Lemma 2 (Lemma 2 is applicable since ǫn/(2Ln(j)) ≤
δ(j) for sufficiently large n), {sθk,xl

, k = 1, . . . ,m1, l = 1, . . . m2} forms an ǫn-net of
∪
k∈K

δ(j)
j

{

sθ,k ∈ Sk
q : ‖θ‖∞ ≤ Mn

}

with respect to the ‖ · ‖∞-norm. By using this fact, we

obtain

N
(

ǫn,Sn, ‖ · ‖2
)

≤ N
(

ǫn,Sn, ‖ · ‖∞
)

≤

Jn
∑

j=q

N
(

ǫn,∪
k∈K

δ(j)
j

{

sθ,k ∈ Sk

q : ‖θ‖∞ ≤ Mn

}

, ‖ · ‖∞

)

≤

Jn
∑

j=q

[

N
(ǫn
2
,
{

θ ∈ R
j : ‖θ‖∞ ≤ Mn

}

, ‖ · ‖∞

)

N
( ǫn
2Ln(j)

, (0, 1)j−q, ‖ · ‖∞
)]

≤ Jn

[2(Mn ∨ 1)

ǫn

]Jn[2Ln(Jn)

ǫn

]Jn−q
≤ Jn

(16(q + 1)(Mn ∨ 1)2Jn
ǫ2n(δ(j))

q+1

)Jn
.

The last relation and (9) imply (12):

logN
(

ǫn,Sn, ‖ · ‖2
)

. Jn log
[Jn(Mn ∨ 1)

ǫnδ(Jn)

]

. nǫ2n.

Now we check (13). From the definition of Sn, the relations (4), (6) and (10), it follows
that

P
(

sθ,KJ
6∈ Sn

)

≤ P
(

J > Jn
)

+

Jn
∑

j=q

P
(

J = j
)

P
(

m(Kj) < δ(j)|J = j
)

+
Jn
∑

j=q

P
(

J = j
)

P
(

θ 6∈ Cj(Mn)|J = j
)

. exp
{

− c1Jn log
t1 Jn

}

+ 0 + exp
{

− cMnǭ2n
}

. exp
{

− c1nǭ
2
n

}

.

It remains to prove (14). First note that, by using (3) and (11), for all j ≥ J̄n and

for all sets of knots kj ∈ Kj such that M(kj) ≤ τ/j, there exists a spline sθ0,kj
∈ S

kj
q (of

course, θ0 = θ0(kj) = θ0(kj , f0)) such that

‖f0 − sθ0,kj
‖∞ ≤ Cf0M

α(kj) ≤ Cf0τ
αJ̄−α

n ≤ ǭn. (15)

Since ‖f0‖∞ < M and J̄n must grow with n in view of (11), it follows from Lemma 3
and (15) ‖θ0(kj)‖∞ ≤ M for all kj ∈ Kj such that M(kj) ≤ τ/J̄n for j ≥ J̄n.

Introduce the events: Ej
1 = {M(Kj) ≤ τ/j}, Ej

2 = {‖f0 − sθ0(Kj),Kj
‖∞ ≤ ǭn},

Ej
3 = {‖θ0(Kj)− θ‖∞ ≤ ǭn}, E

j
4 = {‖f0 − sθ,Kj

‖∞ ≤ 2ǭn} and Ej
5 = {‖θ0(Kj)‖∞ ≤ M}.
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Using the argument from the previous paragraph, the triangle inequality, (2) and (15), we
obtain that

EJ̄n
1 ⊆ EJ̄n

2 , EJ̄n
1 ⊆ EJ̄n

5 , Ej
2 ∩ Ej

3 ⊆ Ej
4, j ≥ q. (16)

Combining (5), (7), (8), (11) and (16), we prove (14):

P
(

‖sθ,KJ
− f0‖∞ ≤ 2ǭn

)

= P(EJ
4 ) ≥ P(J = J̄n)P

(

EJ̄n
4 |J = J̄n)

≥ P(J = J̄n)P
(

EJ̄n
2 ∩ EJ̄n

3 |J = J̄n)

≥ P(J = J̄n)P
(

EJ̄n
1 ∩ EJ̄n

3 ∩ EJ̄n
5 |J = J̄n

)

