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Abstract: We study the problem of quantile estimation in deconvolution with ordinary
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1. Introduction

Let X1, . . . , Xn be a sequence of independent identically distributed random variables with a
common Lebesgue density f : R → R. Suppose that we observe random variables Y1, . . . , Yn,
n ∈ N, given by

Yj = Xj + εj , j = 1, . . . , n, (1)

where εj are i.i.d. random variables, independent of (Xj) with the Lebesgue density fε. For τ ∈
(0, 1) the objective is to estimate the τ -quantile of the population X given by

qτ = argmin
η∈R

∫ ∞

−∞

ρτ (x− η)f(x) dx with ρτ (x) = x(τ − 1l{x60}) (2)

from the observations Y1, . . . , Yn. Note that with the above definition of ρτ , a finite first moment
of Xj would be necessary. To avoid this assumption, ρτ (x, η) = τ

(
(x− η)+ − x+

)
+ (1− τ)

(
(x−

η)− − x−
)
, for x, η ∈ R, can be used instead of ρτ (x− η) in (2) .

Assuming that the distribution of the measurement error is completely known, Carroll and Hall
(1988) have constructed a kernel density estimator based on the empirical characteristic function
ϕn(u) :=

1
n

∑n
j=1 e

iuYj , u ∈ R. In practice, however, the distribution of the measurement error is
usually not known. Instead, we assume that we have at hand a sample from fε given by

ε∗1, . . . , ε
∗
m, m ∈ N . (3)
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Motivated from applications, we will not assume that the observations (ε∗k) are independent from
(Yj). In particular, our procedure applies to the experiment setup of repeated measurements, which
we will discuss below.

We define the Fourier transform of g ∈ L1(R) ∪ L2(R) by F g(u) :=
∫
R
eiuxg(x) dx for u ∈

R. Based on the classical kernel estimator, Neumann (1997) has proposed the following density
estimator for unknown error distributions

f̃b(x) := F−1
[ϕn(u)ϕK(bu)

ϕε,m(u)

]
(x), x ∈ R, (4)

where ϕK is the Fourier transform of the kernel K, b > 0 is the bandwidth and the character-
istic function of the error distribution ϕε is estimated by its empirical counterpart ϕε,m(u) :=
1
m

∑m
k=1 e

iuε∗k , u ∈ R. Obviously, f̃b depends on the sample sizes n and m which is suppressed in
the notation. Applying a plug-in approach, our estimator for the quantile qτ is then given by the
quantile of the estimated density

q̃τ,b = argmin
η∈R

M̃b(η) with M̃b(η) :=

∫ ∞

−∞

ρτ (x− η)f̃b(x) dx. (5)

Throughout the text we assume that ϕε(u) 6= 0, u ∈ R. In particular, in this work we are
interested in error distributions for which the characteristic function decays polynomially in its
tails. As shown by Fan (1991), these so-called ordinary smooth errors lead to mildly ill-posed
estimation problems.

Although the literature on deconvolution problems is extensive, the problem of adaptive
deconvolution with unknown measurement errors was only recently addressed. We refer to
Comte and Lacour (2011); Johannes and Schwarz (2010) and Kappus (2012) for adaptive decon-
volution of densities with unknown error distributions in the model selection framework. Minimax
results and other properties for non-adaptive methods are given in Neumann (1997), Meister
(2004), Neumann (2007), Delaigle, Hall and Meister (2008), Johannes (2009) among others. To
the best of our knowledge, the problem of quantile estimation in deconvolution was considered
only in Hall and Lahiri (2008). They constructed a non-adaptive quantile estimator for the case of
known error distributions. Unlike the estimator (2), their estimator is based on directly inverting
the distribution function estimator. Indeed, following the classical M-estimator analysis, the error
of the quantile estimator ( refeq:quantile) is directly related to that of the distribution function
estimator (cf. the error representation (8) below). However, the analysis of the later was not clear
until recently.

Fan (1991) constructed an estimator for the distribution function by integrating the density
deconvolution estimator. In order to perform an exact analysis of its variance a truncation of
the integral was required in the estimation procedure. This resulted in a non-optimal estimation
method for the case of ordinary smooth errors. Trying to circumvent this problem, Hall and Lahiri
(2008) as well as Dattner, Goldenshluger and Juditsky (2011) constructed a distribution decon-
volution estimator based on a direct inversion formula for distribution functions. Applying the
Fourier multiplier approach by Nickl and Reiß (2012), Söhl and Trabs (2012) have shown that the
integrated density estimator can estimate the distribution function with

√
n-rate under suitable

conditions. Still, they do not cover all cases where a parametric rate should be expected. So even
with a known error distribution, a rigorous answer to the following question was left open: can the
canonical plug-in estimator be used for minimax optimal distribution function estimation? Can
quantiles be estimated optimally by the plug-in approach, too?

To show that the answer to these question is ’yes’, we combine an exact analysis like the one by
Dattner, Goldenshluger and Juditsky (2011) together with abstract Fourier multiplier theory as
in Söhl and Trabs (2012). This combination yields the required minimax optimal results for the
distribution function and for quantiles. This closes the gap reported by Fan (1991) for distribution
deconvolution in the ordinary smooth case. Moreover, we show that the minimax optimal rates
still hold if the error distribution is unknown and has to be estimated, which is mathematically
challenging. Since the deconvolution operator F−1[1/ϕε] is not observable, we have to study the
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estimated counterpart F−1[ϕK(bu)/ϕε,m(u)]. As a random Fourier multiplier it preserves the
mapping properties of the deterministic F−1[1/ϕε], but its operator norm turns out to be (slightly)
larger.

We can summarize our main contributions as follows:

(i) The case of unknown error distributions is studied and minimax rates of convergence of
the estimator q̃τ,b are established. Unlike previous studies, we do not assume that the ob-
servations (ε∗k) are independent from (Yj). Moreover, all results carry over to the case of
deconvolution of distributions and quantiles under a known error distribution.

(ii) Using the Lepskĭı (1990) method, an adaptive version of the estimator q̃τ,b is constructed
whose convergence rates lose only a logarithmic factor compared to the oracle estimator.

(iii) Compared to previous results, the conditions on the density f are significantly weaker. In a
natural way, the rates depend only on the local Hölder smoothness of the density f around
the true quantile and the decay rate of ϕε. Neither tail conditions nor global smoothness
conditions on f are needed.

The rest of this paper is organized as follows. In Section 2 we establish the minimax properties
of the quantile estimator for both the known and unknown error distribution cases. The adaptive
estimation is developed in Section 3. In Section 4 we apply our estimation procedure in simulations
and a real data example. The proofs are postponed to the appendix.

2. Convergence rates

Before we start with the error analysis, let us describe the class of densities we are interested
in. Denoting 〈α〉 as the largest integer which is strictly smaller than α > 0, we define for some
function g and any possibly unbounded interval I ⊆ R the Hölder norm

‖g‖Cα(I) :=

〈α〉∑

k=0

‖g(k)‖∞ + sup
x,y∈I:x 6=y

|g〈α〉(x)− g〈α〉(y)|
|x− y|α−〈α〉

(6)

and with R > 0
Cα(I, R) :=

{
g ∈ C0(I)

∣∣‖g‖Cα(I) < R
}
,

where C0(I) is the space of all continuous and bounded functions on the interval I. Let F(R)
denote the set of all probability densities on the real line which are uniformly bounded by some
constant R > 0. Throughout, we consider for finite positive constants R, r, ζ and the smoothness
index α > 0 the class

Cα(R, r, ζ) :=
{
f ∈ F(R)

∣∣∣f has a τ -quantile qτ ∈ R such that

f ∈ Cα([qτ − ζ, qτ + ζ], R) and f(qτ ) > r
}
.

Note that the quantile qτ is unique given the assumption f(qτ ) > 0. Taking the derivative in (5)
and restricting to a growing interval, the estimator q̃b,τ can be defined as solution of the estimating
equation

0 = M̃ ′
b(η) =

∫ η

−∞

f̃b(x) dx − τ for some η ∈ [−Un, Un]. (7)

Throughout, let (Un) be a sequence of positive real numbers with Un → ∞ and which are of
the order logn. In view of finite computational time, any algorithm has to restrict to a bounded
interval. Since qτ is fixed for f ∈ Cα(R, r, ζ), the true quantile will be contained in this interval
for n sufficiently large. Equation (7) illustrates the relation to the approach by Hall and Lahiri

(2008) who invert the distribution function. However, without further assumptions f̃b will not be
integrable in general. As a key result in our analysis we state the following lemma. In particular,
it will be used to show that the integral in (7) is finite (cf. decomposition (10) below).
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In the sequel we use the Landau notation O and OP . For two sequences An(ϑ), Bn(ϑ) depending
on a parameter ϑ, An(ϑ) = OP (Bn(ϑ)) holds uniformly over a parameter set ϑ ∈ Θ if there is for
all c > 0 some C > 0 such that supϑ∈Θ Pϑ(An(ϑ) > CBn(ϑ)) < c. If An(ϑ)/Bn(ϑ) converges in
probability to zero, we write An(ϑ) = oP (Bn(ϑ)).

Lemma 2.1. Let E[|ε∗k|4] <∞ and assume for β+ > β > 0

|ϕε(u)|−1 = O
(
(1 + |u|)β

)
and |ϕ′

ε(u)| = O
(
(1 + |u|)−β−1

)

as well as mb2β+1 → ∞. Then there exists a random variable Eb = OP

(
1 ∨ 1

m1/2bβ+1

)
such that

for any s > 0 and for any f ∈ Cs+β
+

(R)

∥∥∥F−1
[ ϕK(bu)

ϕε,m(u)

]
∗ f

∥∥∥
Cs(R)

=
∥∥∥F−1

[ ϕK(bu)

ϕε,m(u)
F f(u)

]∥∥∥
Cs(R)

6 Eb‖f‖Cs+β+(R).

To prove this lemma, we will show that the linear map Cs+β
+

(R) ∋ f 7→
F−1

[
ϕK(bu)F f(u)/ϕε,m(u)

]
∈ Cs(R) is bounded. More precisely, the operator norm of the ran-

dom Fourier multiplier ϕK(bu)/ϕε,m(u) can be bounded by the random variable Eb. The condition
on the derivative ϕ′

ε is natural in the context of Fourier multipliers.
Given the assumptions of the lemma the right-hand side of (7) is finite and of course it is

continuous in η. Hence, the estimating equation always has a solution for Un large enough. It does
not have to be unique since f̃b is not necessarily non-negative. Nevertheless, any choice converges to
the true quantile, assuming the latter is unique. Recalling that we write ϕε := F fε, the conditions
in Lemma 2.1 motivate the definition of the class of error densities fε

Dβ(R, γ) :=
{
fε ∈ F(∞)

∣∣∣ 1R (1 + |u|)−β 6 | F fε(u)| 6 R(1 + |u|)−β ,

|(F fε)
′(u)| 6 R(1 + |u|)−1−β , ‖xγfε(x)‖L1 6 R

}

for some moment γ > 0 and we use the same constant R as above for convenience. The upper
bound for |ϕε(u)| in Dβ(R, γ) is only necessary for the adaptive estimation.

We will need some properties of the kernel to construct our estimator.

Assumption 1. Let the kernel K ∈ L1(R) satisfy

(i) suppF K ⊆ [−1, 1] and
(ii) K has order ℓ ∈ N, i.e., for k = 1, . . . ℓ

∫

R

K(x) dx = 1,

∫

R

xkK(x) dx = 0 and

∫

R

|K(x)||x|ℓ+1 dx <∞.

To control the estimation error of q̃τ,b, we follow the classical M-estimation approach, or more
precisely the Z-estimator approach (cf. van der Vaart (1998)). Let M(η) be the deterministic

counterpart of M̃b(η) defined in (5). The quantities q̃τ,b and qτ are given by the roots of the

derivatives M̃ ′
b and M

′, respectively. From the Taylor expansion 0 = M̃ ′
b(q̃τ,b) = M̃ ′

b(qτ ) + (q̃τ,b −
qτ )M̃

′′
b (q

∗
τ ) for some intermediate point q∗τ between qτ and q̃τ,b, we obtain

q̃τ,b − qτ = −
∫ qτ
−∞

(f̃b(x)− f(x)) dx

2f̃b(q∗τ )
. (8)

Hence, the error q̃τ,b− qτ is affected by the numerator and the denominator in this representation.
We now present two propositions that deal with these two terms. These propositions are intrinsic to
our analysis, but may also be of interest of their own. The first proposition deals with the numerator
in (8) and essentially establishes minimax rates of convergence for distribution deconvolution with
unknown error distributions. All convergence rates are determined by the minimum of the sample
size n of the observations Yj and of the sample size m of the observed errors ε∗k. Therefore, we

suppose n 6 m throughout. Note that the quotient in (8) might explode if f̃b(q
∗
τ ) becomes very

small for large stochastic error. Hence, we establish convergence rates as OP results.
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Proposition 2.2. Suppose that Assumption 1 holds with ℓ = 〈α〉 + 1 and let b∗n =
n−1/(2α+2(β∨1/2)+1). Then for any α > 1/2, β,R, r, ζ > 0 and γ > 4 we have uniformly over
f ∈ Cα(R, r, ζ) and fε ∈ Dβ(R, γ) as n→ ∞,

∣∣∣
∫ qτ

−∞

(f̃b∗n(x) − f(x)) dx
∣∣∣ = OP

(
ψn(α, β)

)
,

where

ψn(α, β) :=





n−1/2, for β ∈ (0, 1/2),

(logn/n)1/2, for β = 1/2,

n−(α+1)/(2α+2β+1), for β > 1/2.

(9)

In view of the lower bounds stated in Fan (1991), as long as n ≤ m, the rates above are optimal
and estimating the distribution function by integrating a density deconvolution estimator is a
minimax optimal procedure. Hence, this proposition closes the gap reported in Fan (1991) and
further extends the results to the case of unknown error distributions. In the studies of density
estimation with unknown error distribution, for instance Neumann (1997); Johannes (2009), the
sample size m of the error (ε∗k) can be of smaller order than the number n of the observations
(Yj) to obtain optimal rates. This is because the risk of estimating of ϕε profits from the decay of
the characteristic function of Xj. Assuming local regularity on f only, its Fourier transform will
not decay fast in general such that this effect does not occur. Consequently, it is natural that the
minimax rates are indeed determined by n ∧m (cf. the analysis of (27) below).

