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Abstract (1a) ‘I [saw Bill_] [with a telescope ].
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Jointly parsing two languages has been wo [ yong wangyuanjip [kandao le Bire.
shown to improve accuracies on either or “| used a telescope to see Bill”
both sides. However, its search space is

much bigger than the monolingual case, ~(1b) | saw  [Bill__[with a telescope]].

forcing existing approaches to employ | \ - S
complicated modeling and crude approxi- wo kandao lg [ na wangyuaniir] de Bi'er].
mations. Here we propose a much simpler

alternative bilingually-constrained mono- “I saw Bill who had a telescope at hand.”

lingual parsing where a source-language

parser learns to exploit reorderings as ad-  Figure 1: PP-attachment is unambiguous in Chi-

ditional Observation, but\ot bothering to nese, Wh|Ch can he'p Eng“sh parsing.
build the target-side tree as well. We show

specifically how to enhance a shift-reduce _ _ o
dependency parser with alignment fea- Figure 1 for an examplélt is thus intuitive to use

tures to resolve shift-reduce conflicts. Ex-  two languages for better disambiguation, which
periments on the bilingual portion of Chi- has been applied not only to this PP-attachment
nese Treebank show that, with just 3 bilin- ~ Problem (Fossum and Knight, 2008; Schwartz et
gual features, we can improve parsing ac-  al-» 2003), but also to the more fundamental prob-
curacies by 0.6% (absolute) for both En-  lem of syntactic parsing which subsumes the for-
glish and Chinese over a state-of-the-art Mer as a subproblem. For example, Smith and
baseline, with negligible~6%) efficiency Smith (2004) and Burkett and Klein (2008) show
overhead, thus much faster than biparsing. ~that joint parsing (or reranking) on a bitext im-
proves accuracies on either or both sides by lever-
aging bilingual constraints, which is very promis-
. ing for syntax-based machine translation which re-
1 Introduction quires (good-quality) parse trees for rule extrac-

Ambiguity resolution is a central task in Natu- tion (Galley et al,, 2004; Mi and Huang, 2008).

. . However, the search space of joint parsing is in-

ral Language Processing. Interestingly, not all lan-_ . . .
. ; evitably much bigger than the monolingual case,
guages are ambiguous in the same way. For exam-

ple, prepositional phrase (PP) attachment is (no- *Chinese uses word-order to disambiguate the attachment

toriously) ambiguous in English (and related Eu-(seeé below). By contrast, Japanese resorts to case-markers
and the unambiguity is limited: it works for the “V or N”

ropean languages), but is SmCtIy unambiguous IRttachment ambiguities like in Figure 1 (see (Schwartz et al.,
Chinese and largely unambiguous Japanese; seeo3)) but not for the “N or No” case (Mitch Marcus, p.c.).



forcing existing approaches to employ compli-straightforward to implement within a monolin-
cated modeling and crude approximations. Joingual parsing algorithm. In this work we choose
parsing with a simplest synchronous context-freeshift-reduce dependency parsing for its simplicity
grammar (Wu, 1997) i©)(n°) as opposed to the and efficiency. Specifically, we make the following
monolingualO(n?) time. To make things worse, contributions:

languages araon-isomorphici.e., there is no 1-

to-1 mapping between tree nodes, thus in practice * We develop a baseline shift-reduce depen-
one has to use more expressive formalisms such dency parser using the less popular, but clas-
as synchronous tree-substitution grammars (Eis-  sical, “arc-standard” style (Section 2), and
ner, 2003; Galley et al., 2004). In fact, rather than ~ achieve similar state-of-the-art performance
joint parsing per se, Burkett and Klein (2008) re-  With the the dominant but complicated “arc-
sort to separate monolingual parsing dithgual eager” style of Nivre and Scholz (2004);
reranking over k2 tree pairs, which covers a tiny
fraction of the whole space (Huang, 2008).

