跨间交混格架对 EPR 堆芯 DNBR 裕量的影响

陈 军,周有新,李石磊,毛玉龙,文青龙

(中科华核电技术研究院有限公司,广东 深圳 518026)

摘要:采用 FLICA Ⅲ-F子通道程序,分析了 AFA 3GLE 燃料组件加装跨间交混格架(MSMG)后对台山 EPR 堆芯热工参数和最小 DNBR 的影响。分析结果表明,在名义工况下加装 MSMG 后,轴向功率呈余 弦分布和轴向功率偏差 AO=+9%将分别提高 EPR 堆芯的 DNBR 裕量约为 24%和 28%,同时增加 EPR 堆芯压降约 10.1%。

关键词:跨间交混格架;AFA 3GLE;热工水力;临界热流密度关系式

中图分类号:TL33;TL364.9 文献标志码:A 文章编号:1000-6931(2013)02-0249-05 doi:10.7538/yzk.2013.47.02.0249

Effect of Mid Span Mixing Grid on EPR Core DNBR Margin

CHEN Jun, ZHOU You-xin, LI Shi-lei, MAO Yu-long, WEN Qing-long (China Nuclear Power Technology Research Institute, Shenzhen 518026, China)

Abstract: The effect of mid span mixing grid (MSMG) on the EPR core thermalhydraulic parameters and minimum DNBR was analyzed by employing FLICA \blacksquare -F subchannel code. The results show that DNBR margin of EPR core can be improved respectively about 24% and 28% for normal condition with cosine and AO equal to +9%power distributions by adding 4 MSMGs on AFA 3GLE fuel assembly, while the pressure drop in EPR core increases about 10.1%.

Key words: mid span mixing grid; AFA 3GLE; thermal-hydraulic; CHF correlation

临界热流密度(CHF)综合反映了燃料组件内冷却剂的流动与传热特性,直接影响到堆芯临界热流密度与当地热流密度之比(DNBR) 是否具有足够的安全裕量。为了提高堆芯的 DNBR安全裕量,许多压水堆的燃料组件均采 用加装跨间交混格架(MSMG/IFM)的方式,改 善燃料组件的流动交混特性,以适当增加燃料 组件的流动压降为代价提高其 CHF,例如,中 国 CPR1000 采用的 AFA 3G 燃料组件、美国 AP1000 采用的 Robust XL 燃料组件等。

本文针对台山 EPR 机组采用的 AFA 3GLE 燃料组件的堆芯,分析在核蒸汽供应系 统(NSSS)运行参数和不同轴向功率分布(参考 截断余弦分布、AO=+9%)下,AFA 3GLE 燃 料组件加装 MSMG 对其堆芯 DNBR 裕量的 影响。

收稿日期:2011-07-28;修回日期:2011-10-10

作者简介:陈 军(1971一),男,四川隆昌人,副研究员,博士,从事反应堆热工水力研究

1 燃料组件结构

在压水堆燃料组件结构中,交混格架的条带上部设有交混翼,可起到促进燃料棒流道间 冷却剂交混的作用。为了进一步改善燃料组件 热工水力性能,在易发生最小 DNBR 的燃料组 件上部区域加装了跨间交混格架(MSMG/ IFM),以加强该区域燃料棒流道间冷却剂的交 混。表 1^[1]列出现有 PWR 燃料组件加装 MSMG 或 IFM 的情况。

台山核电厂采用了欧洲先进压水堆 EPR, 堆芯装载 4 200 mm(约 14 英尺)17×17 AFA 3GLE 燃料组件^[2],如图 1 所示,在活性段内布 置了 8 个交混格架。本文对 AFA 3GLE 燃料 组件上半部加装 4 个 MSMG,分析其对 EPR 堆芯流场以及 CHF 等热工水力性能参数的影 响规律。

Table 1Characteristics of fuel assembly in PWR ^[1]							
燃料制造商	燃料名称	活性段长度/英尺	排列方式	是否加装 MSMG/IFM	加装数量		
伊奴卅(ENUSA)	MAEF+IFM+PG	12	17×17	是	3		
欧洲燃料联合体	MAEF	14	17×17	否			
(European Fuel Group)	MAEF-IFM	12	17×17	是	3		
	$\operatorname{Performance}+$	12	15 imes 15	是	3		
阿海珐(AREVA NP)	ALLIANCE	12,14	17×17	否			
	AFA 2G	12	17×17	否			
	AFA 3G	12	17×17	是	3		
	AFA 3GLE	14	17×17	否			
法国核燃料公司(KNFC)	ACE7	12	17×17	是	3		
西屋公司(Westinghouse)	Robust	12	17×17	是	3		
	Robust XL	14	17×17	是	4		

图 1 EPR 采用的 AFA 3GLE 燃料组件^[3] Fig. 1 Structure of AFA 3GLE in EPR^[3]