Next we would like to understand better the denominator of (8). Lounici and Nickl (2011)
proved uniform risk bounds for the deconvolution wavelet estimator on the whole real line. How-
ever, on a bounded interval, which is sufficient for our purpose, uniform convergence of the decon-
volution estimator f̃b can be proved more elementarily. Note that with bn = (logn/n)1/(2α+2β+1)

the following proposition yields the minimax rate (logn/n)α/(2α+2β+1) of the L∞-loss.

Proposition 2.3. Grant Assumption 1 with ℓ = 〈α〉. For any α, β,R, r, ζ > 0 and γ > 0 we have
uniformly over f ∈ Cα(R, r, ζ) and fε ∈ Dβ(R, γ) as n→ ∞,

sup
x∈(−ζ,ζ)

|f̃b(x+ qτ )− f(x+ qτ )| = OP

(
bα +

( logn

nb2β+1

)1/2)
.

In particular, if bn → 0 and nb2β+1
n / logn→ ∞ as n→ ∞, f̃bn is a uniformly consistent estimator.

The density deconvolution estimator is then locally uniformly consistent. The two propositions
above are the building blocks for the first main result of this paper established in the following
theorem.

Theorem 2.4. Suppose that Assumption 1 holds with ℓ = 〈α〉+1. Let q̃τ,b be the quantile estimator
defined in (5) associated with b∗n = n−1/(2α+2(β∨1/2)+1). Then for any α > 1/2, β,R, r, ζ > 0 and
γ > 4 we have uniformly over f ∈ Cα(R, r, ζ) and fε ∈ Dβ(R, γ) as n→ ∞,

|q̃τ,b∗n − qτ | = OP

(
ψn(α, β)

)

where ψn(α, β) is given in (9).

Remarks 2.5.

(i) Although we do not provide the lower bounds for quantile estimation, it is clear that the
above rate is the optimal. It is the same rate as the one achieved in Proposition 2.2 which
deals with the estimation of the distribution function. A better rate cannot be expected (cf.
the case of no measurement errors).

(ii) In order to prove the theorem, we apply a smooth truncation function as to decompose the
error into

∫ qτ

−∞

(f̃b(x)− f(x)) dx
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=

∫ qτ

−∞

(Kb ∗ f(x)− f(x)) dx

︸ ︷︷ ︸
deterministic error

+

∫ qτ

−∞

as(x + qτ )(f̃b(x)−Kb ∗ f(x)) dx
︸ ︷︷ ︸

singular part of stochastic error

+

∫ qτ

−∞

(1 − as)(x+ qτ )(f̃b(x)−Kb ∗ f(x)) dx
︸ ︷︷ ︸

continuous part of stochastic error

(10)

with the usual notation Kb(·) = b−1K(·/b). The function as can be chosen such that it has
compact support and satisfies (1l(−∞,0]− as) ∈ C∞(R). Similar to the classical bias-variance
trade-off, the deterministic error and singular part of the stochastic error will determine the
rate. The continuous part, however, corresponds to the estimation error of a smooth (but
not integrable) functional of the density. If the error distribution would be known, it would
be of order n−1/2. For unknown errors we use Lemma 2.1.

(iii) Dealing with unknown error distributions leads to the requirement of γ > 4, i.e., that fε
possesses at least 4 moments. In view of the analysis by Neumann and Reiß (2009) this
assumption also implies uniform convergence of ϕε,m. As seen in Lemma 2.1, our estimate
of the operator norm of the random Fourier multiplier F−1[ϕK(bu)/ϕε,m(u)] is of order
OP ((nb

β+1)−1). This might be larger than the operator norm of the unknown deconvolution
operatorF−1[1/ϕε(u)] which is uniformly bounded. Yet, for α > 1/2 the additional error that
appears in the continuous part of stochastic error in (10) is negligible. More generally, the
continuous part is of smaller or of the same order as the singular part whenever n−1b−2β∧1−2

n

is bounded.

We finish this section by providing the minimax rates for estimating the distribution function
and the quantiles for the case of known error distributions. As above the estimators are given by
plug-in, using the classical density estimator

f̂b(x) := F−1
[ϕn(u)ϕK(bu)

ϕε(u)

]
(x), x ∈ R . (11)

Due to the known ϕε the mathematical analysis is simpler and thus we need weaker assumptions.

Corollary 2.6. Suppose that the error distribution is known. Let Assumption 1 hold with ℓ = 〈α〉+
1. Let q̂τ,b be the quantile estimator based on the density deconvolution estimator (11) associated
with b∗n = n−1/(2α+2(β∨1/2)+1). Then for any α, β,R, r, ζ > 0 and γ > 0 we obtain uniformly over
f ∈ Cα(R, r, ζ) and fε ∈ Dβ(R, γ) as n→ ∞,

∣∣∣
∫ qτ

−∞

(f̂b∗n(x) − f(x)) dx
∣∣∣ = OP

(
ψn(α, β)

)
,

|q̂τ,b∗n − qτ | = OP

(
ψn(α, β)

)
,

where ψn(α, β) is given (9).

Remarks 2.7.

(i) We want to stress again that the only global condition on the density f is uniform bound-
edness. A tail condition similar to the one of Fan (1991) is not necessary. In contrast to
Dattner, Goldenshluger and Juditsky (2011), the smoothness is measured locally in a Hölder
scale and not globally by decay conditions of the Fourier transform of f . The former is more
natural since both, the distribution function and the quantile function are estimated point-
wise.

(ii) Using the known ϕε, we do not need to estimate the deconvolution operator and thus there
is no additional error. Consequently, we do not need a moment assumption on the error
distribution and the continuous part of the stochastic error in (10) is of order n−1/2 implying
that the minimax convergence rates hold true for all α > 0.
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3. Adaptive estimation

The choice of the bandwidth b is crucial in applications. Therefore, we develop a fully
data-driven procedure to determine a reasonable bandwidth. We follow the approach which
was originally stated by Lepskĭı (1990). More precisely, we use the version proposed in
Goldenshluger and Nemirovski (1997).

To this end, we consider the family of estimators {q̃τ,b, b ∈ Bn} where q̃τ,b is defined in (5) and
Bn is a finite set of bandwidths. Typically, the bandwidths are chosen geometrically growing. In
view of the error representation (8) it is important that f̃b(q̃τ,b) is a consistent estimator of f(qτ )
for all b ∈ Bn. Therefore, conditions on the bandwidth as in Proposition 2.3 are necessary for the
whole set Bn. Moreover, we keep to the assumption α > 1/2 such that the additional error due
to bounding the random Fourier multiplier is negligible. We will prove convergence rates for the
adaptive procedure under the following

Assumption 2. Let the set Bn := {bn,j, j = 1, ..., Nn} consists of a monotone increasing sequence
of bandwidths such that bn,j+1/bn,j is uniformly bounded in j = 1, . . . , Nn and n > 1. For n→ ∞
suppose

Nn . logn, (logn)2bn,Nn → 0 and nb2β+2
n,1 → ∞.

Moreover, the optimal bandwidth b∗n = n−1/(2α+2(β∨1/2)+1) has to be contained in the interval
[bn,1, bn,Nn].

Obviously, Assumption 2 depends on the true but unknown degree of ill-posedness β. Note that
in our case the lower bound for the bandwidth is not determined by the variance of the quantile
estimator itself but by the variance of the density estimator and the minimal smoothing which
results from α > 1/2. Inspired by Comte and Lacour (2011), we propose the following construction
of a feasible set Bn.
Lemma 3.1. Defining for Λn := {1, 1/

√
2, . . . , 1/

√
n}

b̃n,min := min
{
b ∈ Λn :

1

2
6

( logn
n

)1/2
∫ 1/b

−1/b

|ϕε,m(u)|−1 du 6 1
}

(12)

and Ln := (̃bn,min(logn)
3)−1/ log n, let Bn be given by

Nn = ⌊logn⌋ and bn,1 = b̃n,min, bn,j = Ljnbn,1, j = 2, . . . , Nn.

Then, Bn satisfies Assumption 2 for all f ∈ Cα(R, r, ζ) and fε ∈ Dβ(R, γ) with α > 1/2 and β > 0

Given the bandwidth set, the adaptive estimator is obtained by selection from the family of
estimators {q̃τ,b, b ∈ Bn}. As proposed by Lepskĭı (1990) the adaptive choice should mimic the
trade-off between deterministic error and stochastic error. The adaptive choice will be given by the
largest bandwidth such that the intersection of all confidence sets, which corresponds to smaller
bandwidths, is non-empty. As discussed above it is sufficient to consider the singular part of the
stochastic error in (10) only. To estimate the variance of q̃τ,b corresponding to the latter, we define
for some δ > 0

Σ̃b :=
(
√
2 + δ)

√
log lognmaxµ>b σ̃µ,X + (δ logn)3 maxµ>b σ̃µ,ε

|f̃b(q̃τ,b)|
, (13)

with the truncation function as from decomposition (10) and

σ̃2
b,X =

1

n2

n∑

j=1

( ∫ 0

−∞

as(x)F−1
[ϕK(bu)eiuYj

ϕε,m(u)

]
(x+ q̃τ,b) dx

)2

and

σ̃2
b,ε =

1

4π2m

∫ 1/b

−1/b

|ϕK(bu)|
∣∣∣ ϕn(u)
ϕε,m(u)

∣∣∣
2

du

∫ 1/b

−1/b

|ϕK(bu)|
∣∣∣F as(u)

ϕε,m(u)

∣∣∣
2

du.
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Note that we apply a monotonization in the numerator of Σ̃b by taking maxima of σ̃µ,X and σ̃µ,ε.

With Σ̃b at hand the adaptive estimator is given according to the following rule. Define for any
b ∈ Bn

Ub := [q̃τ,b − Σ̃b, q̃τ,b + Σ̃b]. (14)

The adaptive estimator is given by

q̃τ := q̃τ,̃b∗n
with b̃∗n := max

{
b ∈ Bn

∣∣∣
⋂

µ≤b,µ∈Bn

Uµ 6= ∅
}
. (15)

Note that b̃∗n is well-defined since the intersection in (15) is non-empty for b = bn,1. The following
theorem shows that this estimator achieves the minimax rate up to a logarithmic factor. As
usual the proof relies on a comparison with an oracle-type choice of the bandwidth. However, all
ingredients have to be estimated and without assuming independence of Yj and ε

∗
k, which requires

special attention.

Theorem 3.2. Grant Assumptions 1 and 2 with ℓ > 〈α〉+1. Then for any α > 1/2, β,R, r, ζ > 0
and γ > 4 the estimator q̃τ as defined in (15) satisfies uniformly over f ∈ Cα(R, r, ζ) and fε ∈
Dβ(R, γ) as n→ ∞,

|q̃τ − qτ | = OP

((√
log logn+

(
lognδ

)3)
ψn(α, β))

)
,

where ψn(α, β) is given in (9).

Remarks 3.3.

(i) Since Yj and ε∗k are not independent, we have to bound the stochastic error of q̃τ,b with
use of the Cauchy–Schwarz inequality to separate the error terms. To estimate the remain-
ing factors, we take into account the term (log nδ)3. If the error density were known, this
term would not appear. The

√
log logn is the additional loss for OP -adaptivity which seems

unavoidable.
(ii) To estimate the distribution function, a very similar procedure can be employed because the

bias-variance trade-off is determined by the estimation of the distribution function anyway.
The only difference will be to replace the denominator of Σ̃b by 1/2 which results in

(2
√
2 + δ)

√
log lognmax

µ>b
σ̃µ,X + (δ logn)3 max

µ>b
σ̃µ,ε,

for some δ > 0. The proof for an analogous result as Theorem 3.2 follows easily.

4. Numerical results

4.1. Simulation study

We now illustrate the implementation of the adaptive estimation procedure of Sections 3. Our
small simulation study serves as a proof of viability of our proposed method.

We run 500 Monte Carlo simulations for four experimental setups. The sample size is set to
n = 1000 and the external sample of the directly observed error is set to m = 1000 as well
(here the external sample is independent of the main one). We consider Γ(1, 1) and Γ(2, 1) for
the distribution of X where Γ(k, η) denotes the gamma distribution with shape parameter k and
scale η such that its density is (Γ(α)ηk)−1xk−1 exp{−x/η}1l{x>0}. Note that the shape k of the
gamma distribution determines the global smoothness of the density while our convergence rates
depend on local smoothness α which may be larger. For the error distribution we consider standard
Laplace distribution (β = 2) and the convolution of a standard Laplace with itself (β = 4).
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Table 1

Empirical root mean square error (RMSE) of the adaptive and naive (in parenthesis) estimators for estimating
qτ for τ = 0.25, 0.5, 0.75, based on 500 Monte Carlo simulations with n = m = 1000.

k = 1, β = 2 k = 2, β = 2 k = 1, β = 4 k = 2, β = 4
τ = 0.25
RMSE 0.279 (0.296) 0.146 (0.239) 0.295 (0.651) 0.169 (0.516)
τ = 0.5
RMSE 0.233 (0.170) 0.187 (0.143) 0.246 (0.239) 0.202 (0.204)
τ = 0.75
RMSE 0.453 (0.541) 0.245 (0.436) 0.470 (0.923) 0.256 (0.761)

The target quantiles of interest are qτ with τ = 0.25, 0.5, 0.75. A kernel with flat-top Fourier
transform was chosen for the estimator (see e.g., McMurry and Politis (2004)) and the adaptive al-
gorithm was implemented on a geometrically growing grid. Usually, applying this adaptive scheme
requires an additional tuning of the algorithm (see e.g. Spokoiny and Vial (2009)). However, for
the specific setup considered here the adaptive procedure seems to be robust and was implemented
exactly as defined in (14)-(15). In the real data example in the next subsection we compare the
adaptive estimator to the ”naive” quantile estimator given by the inverse of the empirical distribu-
tion function of the observations Y . Thus we also applied the naive estimator in our simulations.
The results of this simulation study are given in Table 1. We can see that the results support
the theory - the empirical root mean squared error (RMSE) is higher for β = 4 than for β = 2.
Also, we can see that the RMSE is lower for k = 2 than for k = 1 since the gamma distribution
with larger shape parameter is smoother in our context. For median estimation the naive seems
to perform quiet well in this experimental setup.

