第 33 卷第 4 期	环 境 科 学 学 报	Vol. 33, No. 4
2013年4月	Acta Scientiae Circumstantiae	Apr. , 2013

郭建宁,张锡辉,胡江泳,等.2013. 臭氧氧化对陶瓷膜超滤工艺降低饮用水中浊度的影响[J]. 环境科学学报,33(4):968-975 Guo J N, Zhang X H, Hu J Y, *et al.* 2013. Effects of ozonation on removal of turbidity in drinking water using ceramic membrane ultrafiltration[J]. Acta Scientiae Circumstantiae,33(4):968-975

臭氧氧化对陶瓷膜超滤工艺降低饮用水中浊度的影响

郭建宁1,张锡辉1,*,胡江泳2,王凌云1,张建国3,盛德洋3

1. 清华大学深圳研究生院 环境工程与管理研究中心, 深圳 518055

2. 新加坡国立大学 土木与环境工程系, 新加坡 119260

3. 东莞市东江水务有限公司,东莞 523112

收稿日期:2012-06-19 修回日期:2012-08-06 录用日期:2012-08-16

摘要:利用臭氧陶瓷膜超滤集成工艺,研究了臭氧对陶瓷膜超滤工艺处理不同浊度原水的影响.实验用陶瓷膜平均孔径为100 nm.结果表明, 与不投加臭氧的情况相比,投加3 mg·L⁻¹臭氧可将浊度为14、52、108和510 NTU 原水的膜通量提高18.2%~104.9%,投加5 mg·L⁻¹臭氧可 将此值提高至21.7%~116.3%,而投加1~2 mg·L⁻¹臭氧对膜通量的改善不明显.投加5 mg·L⁻¹臭氧可将 COD_{Mn}的去除率提高至28.7%~ 46.9%,投加1~3 mg·L⁻¹臭氧对 COD_{Mn}的去除率无显著影响,膜出水有机物浓度有所升高.臭氧氧化后原水中小分子量有机物增多,降低了 膜的有机物污染程度,有利于膜通量改善.集成工艺出水中2~3 μm 颗粒物数量为10~36个·mL⁻¹.臭氧氧化导致陶瓷膜过滤初期出水中颗 粒物数量略微升高.本研究对于水中颗粒物通过陶瓷超滤膜孔的探讨,以及改善膜对颗粒物的去除具有重要的指导意义. **关键词**:臭氧;陶瓷膜;饮用水处理;浊度

文章编号:0253-2468(2013)04-968-08 中图分类号:TU991.2 文献标识码:A

Effects of ozonation on removal of turbidity in drinking water using ceramic membrane ultrafiltration

GUO Jianning¹, ZHANG Xihui^{1,*}, HU Jiangyong², WANG Lingyun¹, ZHANG Jianguo³, SHENG Deyang³

1. Research Center for Environmental Engineering and Management, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055

2. Department of Civil and Environmental Engineering, National University of Singapore, Singapore 119260

3. Dongjiang Shuiwu Co., Ltd., Dongguan 523112

Received 19 June 2012; received in revised form 6 August 2012; accepted 16 August 2012

Abstract: The effect of ozone on the performance of a hybrid ozone-ceramic membrane ultrafiltration was investigated using raw water with different turbidities. Average pore size of ceramic membrane tested was 100 nm. Ozonation with 3 mg·L⁻¹ ozone increased the membrane fluxes by 18.2% ~ 104.9% with raw water turbidities ranging from 14 to 510 NTU. The percentages increased to 21.7% ~ 116.3% for 5 mg·L⁻¹ ozone. There was no significant effect on the membrane flux for the ozone dosage of 1 to 2 mg·L⁻¹. Ozonation with 5mg·L⁻¹ dosage removed 28.7% ~ 46.9% organics in terms of COD_{Mn}. While 1 ~3 mg·L⁻¹ ozone did not remove COD_{Mn} significantly, its concentrations increased slightly in membrane effluent. Ozonation converted the organics into smaller molecular weight, which decreased the membrane fouling, and improved the membrane flux. The 2 ~ 3 µm particle counts in the effluent of the hybrid process were 10 ~ 36 cnt·mL⁻¹. Ozonation may result in slight increase of particle count in the membrane effluent. Exploration of particulate matter breaking through membrane pore in this paper is of practical importance for the improvement of particle removal in membrane ultrafiltration.