= P(J = J̄n)E
[

P
(

EJ̄n
1 ∩ EJ̄n

3 ∩ EJ̄n
5 |J = J̄n,KJ̄n

)]

= P(J = J̄n)E
[

I{KJ̄n ∈ EJ̄n
1 ∩EJ̄n

5 }P
(

EJ̄n
3 |J = J̄n,KJ̄n

)]

≥ P(J = J̄n)P
(

EJ̄n
1 |J = J̄n

)

inf
‖θ0‖∞≤M

P
(

‖θ − θ0‖∞ ≤ ǭn|J = J̄n
)

& exp
(

− (c2 + c3)J̄n log
t2∨t3 J̄n

)

exp
(

− c0(M)J̄n log(1/ǭn)
)

& exp
(

− (c0(M) + c2 + c3)J̄n log(1/ǭn)
)

.

Remark 2. If the range of the underlying curve f0 is contained in some known interval
[a, b] ⊂ R, then, according to Lemma 3 and the proof of property (14), the prior on θ ∈ R

j

can be chosen to be supported on, say, [a − 1, b + 1]j so that (8) has to hold only for
θ0 ∈ [a− 1, b+ 1]j . Condition (10) will trivially be satisfied for Mn > (1− a) ∧ (b+ 1).

Remark 3. If (20) is assumed instead of (7), the proof of (14) can then be simplified a
lot, as in this case one can condition on the event {KJ̄n = k̄J̄n} so that θ0 = θ0(k̄J̄n)
becomes fixed and P(EJ

1 |J = J̄n,KJ̄n = k̄J̄n) = 1.

Remark 4. Condition (6) is used in the proof of Theorem 1 exclusively to enforce
∑J

j=q P
(

J = j
)

P
(

m(Kj) < δ(j)|J = j
)

to be zero. Inspection of the proof shows,
however, that it would suffice to require this sum to be upper-bounded by a multiple
of exp

{

− c1nǭ
2
n

}

. Although this would be a weaker requirement, typically the sequence
ǭn will depend on the unknown smoothness α. Note however that since ǫn ≥ ǭn and ǫn
will obviously be taken to converge to 0, then for large enough n, c1nǭ

2
n < n. This allows

the term
∑J

j=q P
(

J = j
)

P
(

m(Kj) < δ(j)|J = j
)

to be absorbed into the remaining terms

of the bound on P
(

sθ,KJ
6∈ Sn

)

in the proof. Consequently, as claimed, Theorem 1 also
holds if (6’) is assumed instead of (6).

4 Implications of the main result

We clarify now the relevance of our result. Consider a family of models P =
{

Pf : f ∈ FA

}

,
FA = ∪α∈AFα, with densities pf with respect to some common dominating measure.

Assume that we observe a sample X
(n) = (X1, . . . ,Xn) ∼ p

(n)
f0

, Xi
ind
∼ pf0 , f0 ∈ Fα for

some unknown smoothness α ∈ A. The Bayesian approach consists of putting a prior
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measure Π on F ⊆ FA which, together with the likelihood p
(n)
f , leads to the posterior

distribution Π(·|X(n)) via Bayes’ formula:

Π
(

A|X(n)
)

=

∫

A p
(n)
f (X(n)) dΠ(f)

∫

F p
(n)
f (X(n)) dΠ(f)

for a measurable A ⊆ F . The asymptotic behavior of the posterior distribution can be
studied from the point of view of the probability measure P0 = Pf0 ; see Ghosal et al.
(2000).

For two densities pf and pg with f, g ∈ FA, define the (squared) Hellinger metric
h2(pf , pg) = 2

(

1−Eg

√

pf (X)/pg(X)
)

, Kullback-Leibler divergenceK(pf , pg) =−Eg log
(

pf (X)/pg(X)
)

and the Csiszár f- divergence V (pf , pg) = Eg log
2
(

pf (X)/pg(X)
)

. Define also the ball
B(ǫn, f0) =

{

f ∈ F : K(f, f0) ≤ ǫ2, V (f, f0) ≤ ǫ2
}

.
The following theorem is the main result of Ghosal et al. (2000) (for a version involv-

ing two sequences ǫn and ǭn cf. also Ghosal and van der Vaart (2001)) which makes a
statement about the asymptotic behavior of a posterior measure.