4.2. Real data example

High blood pressure is a direct cause of serious cardiovascular disease (Kannel et al. (1995)) and
determining reference values for physicians is important. In particular, estimating percentiles of
systolic and diastolic blood pressure by sex, race or ethnicity, age, etc. is of substantial interest.
However, blood pressure is known to be measured with additional error which needs to be ad-
dressed in its analysis (see e.g., Frese, Fick and Sadowsky (2011)). Therefore, measurement errors
should be taken into account, otherwise quantile estimates based on the observed blood pressure
measurements would be biased.

The resulting adaptive distribution and quantiles estimates are displayed in Figure 2. We illus-
trate our method using data from the Framingham Heart Study (Carroll et al. (2006)). This study
consists of a series of exams taken two years apart where systolic blood pressure (SBP) measure-
ments of 1, 615 men aged 31− 65 were taken. These data were used as an illustration for density
deconvolution by Stirnemann, Comte and Samson (2012) and for distribution deconvolution by
Dattner and Reiser (2013). We denote by Yj,1 and Yj,2 the two repeated measures of SBP for each
individual j at two different exams and denote by Xj the long-term average SBP of individual j.
Then we assume that

Yj,1 = Xj + εj,1, Yj,2 = Xj + εj,2,

for individuals j = 1, ..., n. Following Carroll et al. (2006), we use the average of the two exams
Y ′
j = (Yj,1 + Yj,2)/2, so that the model in our case is

Y ′
j = Xj + ε′j , (16)

where ε′j = (εj,1 + εj,2)/2.
Taking advantage of the repeated measures setup, we can avoid parametric assumptions regard-

ing the distribution of the errors. The only assumption we will make is that the distribution of the
measurement error is symmetric around zero and does not vanish. We then set ε∗j = (Yj,1−Yj,2)/2
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Fig 1. Average systolic blood pressure Y ′ (left) and the errors ε∗ (right) over the two measurements from the two
visits of 1, 615 men aged 31− 65 from the Framingham Heart Study.
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Fig 2. Distribution function estimation (top) and quantiles estimates (bottom) for systolic blood pressure of 1, 615
men aged 31− 65 from the Framingham Heart Study. Solid line for the adaptive estimator and dashed line for the
naive estimator.



I. Dattner, M. Reiß and M. Trabs/Quantile estimation in deconvolution 11

and note that under the symmetry assumption it is distributed as ε′j . We emphasize the fact that
our theoretical results do not require that the sample ε∗j will be independent from that of the Y ′

j .
Thus, we estimate the characteristic function of the error ε′ by

ϕε′,m(u) =
1

m

m∑

j=1

exp(iuε∗j).

Histograms of Y ′ and ε∗ are presented in Figure 1.
With the adaptive chosen bandwidth, the Fourier transform of the kernel function Kb is sup-

ported on [−0.1, 0.1] for both distribution and quantiles estimation. It seems that there is no much
difference between the naive and adaptive estimates for smaller quantiles. However, the observed
differences are larger for larger quantiles. Although further analysis of the data may and should
be done for inference purposes, we do not pursue them here since our goal is merely to show the
applicability of the adaptive procedure to real data.

Appendix A: Proofs for Section 2

In the sequel we will use the deterministic Landau symbols O and o. For convenience we will
write An(ϑ) . Bn(ϑ) if An(ϑ) = O(Bn(ϑ)) as well. For a better readability we throughout assume
β 6= 1/2. In the special case β = 1/2 the order of the stochastic error will be (logn/n)1/2 which
can be easily seen below in the bounds (28) and (30). For the sake of clarity of our arguments
we distinguish between n and m in this section. However, all rates are governed by n ∧m. The
subscript n at the bandwidth will be omitted.

Since 1/ϕε,m might explode for large stochastic errors we need the following lemma. The moment
assumption on fε corresponds to the condition γ > 2 on the set Dβ(R, γ).

Lemma A.1. Suppose E[|ε∗k|2+δ] < ∞ for some δ > 0. Let Tm → ∞ be an increasing sequence
satisfying m1/2 infu∈[−Tm,Tm] |ϕε(u)| & (logTm)2, then for any p < 2

P
(

inf
u∈[−Tm,Tm]

|ϕε,m(u)| < m−1/2(logTm)
p
)
= o(1) as m→ ∞.

Proof. The triangle inequality, the assumption on Tm and Markov’s inequality yield for some
constant D > 0 and for m as well as Tm large enough

P
(

inf
u∈[−Tm,Tm]

|ϕε,m(u)| < m−1/2(logTm)p
)

6P
(
∃u ∈ [−Tm, Tm] : |ϕε(u)− ϕε,m(u)| > |ϕε(u)| −m−1/2(logTm)

p
)

6P
(

sup
u∈[−Tm,Tm]

|ϕε(u)− ϕε,m(u)| > inf
u∈[−Tm,Tm]

|ϕε(u)| −m−1/2(logTm)p
)

6P
(

sup
u∈[−Tm,Tm]

m1/2|ϕε(u)− ϕε,m(u)| > D(logTm)2 − (logTm)p
)

6
2

D(logTm)2
E

[
sup

u∈[−Tm,Tm]

m1/2|ϕε(u)− ϕε,m(u)|
]
.

Noting 1l[−Tm,Tm](u) 6 w(u)/w(Tm) for w(u) := (log(e + |u|))−1/2−η for some η ∈ (0, 1/2), the
above display can be bounded by

2

Dw(Tm)(log Tm)2
E

[
sup
u∈R

m1/2w(u)
∣∣ϕε(u)− ϕε,m(u)

∣∣
]
. (logTm)−3/2+η (17)

where the expectation is bounded by applying Theorem 4.1 in Neumann and Reiß (2009).
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To ensure consistency of the density estimator, we have to assume frequently (n∧m)b2β+1 → ∞.
Since this implies m1/2 infu∈[−1/b,1/b] |ϕε(u)| & | log b|2 for f ∈ Dβ(R, γ) and any bandwidth which
increases polynomially in n, Lemma A.1 can be applied to Tm = 1/b. Hence, under this assumption
the probability of the event

Bε(b) :=
{

inf
u∈[−1/b,1/b]

|ϕε,m(u)| > m−1/2| log b|3/2
}

(18)

tends to one. Therefore, it is sufficient to control terms on Bε(b) only. Frequently, the weaker
estimate |ϕε,m(u)| > m−1/2 for |u| 6 1/b will be enough.

A.1. Proof of Lemma 2.1

Note that the assumptions on ϕε imply |(ϕ−1
ε )′(u)| . (1 + |u|)β−1 as well as |ϕ−1

ε (u)| . (1 +
|u|)β , u ∈ R. On these assumptions Söhl and Trabs (2012) have shown that (1 + iu)−β/ϕε(u) is
a Fourier multiplier on Besov spaces. Due to the regularization with the kernel, ϕK(bu)/ϕε,m(u)
behaves basically like 1/ϕε and thus we can derive mapping properties of the random Fourier
multiplier

ψ(u) := (1 + iu)−β
ϕK(bu)

ϕε,m(u)
, u ∈ R .

On Bε(b), as defined in (18), we will check Hörmander type conditions and derive an upper bound
for the operator norm of ψ(u). More precisely, we apply Corollary 4.13 by Girardi and Weis (2003)
with p = 2, l = 1. Hence, we have to determine a suitable constant Aψ > 0 satisfying

max
l∈{0,1}

(∫

[−2,2]

|ψ(l)(u)|2 du
)1/2

6 Aψ and

max
l∈{0,1}

sup
T∈[0,∞)

T l−1/2
(∫

T6|u|64T

|ψ(l)(u)|2 du
)1/2

6 Aψ .

(19)

To find Aψ , we note that

1

|ϕε,m(u)|p 6
p

|ϕε(u)|p
+
p|ϕε,m(u)− ϕε(u)|p
|ϕε(u)ϕε,m(u)|p , for p ∈ {1, 2} (20)

and thus on Bε(b)

1

|ϕε,m(u)| 6
1 + ∆m(u)

|ϕε(u)|
, ∆m(u) :=

m1/2

| log b|3/2 |ϕε,m(u)− ϕε(u)|,

By fε ∈ Dβ(R, γ) we conclude

|ψ(u)| 6 |ϕK(bu)|(1 + ∆m(u))

(1 + u2)β/2|ϕε(u)|
. (1 + ∆m(u))1l[−1/b,1/b](u). (21)

Concerning the derivative, we estimate b 6 2(1+ |u|)−1 for |u| 6 1/b and b < 1/2 and consequently
by |ϕ′

ε(u)/ϕε(u)| . (1 + |u|)−1

|ψ′(u)| 6 (β + 1)(1 + u2)−(β+1)/2
∣∣∣ ϕK(bu)

ϕε,m(u)

∣∣∣+ b(1 + u2)−β/2
∣∣∣ ϕ

′
K(bu)

ϕε,m(u)

∣∣∣

+ (1 + u2)−β/2
∣∣∣
ϕ′
ε,m(u)

ϕε,m(u)

ϕK(bu)

ϕε,m(u)

∣∣∣

.
|ψ(u)|
1 + |u| + |ψ(u)|

∣∣∣
ϕ′
ε,m(u)

ϕε,m(u)

∣∣∣
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.
1 + ∆m(u)

1 + |u|
(
1 +

∣∣∣
ϕ′
ε,m(u)

ϕ′
ε(u)

ϕε(u)

ϕε,m(u)

∣∣∣
)
1l[−1/b,1/b](u)

.
(1 + ∆m(u))2

1 + |u|
(
1 +

|ϕ′
ε,m(u)− ϕ′

ε(u)|
|ϕ′
ε(u)|

)
1l[−1/b,1/b](u)

.
1 + ∆2

m(u)

1 + |u|
(
1 + (1 + |u|)β+1|ϕ′

ε,m(u)− ϕ′
ε(u)|

)
1l[−1/b,1/b](u). (22)

With these bounds at hand we can show now (19). For l = 0 the estimate (21) and 1/T . (1+|u|)−1

for |u| 6 4T yield

∫ 2

−2

|ψ(u)|2 du .

∫ 2

−2

(1 + ∆2
m(u))1l[−1/b,1/b](u) du,

1

T

∫

T6|u|64T

|ψ(u)|2 du .
1

T

∫

T6|u|64T

(1 + ∆2
m(u))1l[−1/b,1/b](u) du

. 1 +

∫ 1/b

−1/b

(1 + |u|)−1∆2
m(u) du.

Hence, the conditions (19) for l = 0 are satisfied for Aψ of the order

(
1 +

∫ 1/b

−1/b

(1 + |u|)−1∆2
m(u) du

)1/2

.

For l = 1 we verify by (22) and T 6 (1 + |u|) for |u| > T

∫ 2

−2

|ψ′(u)|2 du .

∫ 2

−2

(
1 + ∆4

m(u)
)(
1 + (1 + |u|)2β+2|ϕ′

ε,m(u)− ϕ′
ε(u)|2

)
du and

T

∫

T6|u|64T

|ψ′(u)|2 du

.

∫

T6|u|64T

T du

(1 + |u|)2 +

∫ 1/b

−1/b

(∆4
m(u)

1 + |u| + (1 +∆4
m(u))(1 + |u|)2β+1|ϕ′

ε,m(u)− ϕ′
ε(u)|2

)
du

. 1 +

∫ 1/b

−1/b

(∆4
m(u)

1 + |u| + (1 +∆4
m(u))(1 + |u|)2β+1|ϕ′

ε,m(u)− ϕ′
ε(u)|2

)
du.

Therefore, we find a constant A′ > 0, depending only on R, β, such that (19) holds for

Aψ :=A′
(
1 +

∫ 1/b

−1/b

(∆2
m(u) + ∆4

m(u)

1 + |u|

+ (1 +∆4
m(u))(1 + |u|)2β+1|ϕ′

ε,m(u)− ϕ′
ε(u)|2

)
du

)1/2

. (23)

Now, the conditions (19) imply that ψ is indeed a Fourier multiplier on Bε(b) and thus by Theorem
4.8 and Corollary 4.13 by Girardi and Weis (2003) there is a universal constant C > 0 such that
for all η > 0 and f ∈ Cs+β+η(R)

∥∥∥F−1
[ ϕK(bu)

ϕε,m(u)

]
∗ f

∥∥∥
Cs

=
∥∥∥F−1

[ ϕK(bu)

ϕε,m(u)
F f

]∥∥∥
Cs

6 CAψ

∥∥∥F−1
[
(1 + iu)β F f

]∥∥∥
Cs+η

.

Since the Fourier multiplier (1+ iu)β is an isomorphism from Cs+β(R) onto Cs(R) (Triebel, 2010,
Thm. 2.3.8), there is another universal constant C′ > 0 such that the first assertion of the lemma
follows:

∥∥∥F−1
[ ϕK(bu)

ϕε,m(u)
F f

]∥∥∥
Cs

6 Eb‖f‖Cs+β+η with Eb := C′Aψ .
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To bound Eb, we apply Markov’s inequality on Aψ from (23). The inequality by Rosenthal (1970)
yields

E

[
mp/2

∣∣∣ϕ(l)
ε,m(u)− ϕ(l)

ε (u)
∣∣∣
p]
<∞

for l = 0 and p ∈ N as well as l = 1 and p ∈ {1, . . . , 4}. Combined with the Cauchy–Schwarz
inequality, we obtain

P
(
Bε(b) ∩

{
Eb >

c1/2

m1/2bβ+1 ∧ 1

})

= P
(
Bε(b) ∩

{
Aψ >

c1/2

C′(m1/2bβ+1 ∧ 1)

})

6 c−1C′2(mb2β+2 ∧ 1)E
[
A2
ψ1lBε(b)

]

.
1

c
(mb2β+2 ∧ 1)

(
1 +

∫ 1/b

−1/b

(
(1 + |u|)−1 E[∆2

m(u) + ∆4
m(u)]

+ E

[
(1 + ∆4

m(u))(1 + |u|)2β+1|ϕ′
ε,m(u)− ϕ′

ε(u)|2
])

du
)

.
mb2β+2 ∧ 1

c

(
1 +

1

| log b|3
∫ 1/b

−1/b

du

1 + |u| +
1

m

∫ 1/b

−1/b

(1 + |u|)2β+1 du
)
.

