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Abstract

Jointly parsing two languages has been
shown to improve accuracies on either or
both sides. However, its search space is
much bigger than the monolingual case,
forcing existing approaches to employ
complicated modeling and crude approxi-
mations. Here we propose a much simpler
alternative,bilingually-constrained mono-
lingual parsing, where a source-language
parser learns to exploit reorderings as ad-
ditional observation, butnot bothering to
build the target-side tree as well. We show
specifically how to enhance a shift-reduce
dependency parser with alignment fea-
tures to resolve shift-reduce conflicts. Ex-
periments on the bilingual portion of Chi-
nese Treebank show that, with just 3 bilin-
gual features, we can improve parsing ac-
curacies by 0.6% (absolute) for both En-
glish and Chinese over a state-of-the-art
baseline, with negligible (∼6%) efficiency
overhead, thus much faster than biparsing.

1 Introduction

Ambiguity resolution is a central task in Natu-
ral Language Processing. Interestingly, not all lan-
guages are ambiguous in the same way. For exam-
ple, prepositional phrase (PP) attachment is (no-
toriously) ambiguous in English (and related Eu-
ropean languages), but is strictly unambiguous in
Chinese and largely unambiguous Japanese; see

(1a) I [ saw Bill ] [ with a telescope ].

wo [ yong wangyuanjin] [kandao le Bi’er].

“I used a telescope to see Bill.”

(1b) I saw [ Bill [ with a telescope ] ].

wo kandao le[ [ na wangyuanjin] de Bi’er].

“I saw Bill who had a telescope at hand.”

Figure 1: PP-attachment is unambiguous in Chi-
nese, which can help English parsing.

Figure 1 for an example.1 It is thus intuitive to use
two languages for better disambiguation, which
has been applied not only to this PP-attachment
problem (Fossum and Knight, 2008; Schwartz et
al., 2003), but also to the more fundamental prob-
lem of syntactic parsing which subsumes the for-
mer as a subproblem. For example, Smith and
Smith (2004) and Burkett and Klein (2008) show
that joint parsing (or reranking) on a bitext im-
proves accuracies on either or both sides by lever-
aging bilingual constraints, which is very promis-
ing for syntax-based machine translation which re-
quires (good-quality) parse trees for rule extrac-
tion (Galley et al., 2004; Mi and Huang, 2008).

However, the search space of joint parsing is in-
evitably much bigger than the monolingual case,

1Chinese uses word-order to disambiguate the attachment
(see below). By contrast, Japanese resorts to case-markers
and the unambiguity is limited: it works for the “V or N”
attachment ambiguities like in Figure 1 (see (Schwartz et al.,
2003)) but not for the “N1 or N2” case (Mitch Marcus, p.c.).



forcing existing approaches to employ compli-
cated modeling and crude approximations. Joint
parsing with a simplest synchronous context-free
grammar (Wu, 1997) isO(n6) as opposed to the
monolingualO(n3) time. To make things worse,
languages arenon-isomorphic, i.e., there is no 1-
to-1 mapping between tree nodes, thus in practice
one has to use more expressive formalisms such
as synchronous tree-substitution grammars (Eis-
ner, 2003; Galley et al., 2004). In fact, rather than
joint parsing per se, Burkett and Klein (2008) re-
sort to separate monolingual parsing andbilingual
rerankingover k2 tree pairs, which covers a tiny
fraction of the whole space (Huang, 2008).

We instead propose a much simpler alterna-
tive,bilingually-constrained monolingual parsing,
where a source-language parser is extended to ex-
ploit the reorderings between languages as addi-
tional observation, butnotbothering to build a tree
for the target side simultaneously. To illustrate the
idea, suppose we are parsing the sentence

(1) I saw Bill [PP with a telescope ].

which has 2 parses based on the attachment of PP:

(1a) I [ saw Bill ] [PP with a telescope ].

(1b) I saw [ Bill [PP with a telescope ]].