Theorem 2 (Theorem 2.1 of Ghosal et al. (2000)). Suppose that for two positive sequences
ǫn ≥ ǭn such that nǭ2n > 1 and ǫn → 0 as n → ∞, sets Fn ⊆ F and constants c1, c2, c3, c4 >
0, the following conditions hold:

logN
(

ǫn,Fn, h
)

≤ c1nǫ
2
n, (17)

Π(F\Fn) ≤ c2e
−(c3+4)nǭ2n , (18)

Π(B(ǭn, f0)) ≥ c4e
−c3nǭ2n . (19)

Then, for large enough M > 0, Π
(

f ∈ F : h(pf , pf0) ≥ Mǫn|X
(n)

)

→ 0 as n → ∞ in
Pf0-probability.

The conditions of this theorem require the existence of a sieve Fn with small entropy
(17) which contains most of the prior mass (18) and which enough prior mass around
the parameter f0 which indexes the ”true” underlying measure of the data. Assume now
that the models in P are such that for d2 being h2, K or V , d2(pf , pf0) . ‖f − f0‖

2
2.

If in addition one can prove that in the considered model h(pf , pf0) & ‖f − f0‖2, then
Theorem 2 delivers a contraction rate ǫn with respect to the L2-distance as well. Some
examples of models for which the above relations between norms can be established are,
among others, density estimation, non-parametric regression, binary regression, Poisson
regression and classification; cf. Ghosal et al. (2000), de Jonge and van Zanten (2012),
Shen and Ghosal (2012). In this case one can apply our meta-theorem (Theorem 1) to
obtain an adaptive contraction rate which essentially verifies (17)–(19) for our spline-based
prior. We summarize this in the following theorem.

Theorem 3. Let Π be the spline prior described in Section 3. Consider a family of
models P =

{

Pf : f ∈ FA

}

, FA = ∪α∈AFα, with densities pf with respect to some
common dominating measure. Assume also that the models in P are such that for d2
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being h2, K or V , d2(pf , pf0) . ‖f − f0‖
2
2. Take an i.i.d. sample X

(n) = (X1, . . . ,Xn),
Xi ∼ pf0, f0 ∈ Fα, ‖f0‖∞ < M , for some unknown smoothness α ∈ A. Consider a prior
Π which verifies (4) through (8) for certain constants c1, c2, c3, t1, t2 and t3. Assume also
that either α ≤ 1 or t2 ∧ t3 = 1.

Then, for large enough C > 0, Π
(

f ∈ F : h(pf , pf0) ≥ Cǫn|X
(n)

)

→ 0 as n → ∞ in

P0-probability for ǫn = C3n
−α/(2α+1)(log n)α/(2α+1)+(1−(t1∧t3))/2. If h(pf , pf0) & ‖f − f0‖2

then in the previous statement the Hellinger distance may be replaced by the L2 distance
and the statement remains valid.

Proof. We have that for some constant k > 0 and F = S, Fn = Sn,

N
(

ǫn,Fn, h
)

≤ N(ǫn/k,Fn, ‖ · ‖2),

Π(F\Fn) = P
(

sθ,KJ
6∈ Fn

)

,

Π(B(ǭn, f0)) ≥ P
(

‖sθ,KJ
− f0‖∞ ≤ ǭn/k

)

.

The first inequality follows from the fact that by assumption h(pf , pg) ≤ k‖f − g‖2 and so
an ǫ/k cover of Fn according to ‖·‖2 induces an ǫ cover of Fn according to h. Then, since for
d2 being K or V , d2(pf , pf0) ≤ k‖f − f0‖

2
2, we have B(ǭn, f0) ⊃

{

f ∈ F : ‖f − f0‖2 ≤ ǫ/k
}

and the last inequality follows.
By assumption f0 ∈ Fα satisfies the conditions of Theorem 1; assume (3) holds for

some Cf0 . Consider then a prior that satisfies (4)–(8). Let us present a choice of quantities
Mn, δ(j), Jn, J̄n, ǫn and ǭn which meet conditions (9)–(11). First of all, sequence Mn can
be taken as a polynomial in n (for instance, for normal or exponential conditional priors
for θ ∈ R

j in (10)) and 1/δ(j) as a polynomial in j. Next, note that there is no J̄n that
satisfies (11) unless α ≤ 1 or t2 ∧ t3 = 1. If either α > 1 or t2 ∧ t3 < 1, then the best

possible choices are J̄n = τC
1/α
f0

(ǭn)
−1/α, ǭn = C1(log n/n)