1

c
, (24)

which completes the proof.

A.2. Proof of Proposition 2.2

The following lemma establishes a bound for the bias term of the estimator for the distribution
function.

Lemma A.2. Let Assumption 1 hold with ℓ = 〈α〉 + 1, α > 0 and f(• + qτ ) ∈ Cα([−ζ, ζ], R).
Then we have

sup
f(•+qτ )∈Cα([−ζ,ζ],R)

∣∣∣
∫ qτ

−∞

Kb ∗ f(x) dx −
∫ qτ

−∞

f(x) dx
∣∣∣ 6 Dbα+1,

where D = (R/(〈α〉+ 1)! + 2ζ−α−1)‖K(x)xα+1‖L1 .

Proof. Let F (x) :=
∫ x
−∞ f(y) dy. Twofold application of Fubini’s theorem yields

∫ qτ

−∞

Kb ∗ f(x) dx =

∫ qτ

−∞

∫

R

F−1
[ϕK(bu)

ϕε(u)
eiuy

]
(x)fY (y) dy dx

=

∫ ∞

−∞

Kb(x)F (qτ − x) dx, (25)

where Kb(x) := b−1K(x/b), x ∈ R. Therefore, the bias depends only locally on f . Note that
F (• + qτ ) ∈ Cα+1([−ζ, ζ]) by assumption. A Taylor expansion of F around qτ yields for |bz| < ζ

F (qτ − bz)− F (qτ ) = −bzF ′(qτ ) + · · ·+ (−bz)〈α〉+1F
(〈α〉+1)(qτ − κbz)

(〈α〉 + 1)!
,

where 0 6 κ 6 1. Using the fact that
∫
xkK(x) dx = 0 for k = 1, ..., 〈α〉+ 1 and the properties of

the class, we obtain

∣∣∣
∫ qτ

−∞

(
Kb ∗ f(x)− f(x)

)
dx

∣∣∣ =
∣∣∣
∫ ∞

−∞

K(z)
(
F (qτ − bz)− F (qτ )

)
dz

∣∣∣

=
∣∣∣
∫

|z|<ζ/b

K(z)(−bz)〈α〉+1F
(〈α〉+1)(qτ − κbz)− F (〈α〉+1)(qτ )

(〈α〉 + 1)!
dz

∣∣∣
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+

∫

|z|>ζ/b

|K(z)||F (qτ − bz)− F (qτ )| dz

6
b〈α〉+1R

(〈α〉+ 1)!

∫ ∞

−∞

|K(z)||z|〈α〉+1|κbz|α+1−(〈α〉+1) dz + 2

∫

|z|>ζ/b

|Kb(z)| dz

6
( bα+1R

(〈α〉 + 1)!
+ 2

( b
ζ

)α+1)∫ ∞

−∞

|K(z)||z|α+1 dz,

and the statement follows.

Proof of Proposition 2.2. We will show uniformly over f ∈ Cα(R, r, ζ) and fε ∈ Dβ(R, γ) for any
b such that (n ∧m)b2β+1 → ∞

∣∣∣
∫ qτ

−∞

(f̃b(x) − f(x)) dx
∣∣∣ =OP

(
bα+1 +

1√
(n ∧m)(b2β−1 ∧ 1)

+
1√

(n ∧m)(mb2β+2 ∧ 1)

)
.

The third term on the right-hand side is of smaller or of the same order than the second one
if and only if (mb1∧2β+2)−1 . 1. Hence, when α > 1/2 the asymptotically optimal choice b =
(n ∧m)−1/(2α+2(β∨1/2)+1) yields

∣∣∣
∫ qτ

−∞

(f̃b(x) − f(x)) dx
∣∣∣ = OP

(
(n ∧m)−(α+1)/(2α+2β+1) ∨ (n ∧m)−1/2

)
.

Step 1: As usual we decompose the error into a deterministic error term and a stochastic error
term, writting ϕX = F f ,

∣∣∣
∫ qτ

−∞

f̃b(x)− f(x) dx
∣∣∣ 6

∣∣∣
∫ qτ

−∞

Kb ∗ f(x)− f(x) dx
∣∣∣

+
∣∣∣
∫ qτ

−∞

F−1
[ϕn(u)ϕK(bu)

ϕε,m(u)
− ϕK(bu)ϕX(u)

]
(x) dx

∣∣∣.

The bias is of orderO(bα+1) by Lemma A.2. As discussed above, we decompose the stochastic error
into a singular part and a continuous one using a smooth truncation function. Let ac ∈ C∞(R)
satisfy ac(x) = 1 for x 6 −1 and ac(x) = 0 for x > 0 and define as(x) := 1l(−∞,0](x)− ac(x). Then

∫ qτ

−∞

F−1
[
ϕK(bu)

( ϕn(u)

ϕε,m(u)
− ϕX(u)

)]
(x) dx

=

∫

R

as(x)F−1
[
ϕK(bu)

( ϕn(u)

ϕε,m(u)
− ϕX(u)

)]
(x+ qτ ) dx

+

∫

R

ac(x)F−1
[
ϕK(bu)

( ϕn(u)

ϕε,m(u)
− ϕX(u)

)]
(x + qτ ) dx =: Ts + Tc. (26)

The singular term Ts will be treated in the next step while we bound the continuous, but not
integrable term Tc in Step 3.

Step 2: Recalling the definition (18) of the event Bε(b), let us denote its complement by Bε(b)
c.

Lemma A.1 shows that Bε(b)
c is asymptotically a null set. We obtain for any c > 0 with Markov’s

inequality

P
(∣∣Ts

∣∣ > c√
(n ∧m)(b2β−1 ∨ 1)

)
6P

(
Bε(b) ∩

{∣∣Ts
∣∣ > c√

(n ∧m)(b2β−1 ∨ 1)

})
+ P

(
Bε(b)

c
)

6
1

c

√
(n ∧m)(b2β−1 ∨ 1)E

[∣∣Ts
∣∣1lBε(b)

]
+ o(1).

To bound E[|Ts|1lBε(b)], we first note by Plancherel’s identity

Ts =
1

2π

∫

R

F as(u)e
−iuqτϕK(bu)

( ϕn(u)

ϕε,m(u)
− ϕX(u)

)
du
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=
1

2π

∫

R

F as(u)e
−iuqτϕK(bu)

(ϕn(u)
ϕε(u)

− ϕX(u)
)
du

+
1

2π

∫

R

F as(u)e
−iuqτ

ϕK(bu)ϕn(u)

ϕε(u)

( ϕε(u)

ϕε,m(u)
− 1

)
du =:

1

2π

(
Ts,x + Ts,ε

)
. (27)

The first term Ts,x corresponds to the error due to the unknown density f while Ts,ε is dominated
by error of the estimator ϕε,m. Since as is of bounded variation and has compact support, there is
some constant As ∈ (0,∞) such that | F as(u)| 6 As(1+ |u|)−1. We then obtain with Plancherel’s
identity

Var(Ts,x) = E[|Ts,x|2] 6
1

n
E

[∣∣∣
∫

R

F as(u)e
−iuqτ

ϕK(bu)

ϕε(u)
eiuY1 du

∣∣∣
2]

6
2π

n
‖fY ‖∞

∥∥∥F−1
[
F as(u)

ϕK(bu)

ϕε(u)

]∥∥∥
2

L2

6
1

n
‖K‖2L1‖fY ‖∞

∫ 1/b

−1/b

| F as(u)|2
|ϕε(u)|2

du

6
1

n
‖K‖2L1A2

s‖fY ‖∞
∫ 1/b

−1/b

1

(1 + |u|)2|ϕε(u)|2
du.

Using the assumption ‖f‖∞ < R and fε ∈ Dβ(R, γ), we get

E[|Ts,x|2] .
1

n

∫ 1/b

−1/b

(1 + |u|)2β−2 du .
1

nb2β−1
∨ 1

n
. (28)

To bound Ts,ε, we will use the following version of a lemma by Neumann (1997): By the definition
(18) of Bε(b) and applying (20) it holds

E

[∣∣∣ ϕε(u)
ϕε,m(u)

− 1
∣∣∣
2

1lBε(b)

]
6 2E

[ |ϕε,m(u)− ϕε(u)|2
|ϕε(u)|2

]
+ 2E

[ |ϕε,m(u)− ϕε(u)|4
|ϕε(u)ϕε,m(u)|2 1lBε(b)

]

6
2E[|ϕε,m(u)− ϕε(u)|2]

|ϕε(u)|2
+

2mE[|ϕε,m(u)− ϕε(u)|4]
|ϕε(u)|2

6
18

m|ϕε(u)|2
. (29)

Now, we estimate with the Cauchy–Schwarz inequality

T 2
s,ε 6 ‖K‖2L1

∫ 1/b

−1/b

∣∣∣ϕn(u)
ϕε(u)

∣∣∣
2

du

∫ 1/b

−1/b

| F as(u)|2
∣∣∣ ϕε(u)
ϕε,m(u)

− 1
∣∣∣
2

du

6 2‖K‖2L1

(
‖ϕX‖2L2 +

∫ 1/b

−1/b

|ϕn(u)− ϕY (u)|2
|ϕε(u)|2

du
)∫ 1/b

−1/b

| F as(u)|2
∣∣∣ ϕε(u)
ϕε,m(u)

− 1
∣∣∣
2

du.

Applying again the Cauchy–Schwarz inequality, Fubini’s theorem, the decay of F as and (29), we
obtain

E[|Ts,ε|1lBε(b)] 6
√
2‖K‖L1

(
‖ϕX‖2L2 +

∫ 1/b

−1/b

E[|ϕn(u)− ϕY (u)|2]
|ϕε(u)|2

du
)1/2

×
( ∫ 1/b

−1/b

A2
s

(1 + |u|)2 E

[∣∣∣ ϕε(u)
ϕε,m(u)

− 1
∣∣∣
2

1lBε(b)

]
du

)1/2

6

√
36‖K‖L1As√

m

(
‖ϕX‖2L2 +

∫ 1/b

−1/b

1

n|ϕε(u)|2
du

)1/2

×
( ∫ 1/b

−1/b

1

(1 + |u|)2|ϕε(u)|2
du

)1/2

. (30)
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The assumptions ‖f‖∞ . 1 and |ϕε(u)| . (1 + |u|)−β yield

E[|Ts,ε|1lBε(b)] .
(
1 +

1

nb2β+1

)1/2( 1√
mbβ−1/2

∨ 1√
m

)
.

1√
mbβ−1/2

∨ 1√
m
.

The last estimate follows from the fact that the choice of b as stated in the theorem guarantees
that n−1b−2β−1 → 0 as n→ ∞. The last inequality together with (28) and (27) imply the optimal
order

E[|Ts|1lBε(b)] .
(
(n ∧m)(b2β−1 ∧ 1)

)−1/2

.

Step 3: Let us define the empirical measures of (Yj) and (εk) as µY,n := 1
n

∑n
j=1 δYj and

µε,m := 1
m

∑m
k=1 δεk , respectively, where δx is the Dirac measure in x ∈ R. We can write

Tc =

∫

R

ac(x)F−1
[ ϕK(bu)

ϕε,m(u)

(
ϕn(u)− ϕε,m(u)ϕX(u)

)]
(x+ qτ ) dx

= F−1
[ ϕK(−bu)
ϕε,m(−u)

(
ϕn(−u)− ϕε,m(−u)ϕX(−u)

)]
∗ ac(−qτ )

= F−1
[ ϕK(bu)

ϕε,m(u)

]
∗
(
µY,n ∗ ac(−•)− µε,m ∗ f ∗ ac(−•)

)
(qτ ).

Applying Lemma 2.1, we obtain on Bε(b) for any integer s > β

Tc 6
∥∥∥F−1

[ ϕK(bu)

ϕε,m(u)

]
∗
(
µY,n ∗ ac(−•)− µε,m ∗ f ∗ ac(−•)

)∥∥∥
∞

6 Eb
∥∥∥µY,n ∗ ac(−•)− µε,m ∗ f ∗ ac(−•)

∥∥∥
Cs

= Eb
s∑

l=0

∥∥µY,n ∗ a(l)c (−•)− µε,m ∗ f ∗ a(l)c (−•)
∥∥
∞

Therefore,

P
(
Bε(b) ∩

{
|Tc| >

c√
(n ∧m)(

√
mbβ+1 ∧ 1)

})

6 P
(
Bε(b) ∩

{
Eb >

( c

mb2β+2 ∧ 1

)1/2})

+ P
( s∑

l=0

∥∥µY,n ∗ a(l)c − µε,m ∗ f ∗ a(l)c
∥∥
∞
>

( c

n ∧m
)1/2)

=: P1 + P2.

By Lemma 2.1, more precisely estimate (24), the first probability is of the order 1/c. To bound P2,

is suffices to show ‖µY,n ∗ a(l)c − µε,m ∗ f ∗ a(l)c
∥∥
∞

= OP ((n∧m)−1/2) for all l = 0, . . . , s. Denoting
the density of Yj as fY = f ∗ fε, we decompose

∥∥µY,n ∗ (a(l)c (−•))− µε,m ∗ f ∗ (a(l)c (−•))
∥∥
∞

6
∥∥µY,n ∗ (a(l)c (−•))− fY ∗ (a(l)c (−•))

∥∥
∞

+
∥∥fε ∗ (f ∗ (a(l)c (−•)))− µε,m ∗ (f ∗ (a(l)c (−•)))

∥∥
∞

6
∥∥∥
∫
a(l)c (y − •)µY,n( dy)− E[a(l)c (Y1 − •)]

∥∥∥
∞

+
∥∥∥E[(f ∗ a(l)c )(ε1 − •)]−

∫
(f ∗ a(l)c )(z − •)µε,m( dz)

∥∥∥
∞

By construction all a
(l)
c , l > 1, have compact support and are bounded. Therefore, ‖a(l)c ‖L1 < ∞

and ‖(ac ∗ f)(l)‖L1 6 ‖a(l)c ‖L1‖f‖L1 <∞ and thus the functions ac(• − t) and ac ∗ f(• − t) for all
t ∈ R are of bounded variation. Since the set of functions with bounded variation is a Donsker class
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(cf. Theorem 2.1 by Dudley (1992)), the two terms in the previous display converge in probability
to a tight limit with

√
n-rate and

√
m-rate, respectively. Consequently,

√
n ∧m

∥∥µY,n ∗ (a(l)c (−•))− µε,m ∗ f ∗ (a(l)c (−•))
∥∥
∞

= OP (1)

for all ℓ = 0, . . . , s and P2 is arbitrary small for c large.