Keywords: ozone; ceramic membrane; drinking water treatment; turbidity

1 引言(Introduction)

因素会影响地表水水质.雨季河水浊度会大幅上 升,不仅增加了水厂处理成本,还可能影响到传统 工艺的处理效果.因此,需要开发一种有效的工艺

地表水是重要的饮用水源水,但降雨等季节性

基金项目:国家水体污染控制与治理科技重大专项(No. 2008ZX07423-002-4);广东省基金项目(No. 2012B030800001)

Supported by the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2008ZX07423-002-4) and the Science and Technology Planning Project of Guangdong Province (No. 2012B030800001)

作者简介: 郭建宁(1981—), 男, 博士生, E-mail: guojn08@163.com; * 通讯作者(责任作者), E-mail: xihuizh@ mail. tsinghua.edu.cn

Biography: GUO Jianning (1981—), male, Ph. D. candidate, E-mail: guojn08@163.com; * **Corresponding author**, E-mail: xihuizh@mail. tsinghua.edu.cn

方法,处理雨季高浊度原水.研究发现,膜工艺能有 效去除饮用水中的颗粒物和有机物,且随着膜制备 成本的降低及应用技术的成熟, 膜过滤在饮用水处 理中的研究与应用日趋广泛(Leiknes, 2009; 2009; Van Geluwe et al., 2011: Song et al., 2010). 但当 前所用的膜大多为有机膜,其机械强度和化学稳定 性较差,使用年限短;而且为增强混凝效果,去除藻 类和臭味等,水处理工艺过程中投加的氧化剂也会 对有机膜产生危害.因此,迫切需要开发一种机械 强度高且耐氧化的膜,以满足饮用水处理的需求. 陶瓷膜具有机械强度高、化学稳定性好等优点,能 够耐受极端污染环境和清洗条件(Pendergast et al., 2011).在饮用水处理中的应用日渐增多.截至2010 年. 日本 METWATER 公司已有近 100 套生产规模 设备在运行,总供水能力约为490×10³ m³·d⁻¹,最 长运行年限已超过13年,但均无膜破损现象发生. 同时,陶瓷膜优良的化学稳定性使其可以与臭氧等 氧化剂联用,在改善污染物去除效果的同时减缓膜 污染 (Byun et al., 2011; Schlichter et al., 2003; Sartor et al., 2008). 目前,有关臭氧陶瓷膜工艺的 研究主要集中在臭氧投加量(Karnik et al., 2005)、 原水 pH(Karnik et al., 2007)、陶瓷膜表面特性 (Corneal et al., 2010; Corneal et al., 2011; Karnik et al., 2009; Byun et al., 2011) 和工艺运行方式 (Kim et al., 2008)等方面. 通常情况下, 陶瓷膜超 滤工艺膜出水的浊度一般低于 0.2 NTU, 但一些研 究发现,无论是超滤还是纳滤,尽管其孔径小于 0.1 µm,在有机膜和陶瓷膜的出水中仍存在2~5 µm 的颗粒物 (Li et al., 2011; Muhammad et al., 2009; Patterson et al., 2012). 此体积范围的颗粒物 可能包含隐孢子虫卵囊等致病微生物,这可能会降 低饮用水的生物安全性,需要引起人们的重视.而 且,臭氧氧化后,颗粒物与膜之间的相互作用机理 发生了显著变化,这也需进一步的探索.因此,研究 臭氧陶瓷膜工艺对颗粒物的去除,不仅有助于明确 臭氧陶瓷膜与颗粒物之间的相互作用机理,控制膜 污染,同时对膜处理工艺中饮用水生物安全性的提 高也有帮助.

本文针对地表水浊度易受降雨影响的现象,利 用陶瓷膜处理不同浊度原水,并通过对膜通量、颗 粒物和有机物指标进行讨论,研究臭氧对陶瓷膜超 滤工艺处理不同浊度原水的过滤性能及其机理,为 臭氧陶瓷膜在饮用水处理中的推广和应用提供科 学依据.

2 材料和方法(Materials and methods)

2.1 原水配制

在水厂取水口采集河水沉积物,并与河水按体 积比为1:10 混合配制成浊度母液. 母液过100 目双 层不锈钢筛网后,将其加入河水中配制成浊度分别 为14、52、108 和510 NTU 的原水. 所配制原水的 pH 为7.8~8.2, UV₂₅₄为0.050 ~0.060 cm⁻¹, COD_{Mn} 为2.8~4.0 mg·L⁻¹.