We instead propose a much simpler alterna-
tive, bilingually-constrained monolingual parsing
where a source-language parser is extended to ex-
ploit the reorderings between languages as addi-
tional observation, butotbothering to build a tree
for the target side simultaneously. To illustrate the
idea, suppose we are parsing the sentence

< we propose bilingual features based on word-
alignment information to prefer “target-side
contiguity” in resolving shift-reduce conflicts
(Section 3);

« we verify empirically that shift-reduce con-
flicts are the major source of errors, and cor-
rect shift-reduce decisions strongly correlate
with the above bilingual contiguity condi-

(1) I saw Bill [»» with a telescope ]. tions even with automatic alignments (Sec-

tion 5.3);
which has 2 parses based on the attachment of PP:

« finally, with just three bilingual features,
we improve dependency parsing accuracy by
(1b) 1 saw [ Bill [-» with a telescope ]]. 0.6% for both English and Chinese over the
state-of-the-art baseline (Section 5.4).

(1a) I [ saw Bill ] [r with a telescope ].

Both are possible, but with a Chinese translation
the choice becomes clear (see Figure 1), becauge Simpler Shift-Reduce Dependency
a Chinese PP always immediately precedes the Parsing with Three Actions
phrase itis modifying, thus making PP-attachment o _ _ _
strictly unambiguoug We can thus use Chinese to 1 N€ basic idea of classical shift-reduce parsing
help parse English, i.e., whenever we have a pPIOM compiler theory (Aho and Uliman, 1972) is
attachment ambiguity, we will consult the Chinesel© Perform a left-to-right scan of the input sen-
translation (from a bitext), and based on the aligni€nce, and at each step, choose one of the two ac-
ment information, decide where to attach the En_tions: eithershift the current word onto the stack,
glish PP. On the other hand, English can help Chi®r reducethe top two (or more) items on the stack,
nese parsing as well, for example in deciding thdeplacing them with their combination. This idea

scope of relative clauses which is unambiguous i@ been applied to constituency parsing, for ex-
English but ambiguous in Chinese. ample in Sagae and Lavie (2006), and we describe

This method is much simpler than joint pars-Pelow a simple variant for dependency parsing
ing because it remainsonolingualin the back- f'm”ar to Yanlada and Matsumoto (2003) and the
bone, with alignment information merely as soft arc-standard” version of Nivre (2004).

vidence, rather than har nstraints sin - .

e d_e ce, at_ er tha _ ard constraints s ce autozl1 The Three Actions

matic word alignment is far from perfect. Itis thus

— . _ _ Basically, we just need to split the reduce ac-
to be precise, in Fig. 1(b), the English PP is translated

into a Chinese relative clause, but nevertheless all phraszﬂon Into two symm.etrlc (SUb_')aCt'ons’ reduce
modifiers attach to the immediate right in Mandarin Chineseand reducg, depending on which one of the two



stack gueue arcs 0 - I saw Bil with a..
previous| S wil@ A 1 shift I saw Bill with a..
shift | Sfw Q A 2 | shift |1 [saw Bil with a..
previous| S|s;—1|st Q A 3 | reduce __ saw Bill  with a..
reduce | S|s; Q AUA{(st,50-1)}
reduce | S|si—1 Q AUA{(s¢—1,8¢)} 4 shift _/saw (Bill with a..
Table 1: Formal description of the three actions: _
Note that shift requires non-empty queue while a | reduce AW with  a...
reduce requires at least two elements on the stack
5b | shift __ saw Bill with a...

items becomes the head after reduction. More for-
mally, we describe a parser configuration by a tufigure 2: A trace of 3-action shift-reduce on the
ple (S, Q, A) whereS is the stack() is the queue example sentence. Shaded words are on stack,
of remaining words of the input, and is the set while gray words have been popped from stack.
of dependency arcs accumulated so’fat each  After step (4), the process can take either (5a)
step, we can choose one of the three actions:  or (5b), which correspond to the two attachments

) (1a) and (1b) in Figure 1, respectively.
1. shift: move the head of (a non-empty) queue

() onto stacks;
(0) and (1), only shift is possible since there are

2. reduce: combine the top two items on the not enough items on the stack for reduction. At

stack, s; and s,_1 (t > 2), and replace giep (3), we perform a reducemaking word “I”

them withs, (as the head), and add a left arca modifier of “saw”; after that the stack contains