α/(2α+1) for sufficiently large

C1, Jn = C2n
1/(2α+1)(log n)2α/(2α+1)−t1 for sufficiently large C2, and finally,

ǫn = C3n
−α/(2α+1)(log n)α/(2α+1)+(1−t1)/2

for sufficiently large C3. Since these quantities satisfy (9)–(11), Theorem 1 implies condi-
tions (12)–(14) for the quantities defined above. Finally, applying Theorem 2, we conclude
that the contraction rate of the resulting posterior is at most ǫn, which appears to be op-
timal (up to a logarithmic factor) in a minimax sense over the Hölder class Hα (also over
α-smooth Sobolev class).

Remark 5. A priori, it may be unknown whether α > 1 or not, or it may be simply known
that α ≤ 1. We can however always ensure the condition t2 ∧ t3 < 1 by an appropriate
choice of prior. For example, we take a geometric prior on J so that t2 = 0 and a prior on
Kj such that (20) (which implies (7)) holds with, say, t3 = 0.

Remark 6. The common practice, in applications, of endowing the location of the knots
with a Poisson point process prior results in a prior that does not verify assumption (6).
Assumption (6’), however, permits this so long as a large enough point mass is placed at
an equally spaced knot vector. This very simple modification assures that our Theorem 3
may be applied to show that these priors result in a rate adaptive posteriors.
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5 Examples of Priors

We give now examples of particular choices for the several components of our hierarchical
prior which verify conditions (4) through (8) and (6’).

As for the prior on the number of basis functions, assumptions (4) and (5) hold for
the geometric, Poisson and negative binomial distributions; cf. Shen and Ghosal (2012).
Assumption (8), on the other hand, will trivially hold if we assume, for example, the coor-
dinates of θ ∈ R

j to be (conditionally on J = j) independent and identically distributed
according to a density uniformly bounded away from zero on the interval [−M,M ].

There is an ample choice of priors on KJ , given J = j, which satisfy condition (6).
First note that this condition enforces the prior on the location of the knots, for each J = j,
to be such that, with probability 1, adjacent knots are at least δ(j) apart. The function
1/δ(j) can be taken as a polynomial in j of high degree which makes the requirement less
restrictive. If a certain sequence ǫn verifies the conditions of Theorem 1 then an increase
in the exponent of 1/δ(j) can be accommodated by making ǫn larger by a multiplicative
factor (cf. condition (9).)

A simple choice for the prior on KJ , given J = j, is to pick (j − q) knots uniformly at
random, without replacement, on a uniform δ(j)-sparse grid. This construction is possible
if δ is chosen in such a way that ⌊1/δ(j)⌋ > j − q for all j. Another example is to take,
for each j, the (j − q) inner knots in Kj to be generated sequentially in the following
way: add a knot K1 uniformly at random on the interval [δ(j), 1 − δ(j)], then a knot
K2 uniformly at random on the interval [δ(j), 1 − δ(j)]\(K1 − δ(j),K1 + δ(j)) and so on.
Finally, take the ordered Kj = (K(1), . . . ,K(j−q)). This construction is always possible if
1/δ(j) grows faster than 2(j − q+1). (If J is Poisson distributed, these points are simply
distributed like a homogeneous Poisson process, conditioned to have all points at least
δ(J) apart.) Note that for this construction, the probability P

(

m(Kj) > δ(j)|J = j
)

is at
least (1−2(j−q)δ(j))j−q which is very close to one if j is large and 1/δ(j) is a large power
of j, say. Clearly, condition (6) is satisfied for these two constructions since all prior mass
is concentrated on partitions with sparseness larger than δ(j).

It is also easy to see that condition (7) is verified for the knot vectors obtained from one
of these two constructions. In fact, condition (7) is trivially fulfilled if, for some 0 ≤ t3 < 1,

P(Kj = k̄j) & exp
(

− c3j log
t3 j

)

, (20)

where k̄j ∈ Kj is the set of (j−q) equally spaced inner knots. This suggests a mechanism to
assure that any prior which verifies (6) can be slightly modified to also verify (7): given J =
j, generate a Bernoulli random variable X with success probability, say, exp(−c3j log

t3 j);
if X = 1, then take Kj = k̄j, otherwise pick the knots in Kj according to any procedure
which verifies (6), for instance one of two procedures described above. The resulting prior
will trivially satisfy both (6) and (7).