Both are possible, but with a Chinese translation
the choice becomes clear (see Figure 1), because
a Chinese PP always immediately precedes the
phrase it is modifying, thus making PP-attachment
strictly unambiguous.2 We can thus use Chinese to
help parse English, i.e., whenever we have a PP-
attachment ambiguity, we will consult the Chinese
translation (from a bitext), and based on the align-
ment information, decide where to attach the En-
glish PP. On the other hand, English can help Chi-
nese parsing as well, for example in deciding the
scope of relative clauses which is unambiguous in
English but ambiguous in Chinese.

This method is much simpler than joint pars-
ing because it remainsmonolingualin the back-
bone, with alignment information merely as soft
evidence, rather than hard constraints since auto-
matic word alignment is far from perfect. It is thus

2to be precise, in Fig. 1(b), the English PP is translated
into a Chinese relative clause, but nevertheless all phrasal
modifiers attach to the immediate right in Mandarin Chinese.

straightforward to implement within a monolin-
gual parsing algorithm. In this work we choose
shift-reduce dependency parsing for its simplicity
and efficiency. Specifically, we make the following
contributions:

• we develop a baseline shift-reduce depen-
dency parser using the less popular, but clas-
sical, “arc-standard” style (Section 2), and
achieve similar state-of-the-art performance
with the the dominant but complicated “arc-
eager” style of Nivre and Scholz (2004);

• we propose bilingual features based on word-
alignment information to prefer “target-side
contiguity” in resolving shift-reduce conflicts
(Section 3);

• we verify empirically that shift-reduce con-
flicts are the major source of errors, and cor-
rect shift-reduce decisions strongly correlate
with the above bilingual contiguity condi-
tions even with automatic alignments (Sec-
tion 5.3);

• finally, with just three bilingual features,
we improve dependency parsing accuracy by
0.6% for both English and Chinese over the
state-of-the-art baseline (Section 5.4).

2 Simpler Shift-Reduce Dependency
Parsing with Three Actions

The basic idea of classical shift-reduce parsing
from compiler theory (Aho and Ullman, 1972) is
to perform a left-to-right scan of the input sen-
tence, and at each step, choose one of the two ac-
tions: eithershift the current word onto the stack,
or reducethe top two (or more) items on the stack,
replacing them with their combination. This idea
has been applied to constituency parsing, for ex-
ample in Sagae and Lavie (2006), and we describe
below a simple variant for dependency parsing
similar to Yamada and Matsumoto (2003) and the
“arc-standard” version of Nivre (2004).

2.1 The Three Actions

Basically, we just need to split the reduce ac-
tion into two symmetric (sub-)actions, reduceL

and reduceR, depending on which one of the two



stack queue arcs
previous S wi|Q A

shift S|wi Q A

previous S|st−1|st Q A

reduceL S|st Q A ∪ {(st, st−1)}
reduceR S|st−1 Q A ∪ {(st−1, st)}

Table 1: Formal description of the three actions.
Note that shift requires non-empty queue while
reduce requires at least two elements on the stack.

items becomes the head after reduction. More for-
mally, we describe a parser configuration by a tu-
ple 〈S, Q, A〉 whereS is the stack,Q is the queue
of remaining words of the input, andA is the set
of dependency arcs accumulated so far.3 At each
step, we can choose one of the three actions:

1. shift: move the head of (a non-empty) queue
Q onto stackS;

2. reduceL : combine the top two items on the
stack, st and st−1 (t ≥ 2), and replace
them withst (as the head), and add a left arc
(st, st−1) to A;

3. reduceR: combine the top two items on the
stack,st andst−1 (t ≥ 2), and replace them
with st−1 (as the head), and add a right arc
(st−1, st) to A.

These actions are summarized in Table 1. The
initial configuration is always〈∅, w1 . . . wn, ∅〉
with empty stack and no arcs, and the final con-
figuration is〈wj , ∅, A〉 wherewj is recognized as
the root of the whole sentence, andA encodes a
spanning tree rooted atwj . For a sentence ofn
words, there are exactly2n − 1 actions:n shifts
andn − 1 reductions, since every word must be
pushed onto stack once, and every word except the
root will eventually be popped in a reduction. The
time complexity, as other shift-reduce instances, is
clearlyO(n).

2.2 Example of Shift-Reduce Conflict

Figure 2 shows the trace of this paradigm on the
example sentence. For the first two configurations

3a “configuration” is sometimes called a “state” (Zhang
and Clark, 2008), but that term is confusing with the states in
shift-reduce LR/LL parsing, which are quite different.