(51, 81-1) 10 A; a single word and we have to shift the next word
“Bill” (step 4). Now we face ashift-reduce con-
flict: we can either combine “saw” and “Bill” in
a reduce action (5a), or shift “Bill” (5b). We will
use features extracted from the configuration to re-
solve the conflict. For example, one such feature

These actions are summarized in Table 1. The€ould be a bigrans; o s;_1, capturing how likely
initial configuration is always(, w; ...w,,0) these two words are combined; see Table 2 for the
with empty stack and no arcs, and the final concomplete list of feature templates we use in this
figuration is(w;, ), A) wherew is recognized as baseline parser.
the root of the whole sentence, addencodes a We argue that this kind of shift-reduce conflicts
spanning tree rooted at;. For a sentence of  are the major source of parsing errors, since the
words, there are exactn — 1 actions:n shifts  other type of conflict, reduce-reduce conflict (i.e.,
andn — 1 reductions, since every word must bewhether left or right) is relatively easier to resolve
pushed onto stack once, and every word except thgiven the part-of-speech information. For exam-
root will eventually be popped in a reduction. Theple, between a noun and an adjective, the former
time complexity, as other shift-reduce instances, i$s much more likely to be the head (and so is a

3. reducq: combine the top two items on the
stack,s; ands;_1 (¢t > 2), and replace them
with s;_1 (as the head), and add a right arc
(Stfl, St) to A.

clearlyO(n). verb vs. a preposition or an adverb). Shift-reduce
_ _ resolution, however, is more non-local, and often
2.2 Example of Shift-Reduce Conflict involves a triple, for example, (saw, Bill, with) for

Figure 2 shows the trace of this paradigm on thea typical PP-attachment. On the other hand, if we
example sentence. For the first two configurationéndeed make a wrong decision, a reduce-reduce
e _ mistake just flips the head and the modifier, and
a “configuration” is sometimes called a “state” (Zhang f h | | eff he sh f th
and Clark, 2008), but that term is confusing with the states jr®/l€N Nas a more ocal e ect on the shape of the
shift-reduce LR/LL parsing, which are quite different. tree, whereas a shift-reduce mistake always leads



Type Features

Unigram | s¢ T(st) s¢ 0 T(s¢)
St—1 T(St—l) St—1 © T(St—l)
Ws T(u)z) w; O T(wz)
Bigram St O St—1 T(st) o T(s¢—1) T(st) o T'(w;)
T(st) 0 s¢—10T(s¢-1) 5¢084-10T(5¢-1) st0T(s¢) 0o T(st-1)
s¢0T(s¢) 0 8¢—1 s¢0T(s¢) 0 se—10T(s¢-1)
Trigram | T(s¢) o T(w;) o T(wit1) T(st—1) o T(s¢) o T'(w;) T(st—2) 0o T(s¢—1) o T(s¢)

S¢ O T(wz) o T(wi+1) T

Modifier T(Stfl) o T(ZC(Stfl)) o T(St) T
T(st—1) 0o T(s¢) o T(re(se)) T

T(Stfl) O 8t O T(lc(st))

st—1) 0 T(re(si—1)) o T'(st)  T(st—1) 0 T(st) o T(lc(st))

(
Est,l) o 8¢ o T'(w;)
(81_1) [e] T(lC(St_l)) O S¢ T(St_l) [e] T(’I"C(St_1)) O S¢

Table 2: Feature templates of the baseline pakses; ; denote the top and next to top words on the
stack; w; andw;+1 denote the current and next words on the quédle) denotes the POS tag of a
given word, andc(-) andrc(-) represent the leftmost and rightmost child. Symbalenotes feature
conjunction. Each of these templates is further conjoined with the 3 actionsrebifice, and reducg.

to vastly incompatible tree shapes with crossing  these two actions have non-trivial precondi-
brackets (for example, [saw Bill] vs. [Bill with a tions which also causes the next problem (see
telescope]). We will see in Section 5.3 that this below). We argue that this is rather compli-
is indeed the case in practice, thus suggesting us cated to implement.

to focus on shift-reduce resolution, which we will

return to with the help of bilingual constraints in 3. the “arc-standard” scan always succeeds,