2 计算方法

2.1 计算假设

假设:1) EPR 堆芯最大径向焓升因子发生在 堆芯中心位置的燃料组件内,使其成为堆芯最热 组件;2) 采用入口流量分配因子对堆芯入口流量 进行惩罚,堆芯中心位置燃料组件为 0.95,堆芯外 围燃料组件为 1.02,其余燃料组件为 1.0。

以上假设实现了 FLICA Ⅲ-F 子通道程序 对堆芯最小 DNBR 的包络计算。

计算工况的其他参数列于表 2。在计算 中,对于轴向功率分布主要考虑两种情况:一种 是典型峰值的截断余弦功率分布;另一种是 AO=+9%的功率分布。其中,MSMG采用 CPR1000的 AFA 3G 燃料组件中的 MSMG, 其湍流热扩散系数和压降系数取相同值。

表 2 EPR 热工参数^[4]

Table 2	Thermal-hydraulic	parameters	of	EPR ^[4]	J
---------	-------------------	------------	----	--------------------	---

参数	数值
堆芯功率	4 590 MW
堆芯出口压力	15.5 MPa
堆芯入口温度	294.6 ℃
压力容器进口流量1)	$26 980 \times 4 m^3/h$
堆芯旁流份额	5.5%
湍流黏性系数	0.00
湍流热扩散系数	0.043
径向核焓升因子	1.58
轴向功率峰值因子	1.45
MSMG 压降系数	0.690

注:1) 热工设计流量

2.2 子通道划分

EPR 堆芯由 241 个燃料组件组成,FLICA Ⅲ-F 程序将 EPR 的 1/4 堆芯划分为 68 个子通

道^[5],建立了子通道分析模型(图 2)。燃料组 件沿轴向划分为 32 个节点,加装 4 个 MSMG 后轴向节点增加至 36 个(图 3)。

	30 31	34	35	36	37	38	39	40
30 31	<u>}</u> 2	41	42	43	44	45	46	47
34	41	48	49	50	51	52	53	54
35	42	49		56	57	58	59	60
36	43	50	56	`61	62	63	64	
37	44	51	57	62	65	66	67	
38	45	52	58	63	66	`68		-
39	46	53	59	64	67			
40	47	54	60	1/4 堆芯 ^[5]				

图 2 1/4 堆芯内的子通道划分^[4-5]

Fig. 2 Sub-channel in $1/4 \operatorname{core}^{[4-5]}$

图 5 然料组件抽问两相划刀

2.3 临界热流密度(CHF)关系式

本文采用 FC2S 关系式评价 EPR 堆芯加装

MSMG 后 AFA 3GLE 燃料组件的 CHF 特性。

FC2S关系式是 FC2002 关系式和 RFBC 关 系式的组合,FC2002 关系式是在 FC2000 关系式 的 1572 试验数据基础上发展而来的,FC2000 关 系式适用于带或不带 MSMG 的 AFA 3G 燃料组 件^[6]。RFBC 关系式仅用于预测燃料组件活性 段第 1 道交混格架前区域的 CHF。

3 计算结果与讨论

本文将围绕最热子通道和最小 DNBR 发 生处的截面位置,分析 MSMG 对堆芯热工参 数和 DNBR 的影响。

3.1 MSMG 对堆芯流量和温度分布的影响

最热子通道相对质量流密度的轴向分布如 图 4 所示,0 MSMG 表示不带 MSMG, 4 MSMG表示带 4 个 MSMG(下同)。MSMG 加强了 1/4 中央组件中 1~28 号子通道间的水 力交混,提高了该燃料组件内各子通道的轴向 质量流速,随着子通道内流体温度的升高, MSMG 对轴向质量流速的增加减弱。图 4 中, 相对质量流密度为热组件内各子通道质量流密 度与堆芯平均质量流密度之比,轴向相对高度 为燃料轴向位置高度与堆腔高度之比。

由于中央燃料组件各子通道间的冷却剂温度

十分接近,MSMG并未改变中央燃料组件内各子 通道冷却剂温度的分布,但改变了最热子通道与 相邻子通道的横向流动,增加了最热子通道的 CHF,从而改变了最小 DNBR 的发生位置(图 5)。

3.2 MSMG 对 DNBR 的影响

MSMG 对 CHF 存在两方面影响:一方面, MSMG 的交混翼加强了局部流场的交混,改善 了最热子通道的流动,提高了CHF;另一方面, MSMG 的交混翼加强了最热子通道与相邻子通 道的横向交混,促进了最热子通道加热壁面汽泡 的脱离,提高了 CHF。前者的影响反映在最热子 通道的局部热工参数上,后者的影响反映在燃料 组件的 CHF 关系式中,其影响远大于前者。

MSMG 对上游 DNBR 无影响,对下游 CHF存在一影响区域。对于轴向功率为截断 余弦分布的情况,MSMG 改变了堆芯最小 DNBR的发生位置,MSMG 增加了第4道交混 格架后的当地 DNBR,堆芯最小 DNBR 发生位 置从第5道交混格架移至上游 MSMG 前,如 图 6a 所示。对于 AO=+9%的情况,MSMG 未改变堆芯最小 DNBR 的发生位置,最小 DNBR均发生在第8道交混格架的上游,但增 加了堆芯最小 DNBR,如图 6b 所示。

