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Abstract

Parsing plays an important role in semantic role label-
ing (SRL) because most SRL systems infer semantic
relations from 1-best parses. Therefore, parsing errors
inevitably lead to labeling mistakes. To alleviate this
problem, we propose to use packed forest, which com-
pactly encodes all parses for a sentence. We design an
algorithm to exploit exponentially many parses to learn
semantic relations efficiently. Experimental results on
the CoNLL-2005 shared task show that using forests
achieves an absolute improvement of 1.2% in terms of
F1 score over using 1-best parses and 0.6% over using
50-best parses.

Introduction
Semantic role labeling (SRL) is consider to be an important
task toward natural language processing, and has been re-
cently used in kinds of natural language applications, such
as Information Extraction (Surdeanu et al. 2003), Question
and Answering (Shen and Lapata 2007) , Machine Transla-
tion (Wu and Fung 2009), Coreference Resolution (Kong et
al. 2008) and so on. Given a sentence, the goal of SRL is to
assign semantic roles (arguments) to syntactic constituents
for each target verb (predicate). Arguments usually include
Agent, Patient, Instrument, etc. and also adjuncts such as
Locative, Temporal, Manner, Cause, etc. For an overview of
semantic role labeling, readers can refer to Màrquez (2009).

Generally, semantic role labeling consists of two steps:
identifying and classifying arguments. The former step
involves assigning either a semantic argument or non-
argument to syntactic element, while the latter includes giv-
ing a special semantic role for identified argument. To dis-
tinguish the different semantic roles, most previous work
map one argument to one syntactic constituent and then ex-
tract effective features for the syntactic constituent. Pun-
yakanok, Roth, and tau Yih (2005) shows, most systems
rely heavily on the full syntactic parse trees. And because
of error propagation and amplification through the chained
modules, the overall performance of the system is largely
determined by the quality of the automatic syntactic parsers.

However, to our best of knowledge, previous reported
work employed only 1-best parses or lists ofk-best parses,
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Charniak Parser Collins Parser
AM-MOD 10,099 10,112

A1 9,162 11,327
AM-NEG 3,556 3,560

A0 2,760 3,812
AM-DIS 1,629 1,651

Table 1: The top five arguments, which map to many syn-
tactic constituents obtained with the Charniak and Collins
Parsers. (A0 and A1 are two normalized arguments and
usually viewed assubjectandobjectin one sentence. AM-
MOD, AM-NEG and AM-DIS are three adjuncts indicat-
ing themodal verbs,negation particlesandclauses, respec-
tively.)

with limited derivations and variations, those syntactic pars-
ing results will inevitably affect the performance of SRL.
For example, most of traditional systems firstly map one
argument to one syntactic constituent in the parser trees,
however, according to our statistics, more than 15% argu-
ments map to many syntactic constituents in the full data
of CoNLL-20051 shared task(Carreras and Màrquez 2005)
because of the parsing errors. Table 1 shows the results of
two state of the art Charniak (Charniak 2001) and Collins
(Collins 1999) parsers, and the full data still includes more
than forty hundred arguments with one-to-many mapping in
their corresponding syntactic parser trees.

To alleviate the effects of parsing errors and express more
derivations of the parser tree, we employ a packed forest,
which almost includes all derivations of parser trees. The
employ of packed forest is mainly inspired from the work of
(Mi, Huang, and Liu 2008), who also use a packed forest to
weaken the impact of parsing errors in a machine translation
system. Nevertheless, using packed forest for semantic role
labeling, to our knowledge, is the first time. We first extract
useful features over forest, and then use a max-entropy clas-
sifier to identify and classify the semantic role in one step.2

Experimental results on the CoNLL-2005 shared task show

1http://www.cnts.ua.ac.be/conll2005/
2Although support vector machine is more effective for SRL,

max-entropy classifier is easier to handle multi-class classification
problems and run faster.



that our approach significantly improves the performance of
SRL system and achieves an absolute improvement of 1.2%
in F1 score over the 1-best system.

We first briefly describe the previous works of seman-
tic role labeling and review traditional tree-based approach.
Then we mainly describe our forest-based model. Finally we
present experimental results of different methods and con-
clude our work.