0 - I saw Bill with a ...
1 shift I saw Bill with a ...
2 shift I saw Bill with a ...
3 reduceL saw Bill with a ...

I
4 shift saw Bill with a ...

I

5a reduceR saw with a ...
I Bill

5b shift saw Bill with a ...
I

Figure 2: A trace of 3-action shift-reduce on the
example sentence. Shaded words are on stack,
while gray words have been popped from stack.
After step (4), the process can take either (5a)
or (5b), which correspond to the two attachments
(1a) and (1b) in Figure 1, respectively.

(0) and (1), only shift is possible since there are
not enough items on the stack for reduction. At
step (3), we perform a reduceL , making word “I”
a modifier of “saw”; after that the stack contains
a single word and we have to shift the next word
“Bill” (step 4). Now we face ashift-reduce con-
flict: we can either combine “saw” and “Bill” in
a reduceR action (5a), or shift “Bill” (5b). We will
use features extracted from the configuration to re-
solve the conflict. For example, one such feature
could be a bigramst ◦ st−1, capturing how likely
these two words are combined; see Table 2 for the
complete list of feature templates we use in this
baseline parser.

We argue that this kind of shift-reduce conflicts
are the major source of parsing errors, since the
other type of conflict, reduce-reduce conflict (i.e.,
whether left or right) is relatively easier to resolve
given the part-of-speech information. For exam-
ple, between a noun and an adjective, the former
is much more likely to be the head (and so is a
verb vs. a preposition or an adverb). Shift-reduce
resolution, however, is more non-local, and often
involves a triple, for example, (saw, Bill, with) for
a typical PP-attachment. On the other hand, if we
indeed make a wrong decision, a reduce-reduce
mistake just flips the head and the modifier, and
often has a more local effect on the shape of the
tree, whereas a shift-reduce mistake always leads



Type Features
Unigram st T (st) st ◦ T (st)

st−1 T (st−1) st−1 ◦ T (st−1)
wi T (wi) wi ◦ T (wi)

Bigram st ◦ st−1 T (st) ◦ T (st−1) T (st) ◦ T (wi)
T (st) ◦ st−1 ◦ T (st−1) st ◦ st−1 ◦ T (st−1) st ◦ T (st) ◦ T (st−1)
st ◦ T (st) ◦ st−1 st ◦ T (st) ◦ st−1 ◦ T (st−1)

Trigram T (st) ◦ T (wi) ◦ T (wi+1) T (st−1) ◦ T (st) ◦ T (wi) T (st−2) ◦ T (st−1) ◦ T (st)
st ◦ T (wi) ◦ T (wi+1) T (st−1) ◦ st ◦ T (wi)

Modifier T (st−1) ◦ T (lc(st−1)) ◦ T (st) T (st−1) ◦ T (rc(st−1)) ◦ T (st) T (st−1) ◦ T (st) ◦ T (lc(st))
T (st−1) ◦ T (st) ◦ T (rc(st)) T (st−1) ◦ T (lc(st−1)) ◦ st T (st−1) ◦ T (rc(st−1)) ◦ st

T (st−1) ◦ st ◦ T (lc(st))

Table 2: Feature templates of the baseline parser.st, st−1 denote the top and next to top words on the
stack;wi and wi+1 denote the current and next words on the queue.T (·) denotes the POS tag of a
given word, andlc(·) andrc(·) represent the leftmost and rightmost child. Symbol◦ denotes feature
conjunction. Each of these templates is further conjoined with the 3 actions shift, reduceL , and reduceR.

to vastly incompatible tree shapes with crossing
brackets (for example, [saw Bill] vs. [Bill with a
telescope]). We will see in Section 5.3 that this
is indeed the case in practice, thus suggesting us
to focus on shift-reduce resolution, which we will
return to with the help of bilingual constraints in
Section 3.