Section 3. since at the end we can always reduce with
_ _ empty queue, whereas the “arc-eager” style
2.3 Comparison with Arc-Eager sometimes goes into deadends where no ac-

The three action system was originally described ~ tion can perform (prevented by precondi-
by Yamada and Matsumoto (2003) (although their ~ tions, otherwise the result will not be a well-
methods require multiple passes over the input),  formed tree). This becomes parsing failures
and then appeared as “arc-standard” in Nivre  in practice (Nivre and Scholz, 2004), leaving
(2004), but was argued against in comparison to  more than one fragments on stack.

the four-action “arc-eager” variant. Most subse- ] ) ] o

quent works on shift-reduce or “transition-based” AS We Wwill see in Section 5.1, this simpler
dependency parsing followed “arc-eager” (Nivrearc-standard system performs equally well with
and Scholz, 2004; Zhang and Clark, 2008), whictf* State-of-the-art arc-eager system (Zhang and

now becomes the dominant style. But we argue_clark' 2908)_ on standard English Treebank pars-
that “arc-standard” is preferable because: ing (which is never shown before). We argue
that all things being equal, this simpler paradigm

1. inthe three action “arc-standard” system, theshould be preferred in practick.

stack always contains a list ahrelatedsub-
trees recognized so far, with no arcs betweer2.4 Beam Search Extension

any of them, e.g. ¢ saw) and (Bill) in Step  \ye alsp enhance deterministic shift-reduce pars-
4 of Figure 2), whereas the four action "arc- jng yith beam search, similar to Zhang and Clark
eager” style can have left or right arrows be-(>00g), wherek configurations develop in paral-

tween items on the stack; lel. Pseudocode 1 illustrates the algorithm, where

2. the semantics of the three actions are atomi¥/e keéep an agend¥ of the current active con-
and disjoint, whereas the semantics of 4 acfigurations, and at each step try to extend them by

tions arenot completely disjoint. For exam- @Pplying one of the three actions. We then dump
ple, their Left action assumes an implicit Re- the best new configurations from the buffer back

‘?'UC@ of the left !tem., _and _the'r Right ac- “On the other hand, there are also arguments for “arc-
tion assumes an implicit Shift. Furthermore, eager”, e.g., “incrementality”; see (Nivre, 2004; Nivre, 2008).



Pseudocode beam-search shift-reduce parsing. (&) saw_Bill with a telescope .

|
1: Input: POS-tagged word sequenee . . . wy, ' - - T~

2: start «— (0, w1 ...wn,0) ®initial config: empty stack, V\}O yoﬁg/Wangyﬁanji?k\andad\e\Bi’er_
no arcs -

3.V «— {start} > initial agenda C(Stfla St) :+’ reduce |S correct

4: for step — 1...2n —1do

5. BUF <0 > buffer for new configs

6: for eachconfig in agendaVv do — . .

7: for act € {shift,reduce , reduce} do (b) | Sixwaw Bill \V}ch a tel?SCOpe '

8: if act is applicable taconfig then | \ /7 T =57

: 7/ T T
9: neat « apply act to config wo kandaole nawangyuanjindeBi'er.

10: insertnext into buffer BUF
11: 'V < topk configurations oBUF

12: Output: the tree of the best config M

c(s¢—1,st) =—; reduce is wrong

(c) r\se}w Bill with a telescope.

|
into the agenda for the next step. The complexity \ | ST \/\/\ .
of this algorithm isO(nk), which subsumes the wo kandao lnawangyuanjindeBi'er.

determinstic mode as a special case1). e
P (1) cr(st, w;) =+; shiftis correct

2.5 Online Training (d) ‘P\sav! Bill with a telescope.

~a - —_ —
| —~ S~o ——

- —
— -~ -

| ~

To train the parser we need an “oracle” or gold- b N .
standard action sequence for gold-standard depen- Wo yongwangyuanjinkandaole Bi'er.
dency trees. This oracle turns out tormm-unique

for the three-action system (also non-unique for
the four-action system), because left dependents
of a head can be reduced either before or after affigure 3: Bilingual contiguity features(s;—1, s)