Condition (6) necessarily excludes some partitions from the support of the prior (and
then also from the support of the posterior.) As mentioned before very few partitions will
be excluded so long as 1/δ(j) is a large enough power of j. It is nonetheless of interest
to design a weaker alternative for condition (6). Condition (6′) plays this role, in that
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it allows priors on K which have any partition of [0, 1] into non-empty intervals in its
support.

Assuming condition (6’) instead of (6) consequently allows us to put positive mass on
any vector of simple knots in a straightforward way: generate a Bernoulli random variable
with success probability 1 − c5 exp(−c4n); if X = 1 take Kj = k̄j , equally spaced; if
X = 0 then take an arbitrary Kj (for example independent, uniformly distributed points
on [0, 1].) So long as we take 1/δ(j) = j and τ ≥ q then conditions (6’) and (7) are
verified. This procedure, although simpler, does place little prior mass on knot vectors
with inhomogeneous distributions.

An alternative, less degenerate prior, which verifies (6’) and (7) can be obtained in the
following way: given J = j, first, generate a Bernoulli random variable X1 with success
probability c5 exp(−c4n); if X1 = 1 distribute the (j − q) knots arbitrarily; if X1 = 0
then generate another Bernoulli random variable X2 with success probability, exp(−j); if
X2 = 1 then take (j − q) equally spaced knots k̄j; If X2 = 0, then place the knots such
that (6) is verified. This procedure should allow good control on the prior on the knots
while not excluding any knot vectors.

Note that the priors described above which verify (4) through (8) do not depend on
the sample size n, as prescribed by the Bayesian paradigm. Condition (6’) is a weaker
requirement then condition (6) but it will, introduce a dependence on the sample size n
in the prior.

6 Technical results

In this section we collect some technical results. Lemmas 1 and 2 are needed to bound the
entropy number of the sieves Sn in Theorem 1. Lemma 3 claims in essence that if some
bounds on the range of the function f0 are known, then this knowledge can be incorporated
into the prior on the coefficients θ.

Theorem 4.26 of Schumaker (2007) claims that if all the inner knots of a B-spline are
simple, then the B-spline is continuous, uniformly over its support, with respect to its
knots. In Lemma 2 we establish a slightly stronger result (a Lipschitz-type property): if
we take two splines with the same coefficients in their respective B-spline basis, then the
L∞ distance between the splines can be bounded by a multiple of the l∞ distance between
the two sets of knots, as long as the sets of knots are sufficiently sparse. First, we present
a preliminary lemma. Denote the (r + 1)-th order divided difference of a function h over
the points t1, . . . , tr+1 as [t1, . . . , tr+1]h = ([t2, . . . , tr+1]h − [t1, . . . , tr]h)/(tr+1 − t1), with
[ti]h = h(ti). If t1 = · · · = tr+1 then [t1, . . . , tr+1]h = h(r)(t1)/r! for a function h with
enough derivatives at t1.

Lemma 1. Let i ∈ {1, . . . , r}, r ≥ 2, (k1, . . . , kr+1) ∈ (0, 1)r+1. Assume kv+1−kv > δ > 0
for v = 0, . . . , i − 1, i + 1, . . . , r and ki+1 − ki = 0. For fixed x ∈ [0, 1] take the function
h(y) = (x−y)q−1

+ with y ∈ [0, 1] and q ≥ 2. Then the divided difference
∣

∣[k1, . . . , kr+1]h
∣

∣ ≤
4/δr for x 6= ki.

Proof. Notice that |h′(y)| = (q − 1)(x − y)q−2
+ ≤ (q − 1) ≤ 1/δ for x 6= y, as q ≥ 2 and

thus δ < k2 − k1 < 1 ≤ 1
q−1 . Next, if v = i − 1,

∣

∣[kv+1, kv+2]h
∣

∣ = |h′(kv+1)| ≤ 1/δ;
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if v 6= i − 1,
∣

∣[kv+1, kv+2]h
∣

∣ = |h(kv+2) − h(kv+1)|/|kv+2 − kv+1| ≤ 2/δ. We conclude
∣

∣[kv+1, kv+2]h
∣

∣ ≤ 2/δ as long as x 6= ki.
For j = 2, . . . , r, define γj = minv=1,...,r+1−j |kv+j − kv | ≥ (j − 1)δ. Now we make use

of Theorem 2.56 from Schumaker (2007) and the previous bound:

∣

∣[k1, . . . , kr+1]h
∣

∣ ≤

r−1
∑

v=0

(

r − 1

v

)

∣

∣[kv+1, kv+2]h
∣

∣

γ2 . . . γr
≤

2r

(r − 1)!δr
≤

4

δr

holds for all x 6= ki. This completes the proof of the Lemma.