2.3 Comparison with Arc-Eager

The three action system was originally described
by Yamada and Matsumoto (2003) (although their
methods require multiple passes over the input),
and then appeared as “arc-standard” in Nivre
(2004), but was argued against in comparison to
the four-action “arc-eager” variant. Most subse-
quent works on shift-reduce or “transition-based”
dependency parsing followed “arc-eager” (Nivre
and Scholz, 2004; Zhang and Clark, 2008), which
now becomes the dominant style. But we argue
that “arc-standard” is preferable because:

1. in the three action “arc-standard” system, the
stack always contains a list ofunrelatedsub-
trees recognized so far, with no arcs between
any of them, e.g. (I← saw) and (Bill) in step
4 of Figure 2), whereas the four action “arc-
eager” style can have left or right arrows be-
tween items on the stack;

2. the semantics of the three actions are atomic
and disjoint, whereas the semantics of 4 ac-
tions arenot completely disjoint. For exam-
ple, their Left action assumes an implicit Re-
duce of the left item, and their Right ac-
tion assumes an implicit Shift. Furthermore,

these two actions have non-trivial precondi-
tions which also causes the next problem (see
below). We argue that this is rather compli-
cated to implement.

3. the “arc-standard” scan always succeeds,
since at the end we can always reduce with
empty queue, whereas the “arc-eager” style
sometimes goes into deadends where no ac-
tion can perform (prevented by precondi-
tions, otherwise the result will not be a well-
formed tree). This becomes parsing failures
in practice (Nivre and Scholz, 2004), leaving
more than one fragments on stack.

As we will see in Section 5.1, this simpler
arc-standard system performs equally well with
a state-of-the-art arc-eager system (Zhang and
Clark, 2008) on standard English Treebank pars-
ing (which is never shown before). We argue
that all things being equal, this simpler paradigm
should be preferred in practice.4

2.4 Beam Search Extension

We also enhance deterministic shift-reduce pars-
ing with beam search, similar to Zhang and Clark
(2008), wherek configurations develop in paral-
lel. Pseudocode 1 illustrates the algorithm, where
we keep an agendaV of the current active con-
figurations, and at each step try to extend them by
applying one of the three actions. We then dump
the bestk new configurations from the buffer back

4On the other hand, there are also arguments for “arc-
eager”, e.g., “incrementality”; see (Nivre, 2004; Nivre, 2008).



Pseudocode 1beam-search shift-reduce parsing.
1: Input : POS-tagged word sequencew1 . . . wn

2: start ← 〈∅, w1 . . . wn, ∅〉 ⊲ initial config: empty stack,
no arcs

3: V← {start} ⊲ initial agenda
4: for step ← 1 . . . 2n− 1 do
5: BUF← ∅ ⊲ buffer for new configs
6: for eachconfig in agendaV do
7: for act ∈ {shift, reduceL , reduceR} do
8: if act is applicable toconfig then
9: next ← applyact to config

10: insertnext into bufferBUF

11: V← topk configurations ofBUF

12: Output: the tree of the best config inV

into the agenda for the next step. The complexity
of this algorithm isO(nk), which subsumes the
determinstic mode as a special case (k = 1).

2.5 Online Training

To train the parser we need an “oracle” or gold-
standard action sequence for gold-standard depen-
dency trees. This oracle turns out to benon-unique
for the three-action system (also non-unique for
the four-action system), because left dependents
of a head can be reduced either before or after all
right dependents are reduced. For example, in Fig-
ure 2, “I” is a left dependent of “saw”, and can in
principle wait until “Bill” and “with” are reduced,
and then finally combine with “saw”. We choose
to use the heuristic of “shortest stack” that always
prefers reduceL over shift, which has the effect that
all left dependents are first recognized inside-out,
followed by all right dependents, also inside-out,
which coincides with the head-driven constituency
parsing model of Collins (1999).

We use the popular online learning algorithm
of structured perceptron with parameter averag-
ing (Collins, 2002). Following Collins and Roark
(2004) we also use the “early-update” strategy,
where an update happens whenever the gold-
standard action-sequence falls off the beam, with
the rest of the sequence neglected. As a special
case, for the deterministic mode, updates always
co-occur with the first mistake made. The intuition
behind this strategy is that future mistakes are of-
ten caused by previous ones, so with the parser on
the wrong track, future actions become irrelevant
for learning. See Section 5.3 for more discussions.