2.2 实验装置

图 1 为臭氧-陶瓷膜实验系统示意图.实验所用 陶瓷 膜 为 单 通 道 非 对 称 式 管 式 陶 瓷 膜 (SCHUMASIV, Pall Filtersystems GmbH,德国),平 均孔径为 100 nm. 膜与支撑体材料分别为 ZrO₂和 α-Al₂O₃,膜管长 200 nm,过滤面积 44 cm², PTFE 封装.新膜浸润纯水后浸泡于体积分数为 2% 的硝 酸中 10 h.利用纯水测定膜的初始通量,操作方式为 死端过滤,恒定跨膜压差为 0.1 MPa.采用纯氧制备 臭氧,臭氧接触池尾气通过碘化钾溶液吸收后排 放.实验所用管路及阀门材质皆为不锈钢或聚四氟 乙烯.

图1 臭氧-陶瓷膜实验系统示意图

2.3 实验方法

将原水用蠕动泵输入接触池,同时开始通入臭 氧曝气,接触池出水进入陶瓷膜组件.臭氧浓度用 在线臭氧检测仪(Model-600, Ebara)监测,仪器定 时用碘量法校正,通过调节曝气时间控制臭氧投加 量,达到预定投加量(1~5 mg·L⁻¹)后停止曝气.采 用死端过滤模式过滤,恒定跨膜压差为0.1 MPa.以 10 min 为间隔单位取样, 计算通量,并测定浊度、颗 粒物数量、COD_{Mn}.

2.4 分析方法

 COD_{Mn} :酸性高锰酸钾法(TA-88 微量自动分析 仪,Sinsche);颗粒物数量:激光照射/光吸收法(GR-1000A 激光颗粒物分析仪,IBR);浊度:光散射法 (2100P 浊度仪,HACH);UV₂₅₄:紫外可见分光光度 法(UV-1700,SHIMADZU);有机物分子量:分子排 阻色谱法(LC-20A 液相色谱,SHIMADZU,TSK-3000SW_{XL}凝胶色谱柱).通量采用公式 $F_t = Q_t/S$ 进 行计算,其中, F_t 为 t 时刻的膜通量(L·m⁻²·h⁻¹), Q_t 为 t 时刻膜的出水流量(L·h⁻¹), S 为膜面积 (m²).

3 结果(Results)

3.1 陶瓷膜膜通量的变化

图 2 为陶瓷膜过滤不同浊度原水时膜通量的变 化曲线.由图可见,膜通量变化分为两个阶段:前 10 min 为膜通量迅速下降阶段,陶瓷膜初始通量为2045 L·m⁻²·h⁻¹,陶瓷膜单独过滤10 min,4 种原水的膜通量分别降至初始通量的25.0%~28.5%;过滤20 min 后,膜通量均呈现缓慢的近乎线性下降趋势.

臭氧氧化后, 膜通量均有改善. 投加 3 mg·L⁻¹ 臭氧使浊度为 14、52 和 108 NTU 原水的膜通量相对 于没有 投加 臭氧 的情况分别提高了 104.9%、 65.8%和 52.2%; 投加 5mg·L⁻¹臭氧可将这 3 种浊 度原水的膜通量平均提高 116.3%、95.1%和 71.1%; 但投加 1 mg·L⁻¹和 2 mg·L⁻¹臭氧对这 3 种 浊度原水的膜通量改善不明显, 平均增长率分别为 16.4%~36.8%、2.6%~17.3%和 8.5%~ 16.6%.随着原水浊度的提高, 臭氧对膜通量的影 响逐渐减弱, 且不同臭氧投加量之间的膜通量差别 逐渐减小. 臭氧对 510 NTU 原水的膜通量影响最 小, 1~5 mg·L⁻¹臭氧仅可将膜通量提高 12.5%~ 21.7%.

图 2 臭氧投加量对不同浊度原水膜通量的影响

Fig. 2 Influence of ozone dosage on flux of ceramic membrane under different turbidities

3.2 陶瓷膜出水颗粒物数量的变化

图 3 为陶瓷膜出水中 2 ~ 3 μm 颗粒物数量的 变化.14、52、108 和 510 NTU 原水中, 2 ~ 3 μm 颗粒 物数量分别约为 3 × 10³、38 × 10³、66 × 10³ 和 110 × 10³ 个 ·mL⁻¹(平均值),陶瓷膜出水浊度低于 0.15 NTU, 2 ~ 3 μm 颗粒物数量最高为 35 个 ·mL⁻¹,低 于普通砂滤池出水的颗粒物数量(100 个 ·mL⁻¹左 右).