For the adaptive estimator we will later need the following uniform version of Proposition 2.2.

Corollary A.3. Suppose Assumption 1 holds with l = 〈α〉+1 and let B be a finite set of bandwidths

with b1 = minB such that mb2β1+1
1 → ∞. For a sequence of critical values (δb)b∈B satisfying

δb > 3Dbα+1 and for any sequence (xn)n with xn → ∞ arbitrary slowly we obtain uniformly in
Cα(R, r, ζ) and Dβ(R, γ)

P
(
∃b ∈ B :

∣∣∣
∫ qτ

−∞

(
f̃b(x) − f(x)

)
dx

∣∣∣ > δb

)

= O
(∑

b∈B

( 1

δb

(
(n ∧m)(b2β−1 ∧ 1)

)−1/2
+

1

δ2b

xn
n(mb2β+2 ∧ 1)

))
+ o(1).

In particular, if |B| . logn,maxb∈B b→ 0 and minb∈B(n ∧m)b2β+1 → ∞

P
(
sup
b∈B

∣∣∣
∫ qτ

−∞

f̃b(x)− f(x) dx
∣∣∣ > δ

)
→ 0 for all δ > 0.

Proof. With the notation of the proof of Proposition 2.2 and applying Lemma A.2, we obtain

∣∣∣
∫ qτ

−∞

(f̃b(x)− f(x)) dx
∣∣∣ 6

∣∣∣
∫ qτ

−∞

(
Kb ∗ f(x)− f(x)

)
dx

∣∣∣+ Ts + Tc 6 Dbα+1 + Ts + Tc,

where Ts and Tc are the stochastic errors of the singular part and of the continuous part, respec-
tively, as defined in (26). Since both terms depend on b let us write Ts(b) and Tc(b). By definition
b1 6 b implies Bε(b1) ⊆ Bε(b). Then, Step 2 in the previous proof shows

P
(
∃b ∈ B : Ts > δb/3

)
6P

(
∃b ∈ B : Ts(b) > δb/3

}
∩Bε(b1)

)
+ P

(
Bε(b1)

c
)

6
(∑

b∈B

P
(
{Ts(b) > δb/3} ∩Bε(b1)

))
+ o(1)

6
(∑

b∈B

δ−1
b E[|Ts(b)|1lBε(b1)]

)
+ o(1)

.
(∑

b∈B

δ−1
b

(
(n ∧m)(b2β−1 ∧ 1)

)−1/2
)
+ o(1).

Following Step 3 in the previous proof, we obtain with the random operator norm Eb, for some
integer s > β and for a diverging sequence (xn)

P
(
∃b ∈ B : Tc > δb/3

)
6P

({
∃b ∈ B : Eb > δbn

1/2/(3(xn)
1/2)

}
∩Bε(b1)

)
+ P (Bε(b1)

c)

+ P
({ s∑

l=0

∥∥µY,n ∗ a(l)c − µε,m ∗ f ∗ a(l)c
∥∥
∞
>

(xn
n

)1/2})

6
(∑

b∈B

P
(
{Eb > δbn

1/2/(3(xn)
1/2)} ∩Bε(b1)

))
+ o(1)

.
(∑

b∈B

xn
δ2bn(mb

2β+2 ∧ 1)

)
+ o(1),

where we have used (24) in the last estimate.
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A.3. Proof of Proposition 2.3

Without loss of generality we set qτ = 0. Recall definition (11) of the pseudo-estimator f̂b which
knows the error distribution. We estimate

sup
x∈(−ζ,ζ)

|f̃b(x) − f(x)| 6 sup
x∈(−ζ,ζ)

|f̂b(x) − f(x)|+ ‖f̃b − f̂b‖∞

6 sup
x∈(−ζ,ζ)

|f̂b(x) − f(x)|+
∥∥∥ϕK(bu)ϕn(u)

ϕε(u)

( ϕε(u)

ϕε,m(u)
− 1

)∥∥∥
L1
.

The analysis of the first term is very classical. However, the authors are not aware of any reference
in the given setup. Both terms will be treated separately in the following two steps. All estimates
will be uniform in f ∈ Cα(R, r, ζ) and fε ∈ Dβ(R, γ).

Step 1: Let b ∈ (0, 1). We will show that there are constants d,D > 0 such that for any
t > d(bα + (nb2β+1)−2)

P
(

sup
x∈(−ζ,ζ)

|f̂b(x) − f(x)| > t
)
6 2 exp

(
2 logn−Dnb(2β+1)(t ∧ t2)

)
. (31)

Then the result follows by choosing t ∼ bα +
(

logn
nb2β+1

)1/2
. Let us define xk := −ζ + kn−2 for

k = 1, . . . , ⌊2ζn2⌋ =:M as well as

χj(x) :=F−1
[ϕK(bu)

ϕε(u)
eiuYj

]
(x) − E

[
F−1

[ϕK(bu)

ϕε(u)
eiuYj

]
(x)

]

=Kb ∗ F−1
[
1l[−b−1,b−1](u)

eiuYj

ϕε(u)

]
(x)−Kb ∗ f(x), x ∈ R .

Therefore, f̂b(x) − E[f̂b(x)] =
1
n

∑n
j=1 χj(x) and thus

sup
|x|<ζ

|f̂b(x) − f(x)| 6 sup
|x|<ζ

|E[f̂b(x)] − f(x)|+ sup
|x|<ζ

|f̂b(x)− E[f̂b(x)]|

6 sup
|x|<ζ

|E[f̂b(x)]− f(x)|+ sup
|x|<ζ

min
k=1,...,M

∣∣∣ 1
n

n∑

j=1

(
χj(x)− χj(xk)

)∣∣∣

+ max
k=1,...,M

∣∣∣ 1
n

n∑

j=1

χj(xk)
∣∣∣

=:B + V1 + V2.

The bias term B can be bounded as in the classical density estimation setup (cf. also Fan, 1991,
Thm. 1 and 2), noting that the constant does not depend on x ∈ (−ζ, ζ). Hence, |B| . bα. Using
a continuity argument and the properties of fε ∈ Dβ(R, γ), the term V1 can be bounded by

|V1| 6
1

n2

∥∥∥ 1
n

n∑

j=1

χ′
j

∥∥∥
∞

=
1

n3

∥∥∥
n∑

j=1

(K ′
b) ∗

(
F−1

[
1l[−b−1,b−1](u)

eiuYj

ϕε(u)

]
− f

)∥∥∥
∞

6
1

n2b
‖K ′‖L1

(
‖1l[−b−1,b−1]ϕ

−1
ε ‖L1 + ‖f‖∞

)
. n−2b−(β+2) . (nb2β+1)−2.

Therefore, |B + V1| 6 D1(b
α + (nb2β+1)−2) for some constant D1 > 0. We obtain for all t >

d(bα + (nb2β+1)−2) with d := 2D1

P
(
sup
|x|<ζ

∣∣f̂b(x)− f(x)
∣∣ > t

)
6 P

(
max

k=1,...,M

∣∣∣ 1
n

n∑

j=1

χj(xk)
∣∣∣ > t

2

)
6

M∑

k=1

P
(∣∣∣ 1
n

n∑

j=1

χj(xk)
∣∣∣ > t

2

)
.
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Finally, we will apply Bernstein’s inequality. To this end we estimate

max
j,k

|χj(xk)| 6 2‖Kb‖L1‖1l[−b−1,b−1]ϕ
−1
ε ‖L1 6 D2b

−(β+1),

with some constant D2 > 0. Using Plancherel’s identity, the variance can be estimated by

Var(χj(xk)) = E

[
F−1

[ϕK(bu)

ϕε(u)
eiuYj

]2
(xk)

]
− (Kb ∗ f)2(xk)

6
1

2π
‖f‖∞

∥∥∥ϕK(−bu)
ϕε(−u)

∥∥∥
2

L2
. D3b

−(2β+1),

for some D3 > 0. Then Bernstein’s inequality yields

P
(

sup
x∈(−ζ,ζ)

∣∣f̂b(x)− f(x)
∣∣ > t

)
6

M∑

k=1

P
(∣∣

n∑

j=1

χj(xk)
∣∣ > nt/2

)

6 2M exp
(
− nt2

8D3b−(2β+1) + 8
3D2b−(β+1)t

)

6 2 exp
(
logM − nb(2β+1)t2

8(D3 +D2t/3)

)

6 2 exp
(
2 logn−Dnb(2β+1)(t ∧ t2)

)
,

with some constant D > 0.
Step 2: By the Cauchy–Schwarz inequality we have

E

[∥∥∥ϕK(bu)ϕn(u)

ϕε(u)

( ϕε(u)

ϕε,m(u)
− 1

)∥∥∥
L1
1lBε(b)

]

.
(
E

[∥∥∥ϕn(u)
ϕε(u)

1l[−1/b,1/b](u)
∥∥∥
2

L2

]
E

[∥∥∥
( ϕε(u)

ϕε,m(u)
− 1

)
1l[−1/b,1/b](u)

∥∥∥
2

L2
1lBε(b)

])1/2

6
(
‖ϕX‖L2 +

( ∫ 1/b

−1/b

E[|ϕn(u)− ϕY (u)|2]
|ϕε(u)|2

du
)1/2)(∫ 1/b

−1/b

E

[∣∣∣ ϕε(u)
ϕε,m(u)

− 1
∣∣∣
2

1lBε(b)

]
du

)1/2

.
(
‖ϕX‖L2 +

( 1

nb2β+1

)1/2)( 1

mb2β+1

)1/2

,

where we have used (29) for the last step. Therefore, the additional error due to the unknown
error distribution satisfies for any δ > 0 by Markov’s inequality and by Lemma A.1

P
(∥∥∥ϕK(bu)ϕn(u)

ϕε(u)

( ϕε(u)

ϕε,m(u)
− 1

)∥∥∥
L1
> δ

)
6
1

δ
E

[∥∥∥ϕK(bu)ϕn(u)

ϕε(u)

( ϕε(u)

ϕε,m(u)
− 1

)∥∥∥
L1
1lBε(b)

]

+ P
(

inf
|u|61/b

|ϕε,m(u)| < m−1/2
)

.
1

δ

( 1

nb2β+1

)1/2

+ o(1). (32)

and thus ‖f̃b − f̂b‖∞ = OP ((mb
2β+1)−1/2). Note that the second term does not depend on δ and

thus o(1) is sufficient.

A.4. Proof of Theorem 2.4

We start with a lemma that establishes consistency of the quantile estimator and then prove the
theorem. To apply this lemma also for the adaptive result, we prove convergence uniformly over a
set of bandwidths.
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Lemma A.4. Grant Assumption 1 with ℓ = 1. Let B be a set of bandwidths satisfying |B| .
logn,maxB → 0 and minb∈B(log n)

2/((n ∧m)b2β+1) → 0. Then

sup
f∈Cα(R,r,ζ)

sup
fε∈Dβ(R,γ)

P
(
sup
b∈B

|q̃τ,b − qτ | > δ
)
→ 0 for all δ > 0.

Proof. We follow the general strategy of the proof of Theorem 5.7 by van der Vaart (1998)
in the classical M-estimation setting. First, we show that f satisfies the uniqueness condition
infη:|η−qτ |>δ |M ′(η)| > 0 for any δ > 0 and with M ′(η) =

∫ η
−∞ f(x) dx − τ , which is the

deterministic counterpart of M̃ ′
b defined in (7). By the Hölder regularity M ′′(η) = f(η) >

f(qτ ) − |f(qτ ) − f(η)| > r − R|qτ − η|1∧α > r/2 for |qτ − η| 6 ( r
2R )

1∨α−1

. Without loss of

generality we can assume δ 6 ( r
2R )

1∨α−1

, otherwise consider the minimum δ ∧ ( r
2R )

1∨α−1

. Recall
that the true τ -quantile qτ is given by the root of M ′ and that M ′ is monotone increasing. Hence,
we obtain

inf
η:|η−qτ |>δ

|M ′(η)| = inf
η∈{−δ,δ}

∣∣M ′(qτ − η)−M ′(qτ )
∣∣ > δ inf

η:|η−qτ |>δ
M ′′(η) >

δr

2
.

Recall that q̃τ,b is given as the root of the estimating equation (7) on the interval [−Un, Un] for
Un . logn. Therefore,

P
(
sup
b∈B

|q̃τ,b − qτ | > δ
)
6 P

(
sup
b∈B

|M ′(q̃τ,b)| > δr/2
)

= P
(
sup
b∈B

|M ′(q̃τ,b)− M̃ ′
b(q̃τ,b)| > δr/2

)

6 P
(
sup
b∈B

sup
η∈[−Un,Un]

|M ′(η)− M̃ ′
b(η)| > δr/2

)

= P
(
sup
b∈B

sup
η∈[−Un,Un]

∣∣∣
∫ η

−∞

(f̃b(x) − f(x)) dx
∣∣∣ > δr/2

)
, (33)

where we have used M̃ ′
b(q̃τ,b) = 0. Hence, it remains to show uniform consistency of

∫ η
−∞ f̃b(x) dx.

Write,

∣∣∣
∫ η

−∞

(f̃b(x) − f(x)) dx
∣∣∣ 6

∣∣∣
∫ η

−∞

(Kb ∗ f(x)− f(x)) dx
∣∣∣+

∣∣∣
∫ η

−∞

(f̃b(x) −Kb ∗ f(x)) dx
∣∣∣

=|Kb ∗ F (η)− F (η)|+
∣∣∣
∫ η

−∞

(f̃b(x) −Kb ∗ f(x)) dx
∣∣∣.