(a) I
:::::::::

saw Bill with a telescope .

wo yong wangyuanjinkandaole Bi’er.

c(st−1, st) =+; reduce is correct

(b) I
:::::::::

saw Bill with a telescope .

wo kandaole nawangyuanjindeBi’er.

c(st−1, st) =−; reduce is wrong

(c) I saw
:::::::::::

Bill with
:::

a
::::::::::

telescope
:

.

wo kandao lenawangyuanjindeBi’er.

cR(st, wi) =+; shift is correct

(d) I saw
:::::::::

Bill with
:::

a
::::::::::

telescope
:

.

wo yongwangyuanjinkandaole Bi’er.

cR(st, wi) =−; shift is wrong

Figure 3: Bilingual contiguity featuresc(st−1, st)
andcR(st, wi) at step (4) in Fig. 2 (facing a shift-
reduce decision). Bold words are currently on
stack while gray ones have been popped. Here the
stack tops arest = Bill , st−1 = saw, and the queue
head iswi = with; underlined texts mark the source
and target spans being considered, and wavy un-
derlines mark theallowed spans(Tab. 3). Red bold
alignment links violate contiguity constraints.

3 Soft Bilingual Constraints as Features

As suggested in Section 2.2, shift-reduce con-
flicts are the central problem we need to address
here. Our intuition is, whenever we face a deci-
sion whether to combine the stack topsst−1 and
st or to shift the current wordwi, we will consult
the other language, where the word-alignment in-
formation would hopefully provide a preference,
as in the running example of PP-attachment (see
Figure 1). We now develop this idea intobilingual
contiguity features.



3.1 A Pro-Reduce Featurec(st−1, st)

Informally, if the correct decision is a reduction,
then it is likely that the corresponding words of
st−1 andst on the target-side should also form a
contiguous span. For example, in Figure 3(a), the
source span of a reduction is [saw .. Bill], which
maps onto [kandao. . .Bi’er] on the Chinese side.
This target span is contiguous, because no word
within this span is aligned to a source word out-
side of the source span. In this case we say feature
c(st−1, st) =+, which encourages “reduce”.

However, in Figure 3(b), the source span is still
[saw .. Bill], but this time maps onto a much
longer span on the Chinese side. This target span
is discontiguous, since the Chinese wordsna and
wangyuanjinare alinged to English “with” and
“telescope”, both of which fall outside of the
source span. In this case we say featurec(st−1, st)
=−, which discourages “reduce” .

3.2 A Pro-Shift FeaturecR(st, wi)

Similarly, we can develop another feature
cR(st, wi) for the shift action. In Figure 3(c),
when considering shifting “with”, the source
span becomes [Bill .. with] which maps to [na
.. Bi’er] on the Chinese side. This target span
looks like discontiguous in the above definition
with wangyuanjinaligned to “telescope”, but we
tolerate this case for the following reasons. There
is a crucial difference between shift and reduce:
in a shift, we do not know yet the subtree spans
(unlike in a reduce we are always combining two
well-formed subtrees). The only thing we are
sure of in a shift action is thatst andwi will be
combinedbeforest−1 andst are combined (Aho
and Ullman, 1972), so we can tolerate any target
word aligned to source word still in the queue,
but do not allow any target word aligned to an
already recognized source word. This explains
the notational difference betweencR(st, wi) and
c(st−1, st), where subscript “R” means “right
contiguity”.

As a final example, in Figure 3(d), Chinese
word kandaoaligns to “saw”, which is already
recognized, and this violates the right contiguity.
SocR(st, wi) =−, suggesting that shift is probably
wrong. To be more precise, Table 3 shows the for-
mal definitions of the two features. We basically

source target allowed
featuref spansp spantp spanap
c(st−1, st) [st−1..st] M(sp) [st−1..st]
cR(st, wi) [st..wi] M(sp) [st..wn]

f = + iff. M−1(M(sp)) ⊆ ap

Table 3: Formal definition of bilingual features.
M(·) is maps a source span to the target language,
andM−1(·) is the reverse operation mapping back
to the source language.

map a source spansp to its target spanM(sp),
and check whether its reverse image back onto the
source languageM−1(M(sp)) falls inside the al-
lowed spanap. For cR(st, wi), the allowed span
extends to the right end of the sentence.5