Lemma 2. Let θ ∈ R
j satisfies ‖θ‖∞ ≤ M and let k,k′ ∈ Kδ

j = {k ∈ Kj : m(k) > δ} be

such that ‖k−k
′‖∞ ≤ δ. Then ‖sθ,k−sθ,k′‖∞ ≤ L‖k−k

′‖∞, for L = 4j(q+1)Mδ−(q+1).

Proof. Define k
l = (kl1, . . . , k

l
j−q) = (k′1, . . . , k

′
l, kl+1, . . . , kj−q) for l = 0, . . . , j − q, such

that k0 = k and k
j−q = k

′. We get

∥

∥sθ,k − sθ,k′

∥

∥

∞
=

∥

∥

∥

j
∑

i=1

θiB
k
0

i −

j
∑

i=1

θiB
k
j−q

i

∥

∥

∥

∞
≤ M

∥

∥

∥

j
∑

i=1

(Bk
0

i −Bk
j−q

i )
∥

∥

∥

∞

≤ jM max
1≤i≤j

∥

∥Bk
0

i −Bk
j−q

i

∥

∥

∞
≤ jM max

1≤i≤j

j−q−1
∑

l=0

∥

∥Bk
l

i −Bk
l+1

i

∥

∥

∞

≤ (q + 1)jM max
1≤i≤j

max
0≤l≤j−q−1

∥

∥Bk
l

i −Bk
l+1

i

∥

∥

∞
,

The last inequality follows from (1) and the fact that the inner knots of Bk
l

i and Bk
l+1

i

differ only at the (l + 1)-th entry.
Theorem 4.27 of Schumaker (2007) gives explicit expressions for the derivative of a

B-spline with respect to one of its knots. These expressions are in terms of the divided
differences which satisfy the conditions of Lemma 1, so that combining this with Lemma
1 for r = q + 1 (the maximal number of knots in the support of a B-spline) yields that
this derivative is bounded in absolute value by 4δ−(q+1), except at x = kll+1, where it

is not defined. Then, as ‖kl − k
l+1‖∞ ≤ ‖k − k

′‖∞, we obtain that, for x 6= kll+1,
l = 0, . . . , j − q − 1,

∣

∣Bk
l

i (x)−Bk
l+1

i (x)
∣

∣ ≤ |kl+1
l+1 − kll+1| sup

kl
l+1∈(0,1)

∣

∣

∣

∂Bk
l

i (x)

∂kll+1

∣

∣

∣
≤

4‖k − k
′‖∞

δq+1
.

Since splines are continuous for all q > 1, so is sθ,k − sθ,k′ and we conclude that the same
bound must also hold for x = kll+1. Combining the above two relations concludes the
proof.

The properties of B-splines allow to relate the range of the coefficients of the approxi-
mating spline to the range of the approximated function. The following lemma generalizes
Lemma 1 of Shen and Ghosal (2012) for non-equally spaced knots.
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Lemma 3. Let f ∈ Fα (so that (3) holds), a < b, ε > 0. Assume that f(x) ∈ [a+ ε, b− ε]
for all x ∈ [0, 1]. Then there exits a positive constant δ = δ(Fα, ε) such that for any
k ∈ Kj , j ≥ q, such that M(k) ≤ δ, the coefficients a of the approximating spline sa,k in
(3) can be taken to be contained in (a, b).

Proof. Fix q, j and inner knots k, assume I = [a, b], a < b and a+ ε < f < b− ε, for some
ε > 0.