right dependents are reduced. For example, in Figand cx(s¢, w;) at step (4) in Fig. 2 (facing a shift-
ure 2, “I" is a left dependent of “saw”, and can in reduce decision). Bold words are currently on
principle wait until “Bill” and “with” are reduced, stack while gray ones have been popped. Here the
and then finally combine with “saw”. We choose stack tops are; = Bill, s;_1 = saw, and the queue

to use the heuristic of “shortest stack” that alwayshead isw; = with; underlined texts mark the source
prefers redugeover shift, which has the effectthat and target spans being considered, and wavy un-
all left dependents are first recognized inside-outderlines mark thallowed spangTab. 3). Red bold
followed by all right dependents, also inside-out,alignment links violate contiguity constraints.
which coincides with the head-driven constituency

parsing model of Collins (1999).

We use the popular online learning algorithm3  Soft Bilingual Constraints as Features
of structured perceptron with parameter averag-
ing (Collins, 2002). Following Collins and Roark
(2004) we also use the “early-update” strategyAs suggested in Section 2.2, shift-reduce con-
where an update happens whenever the goldlicts are the central problem we need to address
standard action-sequence falls off the beam, witlnere. Our intuition is, whenever we face a deci-
the rest of the sequence neglected. As a specialon whether to combine the stack togs; and
case, for the deterministic mode, updates always; or to shift the current worav;, we will consult
co-occur with the first mistake made. The intuitionthe other language, where the word-alignment in-
behind this strategy is that future mistakes are offormation would hopefully provide a preference,
ten caused by previous ones, so with the parser oas in the running example of PP-attachment (see
the wrong track, future actions become irrelevantigure 1). We now develop this idea intdingual
for learning. See Section 5.3 for more discussionscontiguity features

cr(st, w;) =—; shiftis wrong



3.1 APro-Reduce Featurec(s;_1, s¢) source target  allowed
featuref | spansp spantp  spanap
c(si—1,8¢) | [st-1--8¢] M(sp) [si—1..54]
cr(St, w;) [st.w;]  M(sp)  [si..wp]
f=+ ifft. M—Y(M(sp)) C ap

Informally, if the correct decision is a reduction,
then it is likely that the corresponding words of
s¢—1 ands; on the target-side should also form a
contiguous span. For example, in Figure 3(a), the

source span of a reduction is [saw .. Bill], which Taple 3: Formal definition of bilingual features.
maps onto I{andao. . .Bller] on the Chinese side. M() is maps a source span to the target |anguage,

This target span is contiguous, because no WorgndM—l(.) is the reverse operation mapping back
within this span is aligned to a source word out-tg the source language.

side of the source span. In this case we say feature
c(s¢—1, s¢) =+, which encourages “reduce”.

However, in Figure 3(b), the source span is still™aP & Source spaip to its target span (sp),
[saw .. Bill], but this time maps onto a much and check whether its reverse image back onto the
” ’ source language! ~' (M (sp)) falls inside the al-

longer span on the Chinese side. This target spa\ q e he all q
is discontiguous, since the Chinese wondsand ~ '°0V/€d Spanap. For ca(st;, wi), the allowed span
extends to the right end of the sentefce.

wangyuanjinare alinged to English “with” and
source span. In this case we say featt(rg_1, s;)

= which discourages “reduce” . To conclude so far, we have got two alignment-

based features(s;_1, s;) correlating with reduce,
3.2 A Pro-Shift Feature ca (s, w;) and cz(s¢, w;) correlating with shift. In fact, the