在初始过滤即 0 min 附近, 膜出水颗粒物数量 最高;随着过滤的进行, 膜出水的颗粒物数量逐渐 降低并趋于稳定;20 min 后污染层基本形成,膜出 水的颗粒物数量稳定在10个·mL⁻¹左右.陶瓷膜单 独过滤不同浊度原水时,膜初滤出水中2~3 μm 颗 粒物数量为10~15个·mL⁻¹.投加1与2 mg·L⁻¹臭 氧后,初滤出水中颗粒物数量变化不明显;但3与5 mg·L⁻¹臭氧氧化可使初滤出水中颗粒物数量增加 至22~36个·mL⁻¹.膜污染层形成后,原水初始浊 度和臭氧投加量对膜出水中颗粒物数量无明显影 响,此时集成工艺膜出水中颗粒物数量均低于15 个·mL⁻¹.

图3 臭氧氧化对膜出水颗粒物数量的影响

Fig. 3 Effect of ozonation on particle count in the permeate

3.3 集成工艺对 COD_{Mn}的去除效果

图 4 为陶瓷膜出水中 COD_{Mn}的变化曲线,考虑 到 510 NTU 原水的浊度太高,使用 TA-88 微量分析 仪测定 COD,太高的浊度会影响测定结果,因此,文 中未给出该浊度下得 COD_{Mn}变化曲线.由图 4 可见, 无臭氧投加的情况下,单独陶瓷膜过滤后,14、52 和 108 NTU 原水中 COD_{Mn}分别降低了 27.4%、28.1% 和 39.1%.单独臭氧氧化对不同浊度原水中 COD_{Mn} 的平均去除率均低于 10.0%,投加 5 mg·L⁻¹臭氧 氧化对 COD_{Mn}的去除效果高于其它臭氧投加量. 集成工艺中投加 5 mg·L⁻¹臭氧提高了膜对有 机物的去除效果,14、52 和 108 NTU 原水中 COD_{Mn} 的平均去除率可提高至 28.7%、43.5% 和 46.9%. 投加 3 mg·L⁻¹臭氧氧化后,3 种原水中 COD_{Mn}的平 均去除率分别为 19.4%、32.2% 和 38.4%.低于 3 mg·L⁻¹臭氧投加量时,膜出水的有机物浓度相对于 不投加臭氧的情况反而有所上升.这说明陶瓷膜对 有机物的截留效果与臭氧氧化程度有关:一方面, 臭氧可彻底分解部分有机物为 CO₂,导致原水 COD_{Mn}降低;另一方面,臭氧氧化可促进部分有机物 972

透过膜,反而导致膜出水中有机物增加.

图 4 臭氧对膜出水 COD_{Mn}的影响

Fig. 4 Effect of ozone on the COD_{Mn} concentrations in permeate under different turbidities

4 讨论(Discussion)

4.1 通量变化的机理分析

陶瓷膜单独过滤和臭氧-陶瓷膜集成工艺中,不 同浊度原水的膜通量在过滤初期(0~10 min)均快 速下降至初始通量的 20.0% ~ 30.0%. 已有的臭氧 陶瓷膜工艺研究中也有类似报道(Kim et al., 2008; Byun et al., 2011). 实验所用原水取自河流, 含有天然有机物(NOM)和无机颗粒物等组分. Jermann 等(2007;2008)研究认为,无机颗粒物和 NOM 两种组分对膜具有协同污染作用,导致膜通量 迅速下降. Hwang 等(2008)认为过滤初期膜孔堵塞 和滤饼形成过程并存,大量颗粒物快速聚集至膜表 面,使得过滤过程从膜孔堵塞迅速转变为滤饼过滤 状态.本研究中,在较高的跨膜压差(TMP)和较大 的初始通量(2045 L·m⁻²·h⁻¹)下,大量污染物被原 水带至陶瓷膜.原水中的颗粒物和溶解态有机物造 成膜孔堵塞,并在膜表面形成污染层,两者均导致 过滤通量的迅速下降.10 min 后,通量下降速度减 缓. 由表 2 可见, 从第 20 min 起, 膜过滤进入通量随时间呈线性下降的过滤状态, 这说明此时膜孔堵塞过程已基本稳定.

表 2 膜通量随时间的线性变化关系

Table 2 Linear 1	elationship between membran	e flux and	d time
臭氧量 /(mg·L ⁻¹)	线性关系	n	R^2
0	y = -3.003x + 401.4	7	0.921 *
1	y = -2.930x + 441.5	7	0.919*
2	y = -3.482x + 522.5	7	0.945 *
3	y = -5.035x + 771.7	6	0.978 *
5	y = -11.179x + 1144.5	5	0.931 *

注:* *p* < 0.01; 原水浊度 14 NTU, *y* 为膜通量(L·m⁻²·h⁻¹), *x* 为过滤时间(min).