Semantic Role Labeling
Semantic role labeling plays an important role in natural lan-
guage processing. Given a sentence, the goal of SRL is to
identify argument of each target verb and then classify iden-
tified argument into different semantic role. For example,
given a sentence “The economy ’s temperature will betaken
from several vantage points this week”, the goal of SRL is
to identify different arguments for the verbtakewhich yields
the following output:

[A1 The economy ’s temperature][AM−MOD will ] be[V
taken] [A2 from several vantage points] [AM−TMP this

week].

where A1 represents thething taken, A2 represents the
entity taken from, AM-MOD is an adjunct indicating the
modal verb, AM-TMP is also an adjunct indicating the tim-
ing of the action and V determines the verb. Generally,
arguments such as A1, A2, etc. have different seman-
tics for each target verb that have specified in the Prop-
Bank(Kingsbury and Palmer 2002) Frame files. Moreover,
each argument can find a constituent in the correspond-
ing full syntactic parse tree. For more definitions of Prop-
Bank, readers can refer to (Kingsbury and Palmer 2002;
Palmer, Gildea, and Kingsbury 2005).

The work (Gildea and Jurafsky 2002), who used some
basic features such as Phrase Type, Governing Category,
Parse Tree Path, etc. and employed an interpolation
method to identify and classify the syntactic constituents
in the FrameNet (Baker, Fillmore, and Lowe 1998), can
be viewed as the first work of automatic semantic role la-
beling. Following this work, some excellent works fo-
cused on exploiting additional features(Pradhan et al. 2003;
Chen and Rambow 2003; Xue and Palmer 2004; Jiang, Li,
and Ng 2005), employing effective machine learning mod-
els(Nielsen and Pradhan 2004; Punyakanok et al. 2004;
Pradhan et al. 2004; Moschitti 2004; Pradhan et al. 2005a;
Zhang et al. 2007), using different syntactic views(Gildea
and Hockenmaier 2003; Pradhan et al. 2005b), robust la-
beling(Pradhan, WayneWard, and H.Martin 2008) and find-
ing similar verbs(Andrew and Reid 2007; Pennacchiotti et
al. 2008), etc. In addition, some works focused on semi-
supervised(Thompson 2004; Deschacht and Moens 2009;
Fürstenau and Lapata 2009a; Fürstenau and Lapata 2009b)
or unsupervised semantic role labeling(Swier and Stevenson
2004; Rappoport1 2009). Moreover, semantic role labeling
became a well-defined shared task at the CoNLL 2004, 2005
and 2008 conferences.

Most of those previous works can be viewed as tree-based
SRL, since they only take as input 1-best ork-best parse
trees, which inevitably affect the performance of SRL due
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Figure 1: Given the sentence, a) shows its packed forest
structure, b) represents the 1-best parse tree and c) is the
kth-best parse tree.

to the parsing errors. So we first review briefly the tree-
based approach and show the drawback of this model in next
section. Then we extend to our forest-based model.

Tree-based Semantic Role Labeling
Conventional tree-based SRL consists two steps: identifying
and classifying arguments.

The first step is to map each argument to one syntactic
constituent, they use a bottom-up approach to map the ar-
gument to the first syntactic constituent that has the same
boundaries. For example, Figure 1.c shows a partial syntac-
tic tree of one sentence. In order to map the argument A1 to
one syntactic constituent, they firstly find out the boundary
of A1 [the ... Celimene], and then climb as high as pos-
sible across the syntactic derivations, finally they meet the
first satisfied syntactic constituentNP. Following this way,
another argument A0 can be mapped to the syntactic con-
stituentPP. In addition, the constituent with no mapping of
arguments is viewed as a special argument. e.g.VP in Figure
1.c will be assigned to a role as “non-arg”.

After mapping all arguments, useful features over those
syntactic constituents are extracted to distinguish different
arguments, such as phrase type, first word, last word, etc.
Machine learning tools are used to classify the training sam-
ples consists of extracted flat features. Consequently, in the
decoding stage, they firstly generate the 1-best parse tree for
the given sentence, and then map each constituent to one ar-
gument that has the highest probability predicted by the ma-
chine learning tools. Finally, a greedy strategy is performed
to obtain the best assignments.