最小 DNBR 及其发生位置列于表 3。从表 3可知,在 EPR 堆芯轴向功率为截断余弦分 布时,AFA 3GLE 燃料组件加装 MSMG 后,堆 芯 DNBR 裕量增加 24%;在 AO=+9%时,堆 芯 DNBR 裕量增加 28%。

图 5 不带 MSMG 燃料组件发生最小 DNBR 截面上热工参数的比较

Fig. 5 Comparison of thermal-hydraulic parameters in minimal DNBR cross section of fuel assembly without MSMG

129

		Table 3 Min	nimal DNBR and	its location		
类型	截断余弦分布			AO = +9%		
	最小 DNBR	DNBR 裕量/%	发生位置/cm	最小 DNBR	DNBR 裕量/%	发生位置/cm
未加 MSMG	2.483	105	268.95	2.026	67.4	409.95

表 3 最小 DNBR 及其发生位置

218.15

2.766 注:台山 EPR 堆芯的 DNBR 设计限值为 1. 21^[4]

3.3 MSMG 对堆芯压隆的影响

添加 4 个 MSMG

MSMG 的功能只是交混冷却剂,以提高热 工-水力性能。由于 MSMG 中不含弹簧和较少 的承载要求,其外形尺寸较交混格架小,可减少 中子吸收和压降系数,同时,在吊装和极限事故 工况下,可使 MSMG 所受的载荷最小。每个 MSMG 栅元有 4 个半球形刚凸,以防止燃料棒 与交混翼接触, 且考虑到燃料组件制造过程中燃 料棒拉棒,在燃料棒与刚凸间留有一小的间隙。

计算表明:在台山 EPR 堆芯热工参数下,增 加4个 MSMG 将增加堆芯压降约 10.1%,约为 23.98 kPa,如图 7 所示。这意味着将增加 AFA 3GLE燃料组件的水力载荷,对主泵的运行点、 燃料组件的压紧系统均提出了新的要求。

Fig. 7 Pressure drop in the hottest sub-channel

但还需指出,EPR 为满足 EUR 用户要求, 具备 15%的堆芯安全裕量,且采用了全新设计 的反应堆控制、监测和限制系统(RCSL),将在 线简化计算的 DNBR 直接作为反应堆的停堆 保护信号^[2],显然,进一步通过对 AFA 3GLE 燃料组件加装 MSMG 增大堆芯安全裕量,并 不经济。但作为一种长寿期设计(60 a 寿命)的 核电站,保留一种增加堆芯安全裕量的措施,以 满足技术进步改造对堆芯安全裕量的需要,也 是非常有用的。

4 结论

2.365

对台山 EPR 堆芯 AFA 3GLE 燃料组件的 上半部加装4个 MSMG,分析了 MSMG 对台 山 EPR 堆芯 DNBR 裕量的影响,结论如下。

95.5

1) 加装 MSMG 加强了 EPR 堆芯中央组件 各子通道间的横向交混和最热子通道的质量流密 度,提高了CHF,其中,横向交混效应起主导作用。

2) 在截断余弦功率分布下, MSMG 改变了 堆芯最小 DNBR 的发生位置,并提高 EPR 堆芯的 DNBR 裕量为 24%;在 AO=+9%轴向功率分布 下,MSMG 未改变堆芯最小 DNBR 的发生位置, 但提高 EPR 堆芯的 DNBR 裕量为 28%。

3) 加装 4 个 MSMG 将增加台山 EPR 堆 芯压隆约10.1%。

参考文献:

- [1] Nuclear Engineering International. Annual fuel review: Design data [R]. United Kingdom: Harcourt Brace Company Ltd., 2004.
- [2] UK-EPRTM GDA Submission. EPR design description[R]. Paris: AREVA and EDF UK, 2005.
- $\lceil 3 \rceil$ AREVA-NP Fuel Sector. AFA 3GLE EPRTM fuel assembly data sheet for Taishan 1&2 reactors [R]. Paris: AREVA Company Ltd., 2009.
- LESNE V, MAO Yulong. EPRTM TSN: Ther- $\lceil 4 \rceil$ mal-hydraulic design report (Rev. A) $\lceil R \rceil$. Paris: Taishan Nuclear Power Station, 2009.
- [5] MAO Yulong, LESNE V. EPRTM TSN-FLICA III-F reference input deck (Rev. A) [R]. Paris: Taishan Nuclear Power Station, 2009.
- 柴国旱,王小海,陈召林,等. 对临界热流密度计 [6] 算关系式 FC-2000 的审评[J]. 核动力工程, 2003,24(6):84-87. CHAI Guohan, WANG Xiaohai, CHEN Zhaolin, et al. Review of correlation FC-2000 for critical heat flux calculation [J]. Nuclear Power Engineering, 2003, 24(6): 84-87(in Chinese).

409.95