conjunction of these two features,
Similarly, we can develop another feature

cr(st, w;) for the shift action. In Figure 3(c), c(8¢—1,5t) o cr(St, w;)
when considering shifting “with”, the source
span becomes [Bill .. with] which maps tmg is another feature with even stronger discrimina-
.. Bi'er] on the Chinese side. This target spantion power. If
looks like discontiguous in the above definition
with wangyuanjinaligned to “telescope”, but we c(st-1,8¢) 0 cals, wi) = + 0 —
tolerate this case for the following reasons. There, . . .
is a crucial difference between shift and reduce!t Is strongly recommending reduce, while
in a shift, we do not know yet the subtree spans
(unlike in a reduce we are always combining two
well-formed subtrees). The only thing we arejs a very strong signal for shift. So in total we got
sure of in a shift action is that; andw; will be  three bilingual feature (templates), which in prac-
combinedbefores;_; ands; are combined (Aho tice amounts to 24 instances (after cross-product
and Uliman, 1972), so we can tolerate any targefvith {—, +} and the three actions). We show in
word aligned to source word still in the queue, Section 5.3 that these features do correlate with
but do not allow any target word aligned to anthe correct shift/reduce actions in practice.
already recognized source word. This explains The naive implemention of bilingual feature
the notational difference between(s;,w;) and  computation would be ofO(kn2) complexity
c(st-1, st), Where subscript “R” means “right in the worse case because when combining the
contiguity”. largest spans one has to scan over the whole sen-

As a final example, in Figure 3(d), Chinesetence. We envision the use of a clever datastructure
word kandaoaligns to “saw”, which is already would reduce the complexity, but leave this to fu-
recognized, and this violates the right contiguity.ture work, as the experiments (Table 8) show that
Sock(st, w;) =—, suggesting that shift is probably ———— o

. Our definition implies that we only considéaithful

wrong. To be more precise, Table 3 shows the fOrépans to be contiguous (Galley et al., 2004). Also note that
mal definitions of the two features. We basicallysource spans include all dependents,oéinds; ;.

c(st-1,5t) © cr(st,w;) = — o+



the parser is only marginally~6%) slower with parser accuracy secs/sent
the new bilingual features. This is because the ex- McDonald et al. (2005) 90.7 0.150
tra work, with just 3 bilingual features, is not the Zhang and Clark (2008) 91.4 0.195
bottleneck in practice, since the extraction of the our baseline at=1 90.2 0.009
vast amount of other features in Table 2 dominates our baseline at=16 91.3 0.125
the computation.

Table 4: Baseline parser performance on standard
Penn English Treebank dependency parsing task.
The speed numbers are not exactly comparable

. . . . since they are reported on different machines.
Besides those cited in Section 1, there are some y P

other related work on using bilingual constraints

4 Related Work in Grammar Induction

. ) _ Training Dev Test
for grammar induction (rather than parsing). For CTB Articles 1-270 | 301-325| 271-300
example, Hwa et al. (2005) use simple heuris; Bilingual Paris| 2745 273 290

tics to project English trees to Spanish and Chi

nese, but get discouraging accuracy results learnethble 5: Training, dev, and test sets from bilingual

from those projected trees. Following this idea,Chinese Treebark la Burkett and Klein (2008).
Ganchev et al. (2009) and Smith and Eisner (2009)

use constrained EM and parser adaptation tech- N

niques, respectively, to perform more principled®-2 Bilingual Data

projection, and both achieve encouraging results.The bilingual data we use is the translated por-
Our work, by constrast, never uses bilingualtion of the Penn Chinese Treebank (CTB) (Xue

tree pairs not tree projections, and only uses worét al., 2002), corresponding to articles 1-325 of

alignment alone to enhance a monolingual gramPTB, which have English translations with gold-

mar, which learns to prefer target-side contiguity. standard parse trees (Bies et al., 2007). Table 5

shows the split of this data into training, devel-

5 Experiments opment, and test subsets according to Burkett and
Klein (2008). Note that not all sentence pairs could
5.1 Baseline Parser be included, since many of them are not one-

to-one aligned at the sentence level. Our word-

We implement our baseline monolingual parser (inglignments are generated from the HMM aligner
C++) based on the shift-reduce algorithm in Sec Liang et al. (2006) trained on approximately

tion 2, with feature templates from Table 2. We 1 7\ sentence pairs (provided to us by David Bur-
evaluate its performance on the standard Penn EReyt, p.c.). This aligner outputs “soft alignments”,

glish Treebank (PTB) dependency parsing task; e posterior probabilities for each source-target
i.e., train on sections 02-21 and test on section 23,5q pair. We use a pruning threshold of 0.535 to
with automatically assigned POS tags (at 97.2%emove low-confidence alignment linksand use
accuracy) using a tagger similar to Collins (2002).the remaining links as hard alignments; we leave
and using the headrules of Yamada and Matye yse of alignment probabilities to future work.
sumoto (2003) for conversion into dependency o simpiicity reasons, in the following exper-

trees. We use section 22 as dev set t0 detefments we always supply gold-standard POS tags
mine the optimal number of iterations in per- 54 part of the input to the parser.

ceptron training. Table 4 compares our baseline

against the state-of-the-art graph-based (McDons 3  Testing our Hypotheses

ald et al., 2005) and transition-based (Zhang and ) .