We have |Kb∗F (η)−F (η)| = |
∫
Kb(z)(F (η−z)−F (η)) dz| 6 b‖f‖∞‖zK(z)‖L1 by the boundedness

of f . Further note for η ∈ [−Un, Un]
∣∣∣
∫ η

−∞

(f̃b(x)−Kb ∗ f(x)) dx
∣∣∣

6
∣∣∣
∫ qτ

−∞

(f̃b(x)−Kb ∗ f(x)) dx
∣∣∣+

∣∣∣
∫ qτ∨η

qτ∧η

(f̃b(x)−Kb ∗ f(x)) dx
∣∣∣

6
∣∣∣
∫ qτ

−∞

(f̃b(x)−Kb ∗ f(x)) dx
∣∣∣+

√
2Un

( ∫ ∞

−∞

(f̃b(x)−Kb ∗ f(x))2 dx
)1/2

,

where we have used the Cauchy-Schwarz inequality for the last step. Hence, together with (33) we
obtain for all δ > 6‖f‖∞‖zK(z)‖L1/r supb∈B b

P
(
sup
b∈B

|q̃τ,b − qτ | > δ
)
6 P

(
sup
b∈B

sup
η∈[−Un,Un]

∣∣∣
∫ η

−∞

(f̃b(x) − f(x)) dx
∣∣∣ > δr/2

)

6 P
(
sup
b∈B

∣∣∣
∫ qτ

−∞

(f̃b(x) −Kb ∗ f(x)) dx
∣∣∣ > δr/6

)
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+ P
(
sup
b∈B

∫

R

(f̃b(x) −Kb ∗ f(x))2 dx > δ2r2/(72Un)
)
.

Corollary A.3 shows under the conditions on B that

P
(
sup
b∈B

∣∣∣
∫ qτ

−∞

f̃b(x)−Kb ∗ f(x) dx
∣∣∣ > δr/3

)
→ 0

Hence, it remains to show

P
(
sup
b∈B

∫

R

(f̃b(x)−Kb ∗ f(x))2 dx > δ2r2/(72Un)
)
→ 0. (34)

On the event Bε(b), (34) follows basically from the work of Neumann (1997). More precisely,
Plancherel’s equality, (29) and the Cauchy–Schwarz inequality yield for any b ∈ B

E

[ ∫

R

(f̃b(x)−Kb ∗ f(x))2 dx1lBε(b)

]

=
1

2π

∫

R

|ϕK(bu)|2 E
[∣∣∣ ϕn(u)
ϕε,m(u)

− ϕY (u)

ϕε(u)

∣∣∣
2

1lBε(b)

]
du

.

∫ 1/b

−1/b

(
E

[ |ϕn(u)− ϕY (u)|2
|ϕε,m(u)|2 1lBε(b)

]
+ |ϕY (u)|2 E

[∣∣∣ 1

ϕε,m(u)
− 1

ϕε(u)

∣∣∣
2

1lBε(b)

])
du

.

∫ 1/b

−1/b

(
E

[ |ϕn(u)− ϕY (u)|2
|ϕε(u)|2

(
1 +m|ϕε,m(u)− ϕε(u)|2

)]
+

|ϕY (u)|2
m|ϕε(u)|4

)
du

6

∫ 1/b

−1/b

1

|ϕε(u)|2
((

E

[
|ϕn(u)− ϕY (u)|4

]
E

[
2 + 2m2|ϕε,m(u)− ϕε(u)|4

])1/2

+
|ϕX(u)|2

m

)
du

.

∫ 1/b

−1/b

|ϕε(u)|−2(n−1 +m−1) du .
1

(n ∧m)b2β+1
.

Noting that Bε(minB) ⊆ Bε(b) and applying Lemma A.1, (34) follows then from Markov’s in-
equality

P
(
sup
b∈B

∫

R

(f̃b(x) −Kb ∗ f(x))2 dx > δ2r2/(72Un)
)

.Unδ
−2

∑

b∈B

E

[ ∫

R

(f̃b(x) −Kb ∗ f(x))2 dx1lBε(minB)

]
+ P

(
(Bε(minB))c

)

.
(logn)2

δ2(n ∧m)b2β+1
+ o(1).

Proof of Theorem 2.4. By a Taylor expansion argument we have

q̃τ,b − qτ = − M̃ ′
b(qτ )

M̃ ′′
b (q

∗
τ )

= −
∫ qτ
−∞ f̃b(x) dx − τ

2f̃b(q∗τ )
= −

∫ qτ
−∞(f̃b(x)− f(x)) dx

2f̃b(q∗τ )
,

for some intermediate point q∗τ between qτ and q̃τ,b. By Proposition 2.2, the numerator in the above
display is of order OP (n

−(α+1)/(2α+2β+1)) for the optimal bandwidth b∗. For the denominator we

will show f̃b(q
∗
τ ) = f(qτ ) + op(1) which completes the proof. Since f(• + qτ ) ∈ Cα([−ζ, ζ], R), we

obtain |f(x+ qτ )− f(qτ )| < t/2 for all |x| 6 ( t
2R )

1∨α−1 ∧ ζ =: δ for any t > 0. Therefore,

P (|f̃b(q̃τ,b)− f(qτ )| > t) 6P
(

sup
x∈[−δ,δ]

|f̃b(x+ qτ )− f(qτ )| > t
)
+ P (|q̃τ,b − qτ | > δ)

6P
(

sup
x∈[−δ,δ]

|f̃b(x+ qτ )− f(x+ qτ )| > t/2
)
+ P (|q̃τ,b − qτ | > δ). (35)

Checking that the bandwidth satisfies b→ 0 and log(n)/(nb2β+1) → 0 for n→ ∞, the first term on
the right hand side above converges to zero by the uniform consistency proved in Proposition 2.3.
The second one vanishes by Lemma A.4.



I. Dattner, M. Reiß and M. Trabs/Quantile estimation in deconvolution 23

Appendix B: Proofs for Section 3

We start with showing that the construction of Bn from Lemma 3.1 satisfies Assumption 2.

Proof of Lemma 3.1. The deterministic counterpart of b̃min, which is defined in (12), is given by

bmin := min
{
b ∈ Λn : 2 6

( logn
n

)1/2
∫ 1/b

−1/b

|ϕε(u)|−1 du 6 4
}
.

Noting that for fε ∈ Dβ(R, γ)

4 >
( logn

n

)1/2
∫ 1/bmin

−1/bmin

|ϕε(u)|−1 du &
( logn

nb2β+2
min

)1/2

we obtain nb2β+2
min → ∞ and thus it is sufficient to prove the following

inf
f∈Cα(R,r,ζ)

inf
fε∈Dβ(R,γ)

P (bmin 6 b̃min 6 b∗) → 1 as n→ ∞. (36)

for the optimal bandwidth b∗ = n−1/2α+2(β∨1/2)+1 for convenience we define

In(b) :=
( logn

n

)1/2
∫ 1/b

−1/b

du

|ϕε(u)|
, Ĩn(b) :=

( logn
n

)1/2
∫ 1/b

−1/b

du

|ϕε,m(u)| .

Assume b̃min < bmin, then monotonicity implies Ĩn(bmin) 6 Ĩn (̃bmin) 6 1. Combining with

In(bmin) > 2, we obtain In(bmin)− Ĩn(bmin) > 1. Hence,

P (̃bmin < bmin) 6 P
(
|In(bmin)− Ĩn(bmin)| > 1

)
. (37)

On the other hand, if b∗ < b̃min, we get Ĩn(b
∗) > Ĩn(̃bmin) > 1/2. Since In(b

∗) . ( logn
n(b∗)2β+2 )

1/2

converges to zero, In(b
∗) 6 1/4 for n large enough. Thus,

P (̃bmin > b∗) 6 P
(
|In(b∗)− Ĩn(b

∗)| > 1/4
)
. (38)

To show that the right-hand sides of (37) and (38) converge to zero, we first apply the Cauchy–
Schwarz inequality

∣∣In(b)− Ĩn(b)
∣∣2 6

logn

n

∫ 1/b

−1/b

du

|ϕε(u)|2
∫ 1/b

−1/b

∣∣∣ ϕε(u)
ϕε,m(u)

− 1
∣∣∣
2

du

.
logn

nb2β+1

∫ 1/b

−1/b

∣∣∣ ϕε(u)
ϕε,m(u)

− 1
∣∣∣
2

du.

By Lemma A.1 we can consider the event Bε(b) only and thus Markov’s inequality and (29) yield

P
({∣∣In(b)− Ĩn(b)

∣∣ > 1
4

}
∩Bε(b)

)
.

logn

nb2β+1

∫ 1/b

−1/b

E

[∣∣∣ ϕε(u)
ϕε,m(u)

− 1
∣∣∣
2

1lBε(b)

]
du .

logn

nmb4β+2

which converges to zero for b ∈ {bmin, b∗}. Therefore, (36) holds true.
Before we can prove Theorem 3.2, some preparations are needed. By Lemma A.2 there is a

constant D > 0 such that the bias can be bounded by Bb := Dbα+1. By the error representation
(8) we have for any b ∈ B

|q̃τ,b − qτ | =
∣∣∣
∫ qτ
−∞

(f̃b(x) − f(x)) dx

2f̃b(q̃∗)

∣∣∣ 6 Bb + |Vb,X + Vb,ε + Vb,c|
2|f̃b(q∗)|

(39)
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with some q∗ ∈ [(qτ ∧ q̃τ,b), (qτ ∨ q̃τ,b)] and where the stochastic error is decomposed in

Vb,X :=
1

n

n∑

j=1

(
ξj(b)− E[ξj(b)]

)
with (40)

ξj(b) :=

∫ 0

−∞

as(x)F−1
[ϕK(bu)eiuYj

ϕε(u)

]
(x+ qτ ) dx,

Vb,ε :=

∫ 0

−∞

as(x)F−1
[ϕK(bu)ϕn(u)

ϕε(u)

( ϕε(u)

ϕε,m(u)
− 1

)]
(x+ qτ ) dx (41)

Vb,c :=

∫ 0

−∞

ac(x)F−1
[
ϕK(bu)

( ϕn(u)

ϕε,m(u)
− ϕX(u)

)]
(x+ qτ ) dx. (42)

In view of the analysis in Section A.2, the part of the stochastic error which is due to the continuous
part ac will be negligible. Hence, we concentrate on Vb,X and Vb,ε. By independence of (ξj(b))j ,
we obtain

Var(Vb,X) 6
1

n
E[ξj(b)

2] =
1

n
E

[( ∫ 0

−∞

as(x)F−1
[ϕK(bu)eiuYj

ϕε(u)

]
(x+ qτ ) dx

)2]
=: σ2

b,X . (43)

To determine the variance of Vb,ε, it will be helpful again to restrict to the event Bε(b), defined
in (18). We apply Plancherel’s identity and the Cauchy–Schwarz inequality to separate Yi and εi
from each other since they are not necessarily independent:

E[|Vb,ε|1lBε(b)] =
1

2π
E

[∣∣∣
∫

R

F as(−u)e−iuqτ
ϕK(bu)ϕn(u)

ϕε(u)

( ϕε(u)

ϕε,m(u)
− 1

)
du

∣∣∣1lBε(b)

]

6
1

2π
E

[( ∫

R

|ϕK(bu)|
∣∣∣ϕn(u)
ϕε(u)

∣∣∣
2

du
)1/2

×
(∫

R

|ϕK(bu)|| F as(−u)|2
∣∣∣ ϕε(u)
ϕε,m(u)

− 1
∣∣∣
2

du
)1/2

1lBε(b)

]

6
1

2π
E

[( ∫

R

|ϕK(bu)|
∣∣∣ϕn(u)
ϕε(u)

∣∣∣
2

du
)1/2

× sup
|u|61/b

|ϕε,m(u)− ϕε(u)|
( ∫

R

|ϕK(bu)|
∣∣∣F as(−u)
ϕε,m(u)

∣∣∣
2

du1lBε(b)

)1/2]
. (44)

Let us define

σb,ε :=
1

2π
m−1/2σb,ε,1σb,ε,2 (45)

with

σb,ε,1 := E

[( ∫

R

|ϕK(bu)|
∣∣∣ϕn(u)
ϕε(u)

∣∣∣
2

du
)1/2]

,

σb,ε,2 := E

[( ∫

R

|ϕK(bu)|
∣∣∣F as(−u)
ϕε,m(u)

∣∣∣
2

du
)1/2

1lBε(b)

]
.

With the bounds σb,X and σb,ε at hand, we obtain the following concentration results.

Lemma B.1. Let B be a set satisfying |B| . logn, (log logn)/nb1 → 0 for b1 = minB as well as
| log b1| . logn. Then we obtain uniformly over f ∈ Cα(R, r, ζ) and fε ∈ Dβ(R, γ) for any δ > 0:

(i) P
(
∃b ∈ B : |Vb,X | > (1 + δ)

√
log logn

(√
2σb,X + o(n−1/2(b−β+1/2 ∨ 1))

))
→ 0.

(ii) P
(
∃b ∈ B :

∣∣Vb,ε| > δ(logn)3σb,ε

)
→ 0.

(iii) Assuming further mb
(2β∧1)+2
1 & 1,

P
(
∃b ∈ B :

∣∣Vb,c| > (logn)3/2n−1/2(b−β+1/2 ∨ 1)
)
→ 0.
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Proof. (i) Using Bernstein’s inequality, we start with proving uniformly over f ∈ Cα(R, r, ζ) and
fε ∈ Dβ(R, γ) for any positive κn = o(nb)

P
(
|Vb,X | > √

κn
(√

2σb,X + o(n−1/2(b−β+1/2 ∨ 1))
))

6 2e−κn . (46)

The assertion follows then from choosing κn = (1 + δ)2 log logn for some δ > 0 and |B| . logn.
Plancherel’s identity yields the deterministic bound

|ξj(b)| =
∣∣∣
∫ 1/b

−1/b

F as(u)
ϕK(bu)eiuYj

ϕε(u)
e−iuqτ du

∣∣∣ 6
∫ 1/b

−1/b

| F as(u)|
∣∣∣ϕK(bu)

ϕε(u)

∣∣∣du

.