3.3 Variations and Implementation

To conclude so far, we have got two alignment-
based features,c(st−1, st) correlating with reduce,
and cR(st, wi) correlating with shift. In fact, the
conjunction of these two features,

c(st−1, st) ◦ cR(st, wi)

is another feature with even stronger discrimina-
tion power. If

c(st−1, st) ◦ cR(st, wi) = + ◦ −

it is strongly recommending reduce, while

c(st−1, st) ◦ cR(st, wi) = − ◦+

is a very strong signal for shift. So in total we got
three bilingual feature (templates), which in prac-
tice amounts to 24 instances (after cross-product
with {−, +} and the three actions). We show in
Section 5.3 that these features do correlate with
the correct shift/reduce actions in practice.

The naive implemention of bilingual feature
computation would be ofO(kn2) complexity
in the worse case because when combining the
largest spans one has to scan over the whole sen-
tence. We envision the use of a clever datastructure
would reduce the complexity, but leave this to fu-
ture work, as the experiments (Table 8) show that

5Our definition implies that we only considerfaithful
spans to be contiguous (Galley et al., 2004). Also note that
source spans include all dependents ofst andst−1.



the parser is only marginally (∼6%) slower with
the new bilingual features. This is because the ex-
tra work, with just 3 bilingual features, is not the
bottleneck in practice, since the extraction of the
vast amount of other features in Table 2 dominates
the computation.

4 Related Work in Grammar Induction

Besides those cited in Section 1, there are some
other related work on using bilingual constraints
for grammar induction (rather than parsing). For
example, Hwa et al. (2005) use simple heuris-
tics to project English trees to Spanish and Chi-
nese, but get discouraging accuracy results learned
from those projected trees. Following this idea,
Ganchev et al. (2009) and Smith and Eisner (2009)
use constrained EM and parser adaptation tech-
niques, respectively, to perform more principled
projection, and both achieve encouraging results.

Our work, by constrast, never uses bilingual
tree pairs not tree projections, and only uses word
alignment alone to enhance a monolingual gram-
mar, which learns to prefer target-side contiguity.

5 Experiments

5.1 Baseline Parser

We implement our baseline monolingual parser (in
C++) based on the shift-reduce algorithm in Sec-
tion 2, with feature templates from Table 2. We
evaluate its performance on the standard Penn En-
glish Treebank (PTB) dependency parsing task,
i.e., train on sections 02-21 and test on section 23
with automatically assigned POS tags (at 97.2%
accuracy) using a tagger similar to Collins (2002),
and using the headrules of Yamada and Mat-
sumoto (2003) for conversion into dependency
trees. We use section 22 as dev set to deter-
mine the optimal number of iterations in per-
ceptron training. Table 4 compares our baseline
against the state-of-the-art graph-based (McDon-
ald et al., 2005) and transition-based (Zhang and
Clark, 2008) approaches, and confirms that our
system performs at the same level with those state-
of-the-art, and runs extremely fast in the determin-
istic mode (k=1), and still quite fast in the beam-
search mode (k=16).

parser accuracy secs/sent
McDonald et al. (2005) 90.7 0.150
Zhang and Clark (2008) 91.4 0.195

our baseline atk=1 90.2 0.009
our baseline atk=16 91.3 0.125

Table 4: Baseline parser performance on standard
Penn English Treebank dependency parsing task.
The speed numbers are not exactly comparable
since they are reported on different machines.

Training Dev Test
CTB Articles 1-270 301-325 271-300

Bilingual Paris 2745 273 290

Table 5: Training, dev, and test sets from bilingual
Chinese Treebank̀a la Burkett and Klein (2008).

5.2 Bilingual Data

The bilingual data we use is the translated por-
tion of the Penn Chinese Treebank (CTB) (Xue
et al., 2002), corresponding to articles 1-325 of
PTB, which have English translations with gold-
standard parse trees (Bies et al., 2007). Table 5
shows the split of this data into training, devel-
opment, and test subsets according to Burkett and
Klein (2008). Note that not all sentence pairs could
be included, since many of them are not one-
to-one aligned at the sentence level. Our word-
alignments are generated from the HMM aligner
of Liang et al. (2006) trained on approximately
1.7M sentence pairs (provided to us by David Bur-
kett, p.c.). This aligner outputs “soft alignments”,
i.e., posterior probabilities for each source-target
word pair. We use a pruning threshold of 0.535 to
remove low-confidence alignment links,6 and use
the remaining links as hard alignments; we leave
the use of alignment probabilities to future work.