However, the problem will arise when we do SRL on
the tree in Figure 1.b, since no syntactic constituent can be



mapped to argument A1. Actually, the tree in Figure 1.b is
more likely generated than the tree in Figure 1.c by the most
of the-state-of-art parsers. In order to alleviate this prob-
lem, an obvious way is to usek-best list. However, ak-best
list, with its limited scope, has too few variations and too
many redundancies. For example,50-best parses can only
express five types of combinational ambiguous derivations
(25 < 50 < 26). Therefore, encoding ambiguous deriva-
tions as much as possible will results in a largek-best parses
but with a hugek. So it is also inefficient.

Forest-based Semantic Role Labeling
Different from previous works, we use packed forest in-
stead of 1-best ork-best parses. A packed forest is a com-
pact structure of parsing results that includes almost all the
derivations for a given sentence under context-free grammar
(Billott and Lang 1989). In this section, we describe the
structure of the packed forest and the features extracted over
forest, finally we propose an algorithm for decoding.

Packed Forest
A packed forest (forest), is a compact structure of all the
derivations given the sentence. Figure 1.a shows the forestof
the sentence “the role of Celimene , played by Kim Cattrall”.

According to different deductive strategies performed by
the parser, node NP0,9 in Figure 1.a includes two different
derivations

NP0,9 → NP0,2 PP2,4 PU4,5 VP5,9

and
NP0,9 → NP0,4 PU4,5 VP5,9

which results in two different parses shown in Figure 1.b
and Figure 1.c, respectively.

More formally, a compact forest consists of a pair〈V, E〉,
in which V includes all nodes and E involves all hy-
peredges (derivations). Generally, for a given sentence
w0w1...wn, the node inV has the form ofNi,j , where the in-
dexes denotes the source span (wi,j−1). The hyperedge is a
pair 〈head, tails〉, wherehead andtails are consequent and
antecedent items of hyperedge, respectively. For example,
e1 ande2 in Figure 1.a are two hyperedges, and

head(e1) = {NP0,9}, tails(e1) = {NP0,2, PP2,4, PU4,5, VP5,9},
and

head(e2) = {NP0,9}, tails(e2) = {NP0,4, PU4,5, VP5,9}

Since the packed forest can efficiently express large num-
ber of ambiguous derivations, it can be viewed as ak-best
parses but with a hugek.

Features
Most features in our system are mainly inspired from (Prad-
han et al. 2005a) and incorporated with some modification
to adapt the forest structure. Here, we only represent the
features that should be specially treated, which include

• Path records the traversal path through the parser tree
from the constituent to the predicate. This feature is
unique in 1-best parser tree while in forest structure re-
sults in multiple solutions. Taking constituentNP0,2 in

Figure 1.a for example, this feature results in two values:
NP↑NP↓VP↓VBN and NP↑NP↑NP↓VP↓VBN. To avoid
causing ambiguity, here we choose the shortest path from
the constituent to the predicate. We hence use the former
as the value of this feature while drop the latter, where the
length is longer than former.3

• Parent POS tag indicates the POS tag of the parent node.
Since one constituent might includes several parents node
in the forest, we reserve the parent node appeared in the
Path feature.

• Partial path indicates the partial path, which through the
parser tree from the constituent to the lower ancestor of
constituent and its predicate. As it also meets ambiguity
in forest structure, we use the shortest path the same as
thePath feature.

Decoding
Given the labeled predicates for a sentence, our searching
algorithm first identify the arguments, and then classify them
into semantic roles for each predicate.