∫ 1/b

−1/b

1

(1 + |u|)|ϕε(u)|
du . bβ

Hence, |ξj(b)− E[ξj(b)]| 6 Cb−β for some constant C > 0. Since the variance is bounded by (43),
Bernstein’s inequality (e.g. Massart (2007), Prop. 2.9) yields

P
(
|Vb,X | >

√
2σ2

b,Xκn +
Cκn
3nbβ

)
6 2e−κn .

Therefore, (46) follows from
√
κn(nb

β)−1 . (n(b2β−1 ∧ 1))−1/2
(
κn/(nb)

)1/2
.

(ii) Using an estimate as in (44), we obtain

|Vb,ε| 6
1

2π

( ∫

R

|ϕK(bu)|
∣∣∣ϕn(u)
ϕε(u)

∣∣∣
2

du
)1/2(∫

R

|ϕK(bu)|| F as(−u)|2
∣∣∣ϕε(u)− ϕε,m(u)

ϕε,m(u)

∣∣∣
2

du
)1/2

6
1

2π

( ∫

R

|ϕK(bu)|
∣∣∣ϕn(u)
ϕε(u)

∣∣∣
2

du
)1/2

×
( ∫

R

|ϕK(bu)|
∣∣∣F as(−u)
ϕε,m(u)

∣∣∣
2

du
)1/2

sup
|u|61/b

∣∣ϕε(u)− ϕε,m(u)
∣∣

=:
1

2π
Vb,ε,1Vb,ε,2 sup

|u|61/b

∣∣ϕε(u)− ϕε,m(u)
∣∣.

Hence for any c > 0

P
({∣∣Vb,ε| > δ(logn)3σb,ε

}
∩Bε(b)

)

6 P
(
|Vb,ε,1| > (logn)1+cσb,ε,1

)
+ P

({
|Vb,ε,2| > (logn)1+cσb,ε,2

}
∩Bε(b)

)

+ P
(

sup
|u|61/b

∣∣ϕε(u)− ϕε,m(u)
∣∣ > δ(log n)1−2cm−1/2

)
=: Pb,1 + Pb,2 + Pb,3.

The first two probabilities can be bounded by Markov’s inequality:

Pb,1 6 (logn)−1−cσ−1
b,ε,1 E[Vb,ε,1] = (log n)−1−c,

Pb,2 6 (logn)−1−cσ−1
b,ε,2 E[Vb,ε,21lBε(b)] = (logn)−1−c.

For Pb,3 we will apply the following version of Talagrand’s inequality (cf. Massart (2007), (5.50)):
Let T be a countable index and for all t ∈ T let Z1,t, . . . , Zn,t be an i.i.d. sample of centered,
complex valued random variables satisfying ‖Zk,t‖∞ 6 b, for all t ∈ T, k = 1, . . . , n, as well as
supt∈T Var(

∑n
k=1 Zk,t) 6 v <∞. Then for all κ > 0

P
(
sup
t∈T

∣∣∣
n∑

k=1

Zk,t

∣∣∣ > 4E
[
sup
t∈T

∣∣∣
n∑

k=1

Zk,t

∣∣∣
]
+
√
2vκ+

2

3
bκ

)
6 2e−κ. (47)
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Choosing the rational numbers T = Q∩[− 1
b ,

1
b ] and Zk,t := eitε

∗

k − ϕε(t), Talagrand’s inequality
applies with b = 2 and v = n. As in (17) we use Theorem 4.1 by Neumann and Reiß (2009) to
obtain for any η ∈ (0, 1/2)

m1/2 E

[
sup

|u|61/b

|ϕε,m(t)− ϕε(t)|
]
. | log b|1/2+η.

Therefore on the assumptions κ−1
n (log n)1+2η → 0 and κn/m→ 0

4E
[

sup
|u|61/b,u∈Q

|ϕε,m(u)− ϕε(u)|
]
+

√
2κn
m

+
4

3m
κn =

√
κn
m

(√
2 + o(1)

)

and thus continuity of ϕε,m and (47) yield

Pb,3 = P
(

sup
|u|61/b,u∈Q

∣∣ϕε,m(u)− ϕε(u)
∣∣ > (

√
2 + o(1))

√
κn/m

)
6 2e−κn .

With κn = δ
2 (log n)

2−4c for c < 1/4− η/2 we obtain P3 6 2n−δ/2.
Using b1 = minB, | logB| . logn and Lemma A.1, we finally get

P
(
sup
b∈B

∣∣Vb,ε| > (
√
2 + δ)(log n)3σb,ε

)
6

∑

b∈B

(
Pb,1 + Pb,2 + Pb,3

)
+ P (Bε(b1)

c) = o(1).

(iii) Corollary A.3 shows for δb > 0 and for any sequence (xn)n that tends to infinity

P
(
∃b ∈ B :

∣∣Vb,c| > δb

)
.

∑

b∈B

xn
δ2bn(mb

2β+2 ∧ 1)
+ o(1).

So, choosing δb = (log n)3/2n−1/2(b−β+1/2 ∨ 1) and xn = o((log n)1/2) yields

P
(
∃b ∈ B :

∣∣Vb,c| > (log n)3/2n−1/2(b−β+1/2 ∨ 1)
)

.
∑

b∈B

xn
(log n)3(mb(2β∧1)+2 ∧ 1)

+ o(1) .
xn

(logn)2(mb(2β∧1)+2 ∧ 1)
+ o(1) = o(1).

For the denominator in the error representation (39) we need uniform consistency. A uniform
result on the error |q̃τ,b − qτ | follows immediately.

Lemma B.2. Let B be a finite set satisfying |B| . logn, supb∈B b log(n) → 0 as well as
supb∈B(log n)

2/(nb2β+1) → 0. Then we obtain for n→ ∞ and η ∈ (0, 1)

sup
f∈Cα(R,r,ζ)

sup
fε∈Dβ(R,γ)

P
(
sup
b∈B

sup
q∗τ∈[qτ∧q̃τ,b,qτ∨q̃τ,b]

|f̃b(q∗τ )− f(qτ )| > ηf(qτ )
)
→ 0. (48)

Moreover, supposing minb∈B nb
(2β∧1)+2 & 1, we obtain uniformly in f ∈ Cα(R, r, ζ) and fε ∈

Dβ(R, γ) for any sequence of critical values (δb)b∈B satisfying infB δb → ∞

P
(
∃b ∈ B : |q̃τ,b − qτ | > δb

(
3Dbα+1 + n−1/2(b−β+1/2 ∨ 1)

))
.

∑

b∈B

1

δb
+ o(1). (49)

Proof. Since f(qτ ) > r and f ∈ Cα([qτ − ζ, qτ + ζ], R), decomposition (35) implies with κ =

( ηr2R )
1∨α−1 ∧ ζ

P
(
sup
b∈B

sup
q∗τ∈[qτ∧q̃τ,b,qτ∨q̃τ,b]

|f̃b(q∗τ )− f(qτ )| > ηf(qτ )
)
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6P
(
sup
b∈B

sup
x∈[−κ,κ]

|f̃b(x+ qτ )− f(x+ qτ )| > ηr/2
)
+ P (sup

b∈B
|q̃τ,b − qb| > κ). (50)

Using b1 = minB, the first probability can be bounded by

∑

b∈B

P
({

sup
x∈[−κ,κ]

|f̃b(x+ qτ )− f(x+ qτ )| > ηr/2
}
∩Bε(b1)

)
+ P (Bε(b1)

c)

. logn sup
b∈B

P
({

sup
x∈[−κ,κ]

|f̃b(x+ qτ )− f(x+ qτ )| > ηr/2
}
∩Bε(b1)

)
+ o(1) = o(1),

since for all b the probability in the last line converges faster to zero than 1/ logn owing to the
concentration inequalities (31) and (32) and the conditions on b. To estimate the second term in
(50), we apply Lemma A.4. Therefore, the conditions b log(n) → 0 and (log n)2/(nb2β+1) → 0
yield the first assertion.

The estimate (49) follows from the error decomposition (8), (48) and Corollary A.3 with xn =
o(infB δb)

P
(
∃b ∈ B : |q̃τ,b − qτ | > δb

(
3Dbα+1 + n−1/2(b−β+1/2 ∨ 1)

))

6P
(
∃b ∈ B :

∣∣∣
∫ qτ

−∞

f̃b(x) − f(x) dx
∣∣∣ > 1

2f(qτ )δb
(
3Dbα+1 + n−1/2(b−β+1/2 ∨ 1)

))

+ P
(
sup
b∈B

sup
q∗τ∈[qτ∧q̃τ,b,qτ∨q̃τ,b]

|f̃b(q∗τ )− f(qτ )| > 1
2f(qτ )

)

.
∑

b∈B

( 1

δb
+

1

δ2b

xn
mb1∧2β+2 ∧ 1

)
+ o(1) .

∑

b∈B

1

δb
+ o(1).

The variances σb,X and σb,ε, defined in (43) and (45), are of course not available in practice.
Instead, they can be estimated by

σ̃2
b,X =

1

n2

n∑

j=1

( ∫ 0

−∞

as(x)F−1
[ϕK(bu)eiuYj

ϕε,m(u)

]
(x+ q̃τ,b) dx

)2

, σ̃2
b,ε =

1

2π
m−1/2σ̃2

b,ε,1σ̃
2
b,ε,2

with

σ̃2
b,ε,1 =

∫ 1/b

−1/b

|ϕK(bu)|
∣∣∣ ϕn(u)
ϕε,m(u)

∣∣∣
2

du, σ̃2
b,ε,2 =

∫ 1/b

−1/b

|ϕK(bu)| | F as(u)|2
|ϕε,m|2 du.

The following two lemmas show that these estimators are indeed reasonable.

Lemma B.3. Let B be a finite set satisfying |B| . logn, maxb∈B b
α log n → 0 as well as

minb∈B nb
2β+2 → ∞. Then we obtain for all η > 0 as n→ ∞

sup
f∈Cα(R,r,ζ)

sup
fε∈Dβ(R,γ)

P
(
∃b ∈ B : |σ̃b,X − σb,X | > ηm−1/2(b−β+1/2 ∨ 1)

)
→ 0.

Proof. Note that

σ̃2
b,X =

1

n2

n∑

j=1

ξ2j,1(b) +
1

n2

n∑

j=1

ξ2j,2(b) +
1

n2

n∑

j=1

ξ2j,3(b)

+
2

n2

n∑

j=1

ξj,1(b)ξj,2(b) +
2

n2

n∑

j=1

ξj,1(b)ξj,3(b) +
2

n2

n∑

j=1

ξj,2(b)ξj,3(b), (51)

where we have defined

ξj,1(b) :=

∫ 0

−∞

as(x)F−1
[
ϕK(bu)eiuYj

( 1

ϕε,m(u)
− 1

ϕε(u)

)]
(x+ q̃τ,b) dx,
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ξj,2(b) :=

∫ 0

−∞

as(x)F−1
[ϕK(bu)eiuYj

ϕε(u)

]
(x+ qτ ) dx,

ξj,3(b) :=

∫ 0

−∞

as(x)F−1
[ϕK(bu)eiuYj (e−iuq̃τ,b − e−iuqτ )

ϕε(u)

]
(x) dx.

We will first study these three terms separately. Applying Plancherel’s identity, the Cauchy–
Schwarz inequality, the Neumann type bound (29) as well as | F as(u)| 6 As(1 + |u|)−1 and the
decay of ϕε, we obtain

E[|ξj,1(b)|21lBε(b)] 6
9

2π2

∫ 1/b

−1/b

| F as(u)|2
|ϕε(u)|2

du

∫ 1/b

−1/b

|ϕK(bu)|2
m|ϕε(u)|2

du .
1

(b2β−1 ∧ 1)mb2β+1
, (52)

E[|ξj,2(b)|2] =E

[∣∣∣ 1
2π

∫

R

F as(u)e
−iuqτ

ϕK(bu)

ϕε(u)
eiuYj du

∣∣∣
2]

6
‖K‖2L1A2

s‖fY ‖∞R2

4π2

∫ 1/b

−1/b

(1 + |u|)2β−2 du =: S2
b (53)

as well as the deterministic bound

|ξj,2(b)|2 =
∣∣∣ 1

2π

∫

R

F as(u)e
−iuqτ

ϕK(bu)

ϕε(u)
eiuYj du

∣∣∣
2

6
‖K‖2L1

A2
s

4π2

∫ 1/b

−1/b

(1 + |u|)2β du =: d2b . (54)

Hence, Var[ξj,2(b)
2] 6 E[ξj,2(b)

4] 6 d2bS
2
b . and |ξ2j,2(b)−E[ξ2j,2(b)]| 6 2d2b , so that an application of

Bernstein’s inequality yields for any b > 0 and z > 0

P
(∣∣∣ 1
n

n∑

j=1

(ξ2j,2(b)− E[ξ2j,2(b)])
∣∣∣ > z

)
6 2 exp

(
− z2n

2S2
bd

2
b +

4
3d

2
bz

)
.

Setting z = S2
b and noting S2

b . (b−2β+1 ∨ 1), d2b . b−2β, we see that

P
(∣∣∣ 1
n

n∑

j=1

(ξ2j,2(b)− E[ξ2j,2(b)])
∣∣∣ > S2

b

)
62 exp

(
− S2

bn

4d2b

)
6 2 exp

(
− Cnb2β∧1

)
(55)

for some constant C. The right-hand side of (55) tends to zero with polynomial rate since nb2β∧1 &

logn.
Finally, we use supp as ⊆ [−1, 0] to write ξj,3 as

ξj,3(b) =

∫

R

(
as(x− q̃τ,b)− as(x− qτ )

)
F−1

[ϕK(bu)eiuYj

ϕε(u)

]
(x) dx

6 sup
t∈(−1,0)

|a′s(t)||q̃τ,b − qτ |
∫ q̃τ,b∨qτ

(q̃τ,b∧qτ )−1

F−1
[ϕK(bu)eiuYj

ϕε(u)

]
(x) dx.