For simplicity reasons, in the following exper-
iments we always supply gold-standard POS tags
as part of the input to the parser.

5.3 Testing our Hypotheses

Before evaluating our bilingual approach, we need
to verify empirically the two assumptions we
made about the parser in Sections 2 and 3:

6and also removing notoriously bad links in{the, a, an}×
{de, le} following Fossum and Knight (2008).



sh⊲ re re⊲ sh sh-re re-re
# 92 98 190 7
% 46.7% 49.7% 96.4% 3.6%

Table 6: [Hypothesis 1] Error distribution in the
baseline model (k = 1) on English dev set.
“sh ⊲ re” means “should shift, but reduced”. Shift-
reduce conflicts overwhelmingly dominate.

1. (monolingual) shift-reduce conflict is the ma-
jor source of errors while reduce-reduce con-
flict is a minor issue;

2. (bilingual) the gold-standard decisions of
shift or reduce should correlate with contigu-
ities of c(st−1, st), and ofcR(st, wi).

Hypothesis 1 is verified in Table 6, where we
count all thefirst mistakesthe baseline parser
makes (in the deterministic mode) on the En-
glish dev set (273 sentences). In shift-reduce pars-
ing, further mistakes are often caused by previ-
ous ones, so only the first mistake in each sen-
tence (if there is one) is easily identifiable;7 this
is also the argument for “early update” in apply-
ing perceptron learning to these incremental pars-
ing algorithms (Collins and Roark, 2004) (see also
Section 2). Among the 197 first mistakes (other
76 sentences have perfect output), the vast ma-
jority, 190 of them (96.4%), are shift-reduce er-
rors (equally distributed between shift-becomes-
reduce and reduce-becomes-shift), and only 7
(3.6%) are due to reduce-reduce conflicts.8 These
statistics strongly confirm our intuition that shift-
reduce decision is much harder to make during
parsing, and contributes to the overwhelming ma-
jority of errors, which is the topic of the next hy-
pothesis.

Hypothesis 2 is verified in Table 7. We take
the gold-standard shift-reduce sequence on the En-
glish dev set, and classify them into the four cat-
egories based on bilingual contiguity features: (a)
c(st−1, st), i.e. whether the top 2 spans on stack

7to be really precise one can define“independent mis-
takes” as those not affected by previous ones, i.e., errors
made after the parserrecoversfrom previous mistakes; but
this is much more involved and we leave it to future work.

8Note that shift-reduce errors include those due to the
non-uniqueness of oracle, i.e., between some reduceL and
shift. Currently we are unable to identify “genuine” errors
that would result in an incorrect parse. See also Section 2.5.

c(st−1, st) cR(st, wi) shift reduce
+ − 172 ≪ 1,209
− + 1,432 > 805
+ + 4,430 ∼ 3,696
− − 525 ∼ 576

total 6,559 = 6,286

Table 7: [Hyp. 2] Correlation ofgold-standard
shift/reduce decisions with bilingual contiguity
conditions (on English dev set). Note there is al-
ways one more shift than reduce in each sentence.

is contiguous, and (b)cR(st, wi), i.e. whether the
stack top is contiguous with the current wordwi.
According to discussions in Section 3, when (a) is
contiguous and (b) is not, it is a clear signal for
reduce (to combine the top two elements on the
stack) rather than shift, and is strongly supported
by the data (first line: 1209 reduces vs. 172 shifts);
and while when (b) is contiguous and (a) is not,
it should suggest shift (combiningst andwi be-
forest−1 andst are combined) rather than reduce,
and is mildly supported by the data (second line:
1432 shifts vs. 805 reduces). When (a) and (b) are
both contiguous or both discontiguous, it should
be considered a neutral signal, and is also consis-
tent with the data (next two lines). So to conclude,
this bilingual hypothesis is empirically justified.