Clark, 2008) approaches, and confirms that Ouﬁeforg evaluat!qg our bilingual approach', we need
system performs at the same level with those statd® ;enf}t/) emﬂlrlcally the S:[WO_ ass;mpgogr?s we
of-the-art, and runs extremely fast in the determin/Nac€ a out the parser in Sections 2 and 3:

istic mode §=1), and still quite fast in the beam- 6,4 a1s0 removing notoriously bad linksfithe, & an} x
search modek=16). {de, le} following Fossum and Knight (2008).



sh>re rexsh| sh-re | re-re c(si—1,8t) cr(sg,w;) | shift reduce

# 92 98 190 7 + — 172 <« 1,209

% | 46.7% 49.7%| 96.4% | 3.6% - + 1,432 > 805

. T + + 4,430 ~ 3,696

Table 6: [Hypothesis 1] Error distribution in the _ _ 525 ~ 576

baseline model { = 1) on English dev set. total 6550 — 6286

“shre” means “should shift, but reduced”. Shift-

reduce conflicts overwhelmingly dominate. Table 7: [Hyp. 2] Correlation ofyold-standard

shift/reduce decisions with bilingual contiguity
conditions (on English dev set). Note there is al-

1. (monolingual) shift-reduce conflict is the ma- : _
ways one more shift than reduce in each sentence.

jor source of errors while reduce-reduce con
flict is a minor issue;

2. (bilingual) the gold-standard decisions ofiS contiguous, and (Bq (s, wi), i.e. whether the
shift or reduce should correlate with contigu- Stack top is contiguous with the current ward.
ities of ¢(si_1, s¢), and ofca(s¢, w;). Accqrdlng to dlscuss_lons |n_S§ct|on 3, Wr_]en (@)is

contiguous and (b) is not, it is a clear signal for

Hypothesis 1 is verified in Table 6, where wereduce (to combine the top two elements on the

count all thefirst mistakesthe baseline parser stack) rather than shift, and is strongly supported
makes (in the deterministic mode) on the En-by the data (first line: 1209 reduces vs. 172 shifts);
glish dev set (273 sentences). In shift-reduce parsand while when (b) is contiguous and (a) is not,
ing, further mistakes are often caused by previit should suggest shift (combining andw; be-
ous ones, so only the first mistake in each senfore s;_; ands; are combined) rather than reduce,
tence (if there is one) is easily identifiablehis  and is mildly supported by the data (second line:
is also the argument for “early update” in apply- 1432 shifts vs. 805 reduces). When (a) and (b) are
ing perceptron learning to these incremental parssoth contiguous or both discontiguous, it should
ing algorithms (Collins and Roark, 2004) (see alsde considered a neutral signal, and is also consis-
Section 2). Among the 197 first mistakes (othenent with the data (next two lines). So to conclude,
76 sentences have perfect output), the vast mahis bilingual hypothesis is empirically justified.
jority, 190 of them (96.4%), are shift-reduce er- On the other hand, we would like to note that
rors (equally distributed between shift-becomesthese correlations are done wislutomaticword
reduce and reduce-becomes-shift), and only &lignments (in our case, from the Berkeley aligner)
(3.6%) are due to reduce-reduce confltEhese which can be quite noisy. We suspect (and will fin-
statistics strongly confirm our intuition that shift- jsh in the future work) that usingranualalign-
reduce decision is much harder to make duringnents would result in a better correlation, though
parsing, and contributes to the overwhelming mafor the main parsing results (see below) we can
jority of errors, which is the topic of the next hy- only afford automatic alignments in order for our

pothesis. approach to be widely applicable amy bitext.
Hypothesis 2 is verified in Table 7. We take

the gold-standard shift-reduce sequence onthe Em:4 Results
glish dev set, and classify them into the four cat- . _
egories based on bilingual contiguity features: (a)V€ Incorporate the three bilingual features (again,

c(se_1, s¢), i.e. whether the top 2 spans on stackVith automatic alignments) into the baseline
parser, retrain it, and test its performance on the