The Cauchy–Schwarz inequality and Plancherel’s identity yield

|ξj,3(b)|2 6‖a′s1l(−1,0)‖2∞|q̃τ,b − qτ |2(1 + |q̃τ,b − qτ |)
∫ q̃τ,b∨qτ

(q̃τ,b∧qτ )−1

∣∣∣F−1
[ϕK(bu)eiuYj

ϕε(u)

]
(x)

∣∣∣
2

dx

6
‖a′s1l(−1,0)‖2∞

2π
|q̃τ,b − qτ |2(1 + |q̃τ,b − qτ |)

∫

R

∣∣∣ϕK(bu)

ϕε(u)

∣∣∣
2

du

.|q̃τ,b − qτ |2(1 + |q̃τ,b − qτ |)b−2β−1.

By Lemma A.4 supb∈B |q̃τ,b − qτ | = oP (1). Applying (49), we conclude for some constant C > 0,
for δb = (bα+(1/2−β)+ + n−1/2b−β−1/2))−1 and for any η > 0

P
(
∃b ∈ B : |ξj,3(b)| > η(b−β+1/2 ∨ 1)

)
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6P
(
∃b ∈ B : |q̃τ,b − qτ | > ηCb(β∧1/2)+1/2

)
+ o(1)

6P
(
∃b ∈ B : |q̃τ,b − qτ | > ηCδb(b

α+1 + n−1/2(b−β+1/2 ∨ 1))
)
+ o(1)

.
(∑

b∈B

(δb)
−1

)
+ o(1)

. sup
b∈B

bα logn+ sup
b∈B

logn√
nbβ+1/2

+ o(1) = o(1). (56)

Combining the variance bounds (52), (53) and (56), we apply Markov’s inequality, the Cauchy–
Schwarz inequality and the concentration result (55) on the decomposition (51) to obtain

sup
b∈B

(
n(b2β−1 ∧ 1)|σ̃2

b,X − σ2
b,X |

)
=sup
b∈B

(b2β−1 ∧ 1

n

n∑

j=1

(ξ2j,2(b)− E[ξ2j,2(b)])
)
+ oP (1) = oP (1).

Lemma B.4. Let B be a finite set satisfying |B| . logn as well as supb∈B 1/(nb2β+1) → 0. Then
we obtain uniformly over f ∈ Cα(R, r, ζ) and fε ∈ Dβ(R, γ) for all η > 0 as n→ ∞

P
(
∃b ∈ B : |σ̃b,ε − σb,ε| > η(log n)m−1/2(b−β+1/2 ∨ 1)

)
→ 0.

Proof. We start by showing for b1 = minB that

sup
|u|61/b1

∣∣∣ ϕε(u)
ϕε,m(u)

∣∣∣ = 1 + oP (1). (57)

To this end, recall w(u) = (log(e + |u|))−1/2−η for some η ∈ (0, 1/2). Markov’s inequality,
Lemma A.1 and Theorem 4.1 by Neumann and Reiß (2009) yield for any δ > 0

P
(

sup
|u|61/b1

∣∣∣ ϕε(u)
ϕε,m(u)

− 1
∣∣∣ > δ

)
6P

(
sup

|u|61/b1

m1/2|ϕε(u)− ϕε,m(u)| > δ| log b1|
)

+ P
(

inf
|u|61/b1

|ϕε,m(u)| 6 m−1/2| log b1|
)

6(δ| log b1|)−1 E

[
sup

|u|61/b1

m1/2|ϕε(u)− ϕε,m(u)|
]
+ o(1)

6
1

δ| log b1|w(1/b1)
E

[
sup
u∈R

m1/2w(u)|ϕε(u)− ϕε,m(u)|
]
+ o(1)

=o(1),

which is (57). Note that [−1/b1, 1/b1] is the maximal interval for all b ∈ B and thus (57) holds
uniformly in B.

Now, we consider σ̃b,ε,1. The uniform consistency (57) implies

σ̃2
b,ε,1 = (1 + oP (1))

∫

R

|ϕK(bu)|
∣∣∣ϕn(u)
ϕε(u)

∣∣∣
2

du.

Chebyshev’s inequality yields for all η > 0

P
(
sup
b∈B

∣∣∣
( ∫

R

|ϕK(bu)| |ϕn(u)|
2

|ϕε(u)|2
du

)1/2

− E

[(∫

R

|ϕK(bu)| |ϕn(u)|
2

|ϕε(u)|2
du

)1/2]∣∣∣ > η logn
)

6(η logn)−2
∑

b∈B

E

[ ∫

R

|ϕK(bu)| |ϕn(u)|
2

|ϕε(u)|2
du

]
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.(η2 logn)−1

∫ 1/b1

−1/b1

E[|ϕn(u)|2]
|ϕε(u)|2

du . (η2 logn)−1,

where the last estimate follows from E[|ϕn(u)|2] . |ϕY (u)|2+E[|ϕn(u)−ϕY (u)|2] . |ϕY (u)|2+1/n,

fε ∈ Dβ(R, γ), ‖f‖∞ . 1 and nb2β+1
1 → ∞. Hence, we obtain uniformly in B

σ̃b,ε,1 = (1 + oP (1))
(
σb,ε,1 + oP (log n)

)
= σb,ε,1 + oP (log n). (58)

Concerning σ̃b,ε,2, we write with use of (57)

σ̃2
b,ε,2 =

∫ 1/b

−1/b

|ϕK(bu)| | F as(u)|2
|ϕε,m(u)|2 du = (1 + op(1))

∫ 1/b

−1/b

|ϕK(bu)| | F as(u)|2
|ϕε(u)|2

du.

Moreover, the triangle inequality for the L2-norm and Lemma A.1, applied on Bε(b1) which is
defined in (18), yield

∣∣∣
( ∫ 1/b

−1/b

|ϕK(bu)| | F as(u)|2
|ϕε(u)|2

du
)1/2

− σb,ε,2

∣∣∣
2

62
∣∣∣E

[((∫ 1/b

−1/b

|ϕK(bu)| | F as(u)|2
|ϕε(u)|2

du
)1/2

−
( ∫ 1/b

−1/b

|ϕK(bu)| | F as(u)|2
|ϕε,m(u)|2 du

)1/2)
1lBε(b1)

]∣∣∣
2

+ 2P
(
(Bε(b1))

c
) ∫ 1/b

−1/b

|ϕK(bu)| | F as(u)|2
|ϕε(u)|2

du

62E
[(∫ 1/b

−1/b

|ϕK(bu)|| F as(u)|2
|ϕε,m(u)− ϕε(u)|2
|ϕε(u)ϕε,m(u)|2 du

)
1lBε(b1)

]
+ o(1)

∫ 1/b

−1/b

| F as(u)|2
|ϕε(u)|2

du

6
2

| log b1|3/2
E

[ ∫ 1/b

−1/b

| F as(u)|2
|ϕε(u)|2

m|ϕε,m(u)− ϕε(u)|2 du
]
+ o(1)(b−2β+1 ∨ 1)

=o(1)(b−2β+1 ∨ 1),

where o(1) is a null sequence which does not depend on b. Consequently,

sup
b∈B

∣∣∣
( ∫ 1/b

−1/b

|ϕK(bu)| | F as(u)|2
|ϕε(u)|2

du
)1/2

− σb,ε,2

∣∣∣(bβ−1/2 ∧ 1) = o(1).

We get

σ̃b,ε,2 = (1 + op(1))
(
σb,ε,2 + o

(
b−β+1/2 ∨ 1

))
= σb,ε,2 + oP

(
b−β+1/2 ∨ 1

)
, (59)

where the last estimate follows from σ2
b,ε,2 . b−2β+1 ∨ 1 by the analysis of the convergence rates.

Since σb,ε,1 . 1 and σb,ε,2 . b−β+1/2∨1, it remains to combine (58) and (59) to obtain uniformly
in B

σ̃b,ε =
1

2π
m−1/2σ̃b,ε,1σ̃b,ε,2 =

1

2π
m−1/2

(
σb,ε,1 + oP (log n)

)(
σb,ε,2 + oP

(
b−β+1/2 ∨ 1

))

= σb,ε + oP
(
(logn)m−1/2(b−β+1/2 ∨ 1)

)
.

Proof of Theorem 3.2. As seen in error decomposition (39), there are three stochastic errors
Vb,X , Vb,ε and Vb,c which were treated in Lemma B.1. This motivates the following definition.
For δ1 > 0 let

Sb,X := (1 + δ1)
√
2 log log n max

µ∈B:µ>b
σµ,X , Sb,ε := (δ1 logn)

3 max
µ∈B:µ>b

σµ,ε.
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Note that on the assumption |ϕε(u)| & (1+|u|)−β we obtain for σb,ε =
1
2πm

−1/2σb,ε,1σb,ε,2, defined
in (45), that

σ2
b,ε,2 &

∫ 1/b

−1/b

| F as(−u)|2(1 + |u|)2β du &

∫ 1/b

−1/b

(1 + |u|)2β−2 du ∼ b−2β+1 ∨ 1

and thus σb,ε & m−1/2(b−β+1/2 ∨ 1). Therefore, Lemma B.1 yields

P
(
∃b ∈ B : |Vb,X + Vb,ε + Vb,c| > Sb,X + Sb,ε

)

6P
(
∃b ∈ B : |Vb,X | > Sb,X + 1

3Sb,ε

)
+ P

(
∃b ∈ B : |Vb,ε| >

Sb,ε
3

)
+ P

(
∃b ∈ B : |Vb,c| >

Sb,ε
3

)

=o(1).

Hence, the probability of the event

A1 :=
{
∀b ∈ B : |Vb,X + Vb,ε + Vb,c| 6 Sb,X + Sb,ε

}

converges to one. The variances Sb,X and Sb,ε can be estimated by

S̃b,X := (1 + δ1)
√
2 log log n max

µ∈B:µ>b
σ̃µ,X , S̃b,ε := (δ1 logn)

3 max
µ∈B:µ>b

σ̃µ,ε.

We apply Lemmas B.3 and B.4 and the triangle inequality of the ℓ∞-norm to obtain uniformly in
b ∈ B

|max
µ>b

σ̃µ,X −max
µ>b

σµ,X | 6 max
µ>b

|σ̃µ,X − σµ,X | = oP

( 1

m1/2(bβ−1/2 ∧ 1)

)
,

|max
µ>b

σ̃µ,ε −max
µ>b

σµ,ε| 6 max
µ>b

|σ̃µ,ε − σµ,ε| = oP

( logn

m1/2(bβ−1/2 ∧ 1)

)
.

Using again σb,ε & m−1/2(b−β+1/2 ∨ 1), we thus obtain for all η > 0 that the event

A2 :=
{
∀b ∈ B :

∣∣(S̃b,X + S̃b,ε)− (Sb,X + Sb,ε)
∣∣ 6 η(Sb,X + Sb,ε)

}

has asymptotically probability one. The same holds true for the events

A3 :=
{
∀b ∈ B : sup

q∗∈[(qτ∧q̃τ,b)∨(qτ∧q̃τ,b)]

|f̃b(q∗)− f(qτ )| 6 ηf(qτ )
}
,

A4 :=
{
∀b ∈ B : sup

q∗∈[(qτ∧q̃τ,b)∨(qτ∧q̃τ,b)]

|f̃b(q∗)− f̃b(q̃τ,b)| 6 η|f̃b(q̃τ,b)|
}

by (48). Therefore, it is sufficient to work in the following on the event

A :=A1 ∩ A2 ∩ A3 ∩A4.

We now show that the adaptive estimator q̃τ mimics the oracle estimator defined as follows.
Recalling the estimate of the bias Bb = Dbα+1, let the oracle bandwidth be defined by

b∗ := max{b ∈ B : Bb 6 Sb,X + Sb,ε}. (60)

Note that b∗ is well-defined and unique since Bb is monoton increasing in b while (Sb,X + Sb,ε) is
monton decreasing. We get the oracle estimator q̃τ,b∗ .

Since on A4 for all b ∈ B and q∗ ∈ [(qτ ∧ q̃τ,b) ∨ (qτ ∧ q̃τ,b)]

|f̃b(q∗)| > |f̃b(q̃τ,b)| − |f̃b(q∗)− f̃b(q̃τ,b)| > (1 − η)|f̃b(q̃τ,b)|,
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we have for any b ∈ B on the event A1 ∩A4 by (39)

|q̃τ,b − qτ | 6
Bb + |Vb,X + Vb,ε + Vb,c|

2|f̃b(q∗)|
6
Bb + Sb,X + Sb,ε

2(1− η)|f̃b(q̃τ,b)|
.

Furthermore, by the definition of b∗ we have on the event A for any b 6 b∗

|q̃τ,b − qτ | 6
Sb,X + Sb,ε

(1− η)|f̃b(q̃τ,b)|
.

On A2 we can estimate S̃b,X + S̃b,ε > (1− η)(Sb,X + Sb,ε). In particular, we have on the event A
for any b 6 b∗

|q̃τ,b − qτ | 6
S̃b,X + S̃b,ε

(1− η)2|f̃b(q̃τ,b)|

Since for any δ > 0 we find δ1, η > 0 such that
(
(1 − η)−2(

√
2 + δ1) −

√
2
)
∨
(
(1 − η)−2δ1

)
< δ,

we obtain |q̃τ,b − qτ | 6 Σ̃b with Σ̃b as defined in (13). As a result one has qτ ∈ Ub and qτ ∈ Uµ
for all b 6 b∗ and µ 6 b∗, implying Uµ ∩ Ub 6= ∅. By the definition of the procedure, b̃∗ > b∗ and
Ub̃∗ ∩ Ub∗ 6= ∅ on the event A. This leads to

|q̃τ,̃b∗ − qτ | 6|q̃τ,b∗ − qτ |+ |q̃τ,̃b∗ − q̃τ,b∗ | 6 Σ̃b∗ + (Σ̃b∗ + Σ̃b̃∗)

On A2 ∩ A3 we have Σ̃b . Sb,X + Sb,ε since f(qτ ) > r. Using additionally the monotonicity of

(Sb,X + Sb,ε) as well as b̃
∗ > b∗, this implies

|q̃τ,̃b∗ − qτ | . (Sb∗,X + Sb∗,ε) .
(√

log logn+
(
lognδ

)3)(
b
−β+1/2
∗ ∨ 1

)
n−1/2.

It remains to note by the definition (60) of the oracle b∗ and by the assumption bj+1/bj . 1 that
b∗ ∼ n−1/(2α+2(β∨1/2)+1) as n→ ∞.
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