On the other hand, we would like to note that
these correlations are done withautomaticword
alignments (in our case, from the Berkeley aligner)
which can be quite noisy. We suspect (and will fin-
ish in the future work) that usingmanualalign-
ments would result in a better correlation, though
for the main parsing results (see below) we can
only afford automatic alignments in order for our
approach to be widely applicable toanybitext.

5.4 Results

We incorporate the three bilingual features (again,
with automatic alignments) into the baseline
parser, retrain it, and test its performance on the
English dev set, with varying beam size. Table 8
shows that bilingual constraints help more with
larger beams, from almost no improvement with
the deterministic mode (k=1) to +0.5% better with
the largest beam (k=16). This could be explained
by the fact that beam-search is more robust than



baseline +bilingual
k accuracy time (s) accuracy time (s)
1 84.58 0.011 84.67 0.012
2 85.30 0.025 85.62 0.028
4 85.42 0.040 85.81 0.044
8 85.50 0.081 85.95 0.085
16 85.57 0.158 86.07 0.168

Table 8: Effects of beam sizek on efficiency and
accuracy (on English dev set). Time is average
per sentence (in secs). Bilingual constraints show
more improvement with larger beams, with a frac-
tional efficiency overhead over the baseline.

English Chinese
monolingual baseline 86.9 85.7
+bilingual features 87.5 86.3

improvement +0.6 +0.6
signficance level p < 0.05 p < 0.08

Berkeley parser 86.1 87.9

Table 9: Final results of dependency accuracy (%)
on the test set (290 sentences, beam sizek=16).

the deterministic mode, where in the latter, if our
bilingual features misled the parser into a mistake,
there is no chance of getting back, while in the
former multiple configurations are being pursued
in parallel. In terms of speed, both parsers run pro-
portionally slower with larger beams, as the time
complexity is linear to the beam-size. Computing
the bilingual features further slows it down, but
only fractionally so (just 1.06 times as slow as the
baseline atk=16), which is appealing in practice.
By contrast, Burkett and Klein (2008) reported
their approach of “monolingualk-best parsing fol-
lowed by bilingualk2-best reranking” to be “3.8
times slower” than monolingual parsing.

Our final results on the test set (290 sentences)
are summarized in Table 9. On both English
and Chinese, the addition of bilingual features
improves dependency arc accuracies by +0.6%,
which is mildly significant using the Z-test of
Collins et al. (2005). We also compare our results
against the Berkeley parser (Petrov and Klein,
2007) as a reference system, with the exact same
setting (i.e., trained on the bilingual data, and test-
ing using gold-standard POS tags), and the result-
ing trees are converted into dependency via the

same headrules. We use 5 iterations of split-merge
grammar induction as the 6th iteration overfits the
small training set. The result is worse than our
baseline on English, but better than our bilingual
parser on Chinese. The discrepancy between En-
glish and Chinese is probably due to the fact that
our baseline feature templates (Table 2) are engi-
neered on English not Chinese.

6 Conclusion and Future Work

We have presented a novel parsing paradigm,
bilingually-constrained monolingual parsing,
which is much simpler than joint (bi-)parsing, yet
still yields mild improvements in parsing accuracy
in our preliminary experiments. Specifically,
we showed a simple method of incorporating
alignment features as soft evidence on top of a
state-of-the-art shift-reduce dependency parser,
which helped better resolve shift-reduce conflicts.

The fact that we managed to do this with only
three alignment feature templates is on one hand
encouraging, but on the other hand leaving the
bilingual feature space largely unexplored. So we
are currently engineering more such features, es-
pecially by the use of lexicalization and soft align-
ments (Liang et al., 2006). The influence of align-
ment quality on parsing improvement is also worth
studying. From a linguistics point of view, we
would like to see howlinguistics distanceaffects
this approach, e.g., we suspect English-French
would not help each other as much as English-
Chinese do; and it would be very interesting to
see what types of syntactic ambiguities can be
resolved across different language pairs. Further-
more, we believe this bilingual-monolingual ap-
proach can easily transfer to shift-reduce con-
stituency parsing (Sagae and Lavie, 2006).
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