We use results from section 4.6 of Schumaker (2007) on dual basis of B-splines. If
Bk

1 , . . . , B
k
j is the B-spline basis associated with the inner knots k, then there exists a

dual basis λ1, . . . , λj of linear functionals such that, for each i, r = 1, . . . , j, λrB
k
i = 1

if i = r and is 0 otherwise. As a consequence, we obtain that λisa,k = ai, and since
∑j

i=1B
k
i (x) = 1, it follows that λic = c for any constant c and all i = 1, . . . , j. This dual

basis is not necessarily unique and, according to Theorem 4.41 from Schumaker (2007),
can be taken such that |λif | ≤ C1 supx∈Ii |f(x)| where Ii represents the support of Bk

i

and constant C1 depends only on q. Each Ii consists of at most q adjacent intervals in the
partition induced by k and thus the length of Ii is bounded by qM(k).

Let sa,k be such that (3) is fulfilled for f . Then for any constant c

|ai − c| =
∣

∣λisa,k − λif + λif − c
∣

∣ ≤
∣

∣λi(sa,k − f)|+ |λi(f − c)
∣

∣

≤ C1CfM
α(k) + C1 sup

x∈Ii

|f(x)− c|.

Take c = infx∈Ii f(x) and recall that f ∈ Fα ⊆ L(κα, Lα). Using the Lipschitz property, we
derive that supx∈Ii |f(x)− c| = supx∈Ii f(x)− infx∈Ii f(x) ≤ Lα(qM(k))κα and therefore

|ai − inf
x∈Ii

f(x)| ≤ C1CfM
α(k) + C1Lα(qM(k))κα ≤ C2M

α∧κα(k).

In the same way, if we take c = supx∈Ii f(x), we derive that supx∈Ii |f(x)−c| ≤ Lα(q M(k))κα

and thus
∣

∣ai − supx∈Ii f(x)
∣

∣ ≤ C2M
α∧κα(k).

Now for δ = (ε/(2C2))
1/(α∧κα) conclude that if M(k) ≤ δ, then ai ≥ infx∈Ii f(x) −

C2M
α∧κα(k) ≥ infx∈Ii f(x)−ε/2 > a. For the same choice of δ we have ai ≤ supx∈Ii f(x)+

C2M
α∧κα(k) ≤ supx∈Ii f(x) + ε/2 < b.

References

Belitser, E. and Ghosal, S. (2003). “Adaptive Bayesian inference on the mean of an
infinite-dimensional normal distribution.” Ann. Statist., 31(2): 536–559.

de Boor, C. (1978). A practical guide to splines. Springer-Verlag, New York.

de Jonge, R. and van Zanten, H. (2012). “Adaptive estimation of multivariate functions
using conditionally Gaussian tensr-product spline priors.” pre-print .

Denison, D., Mallick, B., and Smith, A. (1998). “Bayesian MARS.” Statistics and Com-
puting , 8: 337–346.

13



Di Matteo, I., Genovese, C., and Kaas, R. (2001). “Bayesian curve-fitting with free-knot
splines.” Biometrika, 88(4): 1055–1071.

Ghosal, S., Ghosh, J., and van der Vaart, A. (2000). “Convergence rates of posterior
distributions.” Ann. Statist., 28(2): 500–531.

Ghosal, S. and van der Vaart, A. (2001). “Entropies and Rates of Convergence for Maxi-
mum Likelihood and Bayes Estimation for Mixtures of Normal Densities.” Ann. Statist.,
29(5): 1233–1263.

Schumaker, L. (2007). Spline functions: basic theory . John Wiley & Sons, New York.

Sharef, E., Strawderman, R., Ruppert, D., Cowen, M., and Halasyamani, L. (2010).
“Bayesian adaptive B-spline estimation in proportional frailty models.” Electron. J.
Stat., 4: 606–642.

Shen, W. and Ghosal, S. (2012). “MCMC-free adaptive Bayesian procedures using random
series prior.” pre-print .

van der Vaart, A. and van Zanten, H. (2008). “Rates of contraction of posterior distribu-
tions based on Gaussian process priors.” Ann. Statist., 36(3): 1435–1463.

van der Vaart, A. W. and van Zanten, J. H. (2009). “Adaptive Bayesian Estimation Using
A Gaussian Random Field With Inverse Gamma Bandwidth.” Ann. Statist., 37(5B):
2655–2675.

14


	1 Introduction
	2 Preliminaries
	3 Main Result
	4 Implications
	5 Examples
	6 Technical results