We first parse the input sentence into a forest. Then, ac-
cording to the rules of SRL, a constituent in the forest is con-
sidered to be a candidate argument when its span does not
cross the predicate. For each candidate constituentci in the
forestf , we attempt to assign an argument with the highest
probability from the set of arguments,A1,T , which denotes
T types of arguments. However, as the different constituents
in the forest might have the similar span and one constituent
might embed in another, we keep only one argument with the
largest probability, since it is easy for a max-entropy classi-
fier to output the probabilityp(ci = aj) of each prediction.
We maximize the following objective function:

P̂ = argmax
aj∈A1,T

∑

ci∈f

{log p(ci = aj)} (1)

Since the packed forest consists of huge number of parses,
the probability of a constituent assigned to an argumentaj

can not be viewed as the value ofp(ci = aj) predicted by
the classifier. Formally, we note thattk is the score of the
k-th parser result generated by the parser andfk is the k-th
parser tree. Therefore, the object function yields the follow-
ing output.

P̂ = arg max
aj∈A1,T

∑

ci∈fk

{δ · log p(tk) + log p(ci = aj)} (2)

whereδ is a parameter and (0 ≤ δ ≤ 1).
In a compact forest, it is not easy to compute the score of

k-th parser result. However, we can use the Inside-Outside
viterbi algorithm to compute the fractional valuefrac(ci)
of the constituent instead of the score of k-th parser result.

frac(ci) =
αβ(ci)

αβ(TOP )
(3)

3Another alternative is considering the best scored path com-
puted by inside-outside algorithm, however, it gets no improvement
in our experiments.



Algorithm 1 Packed forest decoding algorithm.
1: Input: Predicate-tagged word sequence
2: Generate packed forest by modified Charniak parser
3: for predicatepi in the sentencedo
4: for constituentcj in the packed forestdo
5: if pi.span* cj .spanthen
6: 〈score,type〉:=GetFeatureScore(pi,cj)
7: st := 〈score,type〉
8: st.score :=st.score +δ · cj .frac
9: results[cj.span] := GetMax(results,st)
10: Sortresults in undescended order by score
11: for 〈score,type〉 in results do
12: span := 〈score,type〉.span
13: type := 〈score,type〉.type
14: if labeled[span] 6= truethen
15: labeled[span] := true
16: sentence[span] := type

where TOP is the root node of the packed forest.β andα
are inside and outside probability, respectively. The frac-
tional value can be viewed as the distance to the 1-best
parser. Finally, the object function has the following form.

P̂ = argmax
aj∈A1,T

∑

ci∈f

{δ · log
αβ(ci)

αβ(TOP )
+ log p(ci = aj)} (4)

Algorithm 1 shows the whole procedure of the decoding,
where in line 6, a function is used to get the basic predicted
score generated by the max-entropy classifier given the ex-
tracted features, and, in line 9, a function is used to return
the higher score. In line 10, we sort the candidates, and then
greedily output the best assignments.

Experiments
Experimental Setup
We perform our experiments on CoNLL-2005 shared task,
which used sections 02-21 of PropBank for training, section
24 for development and section 23 for test. The whole data
consists of 43594 sentences and 262281 arguments, in which
there are 35 roles including A0-A5, AA, 14 Adjunct (AM-)
and 14 Reference (R-) arguments.

In last section, we used inside-outside algorithm to com-
pute the fractional value for each node. Similarly, we com-
pute theαβ(e) for each hyperedge:

αβ(e) = α(head(e)) ×
∏

ni ∈tails(e)

β(ni) × p(e) (5)

wherep(e) is the probability of the hyperedge.
Intuitively, this merit can be viewed as the cost of the

best derivation that traversese, and the differenceη(e) =
log αβ(e)−log β(TOP ) is the distance away from the glob-
ally best derivation. Following Huang (2008), we prune
away all hyperedges that haveη(e) > p for a thresholdp.
Since huge forest involves large number of invalid deriva-
tions which potentially lead to misclassification, we can use
the thresholdp to limit the size of forest and test the im-
pact on performance given different values forp. Compared

Development Test
1-best (p <0.01) 27,010 46,740

forest (p=3) 41,751 70,603
forest (p=5) 56,342 93,712
forest (p=7) 76,980 122,564

Table 2: Constituents in different syntactic structure

Precision (%) Recall (%) F (%)
1-best 79.27 71.26 75.05
50-best 79.18 72.10 75.47

forest (p=3) 78.13 73.52 75.75
forest (p=5) 77.89 73.60 75.68
forest (p=7) 77.42 73.72 75.52

Table 3: Performance comparison on develop set

to 1-best parse tree, pruned forest still includes more con-
stituents, which enlarge the search space. Table 2 lists the
number of constituents in the 1-best parse tree and the forest
with different pruning thresholdp.