"to be really precise one can defitiadependent mis- English dev set, with varying beam size. Table 8
takes” as those not affected by previous ones, i.e., error

Shows that bilingual traints hel ith
made after the parseecoversfrom previous mistakes; but shows that bilingual constrain S €lp more W'_
this is much more involved and we leave it to future work.  larger beams, from almost no improvement with

®Note that shift-reduce errors include those due to thethe deterministic modekE1) to +0.5% better with
non-uniqueness of oracle, i.e., between some rqdacel

shift. Currently we are unable to identify “genuine” errors the largest beamk€16). This CQUId be explained
that would result in an incorrect parse. See also Section 2.5by the fact that beam-search is more robust than



baseline +bilingual same headrules. We use 5 iterations of split-merge
accuracy time (s) accuracy time (s grammar induction as the 6th iteration overfits the
84.58 0.011 | 84.67 0.012 small training set. The result is worse than our
85.30 0.025| 85.62 0.028 baseline on English, but better than our bilingual
85.42 0.040 | 85.81 0.044 parser on Chinese. The discrepancy between En-
85.50 0.081| 85.95 0.085 glish and Chinese is probably due to the fact that
16| 85.57 0.158 | 86.07 0.168 our baseline feature templates (Table 2) are engi-
neered on English not Chinese.

(oINS OB

Table 8: Effects of beam size on efficiency and

accuracy (on English dev set). Time is averages Conclusion and Future Work

per sentence (in secs). Bilingual constraints show

more improvement with larger beams, with a frac-We have presented a novel parsing paradigm,

tional efficiency overhead over the baseline. bilingually-constrained  monolingual  parsing
which is much simpler than joint (bi-)parsing, yet
English | Chinese still yields mild improvements in parsing accuracy
monolingual baseline 86.9 85.7 in our preliminary experiments. Specifically,
+bilingual features 87.5 86.3 we showed a simple method of incorporating
improvement +0.6 +0.6 alignment features as soft evidence on top of a
signficance level | p < 0.05 | p < 0.08 state-of-the-art shift-reduce dependency parser,
[ Berkeleyparser | 861 | 87.9 | which helped better resolve shift-reduce conflicts.

The fact that we managed to do this with only

Table 9: Final results of dependency accuracy (%jhree alignment feature templates is on one hand
on the test set (290 sentences, beam /siZb). encouraging, but on the other hand leaving the
bilingual feature space largely unexplored. So we
are currently engineering more such features, es-

the deterministic mode, where in the latter, if our™ v by th f lexicalizati d soft ali
bilingual features misled the parserintoamistake',OeCIay y the use otlexicalization and soft algn-

there is no chance of getting back, while in thements (Liang et al., 2006). The influence of align-

former multiple configurations are being pursue entquality on parsing improvementis aiso worth

in parallel. In terms of speed, both parsers run pro§tUdymg' From a linguistics point of view, we

portionally slower with larger beams, as the timeW(_)UIOI like to see howinguistics dlstance_affects
this approach, e.g., we suspect English-French

complexity is linear to the beam-size. Computin i
i P gWould not help each other as much as English-

the bilingual features further slows it down, butch_ do- and it id b int ting t
only fractionally so (just 1.06 times as slow as the inese do, and 1L would be very interesting to
baseline ak=16), which is appealing in practice. see what types of syntactic ambiguities can be

By contrast, Burkett and Klein (2008) reported resolved acro_s S diffe_ren_t _Ianguage pai_rs. Further-
their approach of “monolingudi-best parsing fol- more, we be"e"‘? this blllngual-mqnollngual ap-
lowed by bilingualk2-best reranking” to be “3.8 pr_oach can e_asny transfer to shﬁt—reduce con-
times slower” than monolingual parsing. stituency parsing (Sagae and Lavie, 2006).
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