We use the classifier from Le Zhang’s Maximum En-
tropy Modeling Toolkit4 and use the L-BFGS parameter es-
timation algorithm with gaussian prior smoothing(Chen and
Rosenfeld 1999). We set the gaussian prior to 2 and train
the model in 1000 iterations according to the previous expe-
rience.

Experimental Results
We firstly perform our experiments on the shared task ap-
plied develop set with different methods. The first baseline
uses the shared task applied parser tree as the input. And we
modified the Charniak parser to generate a 50-best parses,
which is another contrast system. In order to get the best
pruning threshold, we run three forest-based systems with
different pruning threshold but with the similar value of pa-
rameterδ (δ=0.5). Table 3 reports the performance of differ-
ent methods. The performance on forest is higher than two
baselines. We can also see that the performance on differ-
ent pruned forest is different. Since the largerp indicating
more derivations are encoded and more ambiguities are rep-
resented (for English, a forest pruned withp=5 encodes dou-
ble size of derivations than that ofp=3), we can map more
arguments to corresponding constituents, which are absent
in 1-best parse tree. However, as the number of constituents
increased, the probability of misclassification also increased.
Hence, the system with largerp achieves higher recall but
with a large decrease in precision causing by its large num-
ber of valid derivations.

We also do the experiments given the different value of
parameterδ. Figure 2 shows that the best performance is
achieved whenδ is given to 0.8.

We also investigate in whether the performance of SRL is
sensitive to parsing quality? So we vary our system by di-
viding training data into different size. We train our parser

4http://homepages.inf.ed.ac.uk/s0450736/
maxent\_toolkit.html
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with different size of training corpus, and then parse the test
sets using retrained parser. Figure 3 shows, when the size
of training corpus increased, the performance of parser and
labeler improved significantly, which indicating that the per-
formance of SRL is largely depending on the performance of
parser.

Finally, we perform our system on test sets using the best
parameters. Table 4 shows the results of different systems
on the WSJ corpus. Our methods achieves an absolute im-
provement of 1.2 percentage in terms of F1 score. Conse-
quently, from above experiments, we conclude that 1) the
performance of SRL is largely depending on the perfor-
mance of automatic syntactic parsing. 2) whatever using
k-best parses or forest, the precision of the system increased
but the recall decreased. 3) compared to generating largek-
best parses, using forest is more effective. 4) using a forest
can largely alleviate the impaction of parsing errors and fur-
ther improve the robustness of the SRL. Because of different

Precision (%) Recall (%) F (%)
1-best 79.87 72.69 76.11
50-best 79.49 74.23 76.77

forest(p3) 78.79 75.96 77.35

Table 4: Performance comparison on test sets

training method and features, our baseline achieves lower
result than the CoNLL-2005 official reported single system,
which is 76.46 in F1 score, however, our forest-based meth-
ods still outperform its performance. And we think that its
performance should be still largely improved when using our
reported methods.

Conclusions and Future Work
In this paper, we propose a novel forest-based method for se-
mantic role labeling. The new method uses a packed forest,
which exploits exponentially many parses to learn seman-
tic relations efficiently. The experimental results show that
the forest-based system have an absolutely improvement of
1.2% in terms of F1 score over the 1-best system and 0.6 %
over the 50-best parses.

The extension of this work aims to increase the preci-
sion of the system. Since the large forest includes more
invalid derivations, we should exploit more effective fea-
tures and use heuristic rules to prune the invalid derivations.
And since some features involves ambiguity in forest,such as
Path, we just take the shortest one as the value of this fea-
ture, which may ignores some discriminative values. Thus,
in the future, we should construct a feature forest and de-
sign a training algorithm over the feature forest. Moreover,
compared to some languages, such as Chinese, English sen-
tence includes less ambiguities relatively. So we attempt to
improve the performance of SRL for Chinese or other lan-
guages.
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