臭氧氧化可改善不同浊度原水的膜通量.以浊 度为14 NTU的原水为例,臭氧氧化后膜通量相对 于没有臭氧氧化的情况提高了36.8%~116.3%. 诸多报道显示,原水中的天然有机物(NOM)和颗 粒物是导致膜污染的主要因素(Karnik *et al.*, 2005; Lee et al., 2004; Schäfer et al., 2000). 实验 中膜通量的提高说明臭氧氧化导致原水性质发生 了改变,进而影响膜通量.由图3可见,无论是否投 加臭氧,陶瓷膜均可截留原水中绝大部分颗粒物, 膜出水中 2 ~ 3 μm 颗粒物数量均低于 40 个 ·mL⁻¹. 但投加 3 和 5 mg·L⁻¹臭氧后, 过滤初期 膜出水中颗粒物数量升高.颗粒物的透过有利于减 缓膜的污染,降低膜通量的下降程度.由图5可知, 随着臭氧投加量的增加,集成工艺出水 UV34的去除 效率提高.但相同臭氧投加量下,COD_M的去除率却 明显低于 UV254. CODMn 和 UV254 两种有机物指标去 除效果不同,说明臭氧预氧化改变了有机物的官能 团结构,但并没有将其降解成为CO,.图6所示的有 机物分子质量分布变化直接表明,氧化后原水中分 子质量 1000 Da 的有机物减少, 而分子质量为 390 Da 的有机物增加. 臭氧氧化后, 有机物分子质量降 低,其亲水性增强,更容易透过陶瓷膜,这可以降低

有机物对膜的污染程度,缓解膜通量的下降.

4.2 颗粒物数量变化的机理分析

在本研究中,浊度为 14、52、108 和 510 NTU 原水 中,粒径大于 2 μm 的颗粒物数量分别为 20×10³ ~ 25×10³ 个·mL⁻¹、156×10³~173×10³ 个·mL⁻¹、 220×10³~290×10³ 个·mL⁻¹和 560×10³~660× 10³ 个·mL⁻¹(同一水样 5 批次实验范围值).由图 3 可知,采用孔径为 100 nm 的陶瓷膜过滤以后,高达 99% 以上的颗粒物被截留,但出水中仍含有相当数 量的粒径大于 2 μm 的颗粒物,数量最高达到 36 个·mL⁻¹.相应地,臭氧对通量的贡献也因为快速 形成的膜污染而相对减弱.因此,随着浊度升高,臭 氧对膜通量的影响逐渐减弱

臭氧能够显著影响颗粒物的稳定性,但关于臭 氧是提高还是降低颗粒物的稳定性目前还没有定 论 (Chandrakanth et al., 1996; Becker et al., 2001). 本研究中, 投加臭氧后原水中 2~3 μm 颗 粒物数量增加,大颗粒物数量减少(表3),且随着 臭氧投加量的增加, 2~3 μm 颗粒物数量增加.此 现象与 Yan 等(2007)的研究结果类似. 这可能是臭 氧预处理后,一方面,氧化可分解颗粒物上吸附的 大分子有机物,也可能使通过大分子有机物聚集在 一起的大颗粒物得到拆解,因此,氧化后小颗粒物 增多.氧化后原水中颗粒物的体积分布发生变化, 颗粒物的空间位阻效应随之降低,使其更容易透过 陶瓷膜.另一方面,臭氧氧化后有机物分子量变小, 有机物的亲水性增强,改善了其对膜的亲和性.相 关研究表明,预处理工艺正是通过改变污染物的体 积,改变污染物之间或污染物与膜之间的亲和性等 影响膜的过滤性能(Huang et al., 2009).因此,臭 氧氧化可能降低了颗粒物的空间位阻效应,增强了 有机物亲水性,进而改变膜的过滤性能,导致过滤 初期膜出水中2~3µm 颗粒物数量增加(图3).52 NTU 原水经 3 $mg \cdot L^{-1}$ 和 5 $mg \cdot L^{-1}$ 臭氧氧化后, 膜 过滤初期出水中2~3µm 颗粒物数量高于其它3 组原水,这可能与其原水有机物含量较高有关.因 为较高的有机物浓度有利于臭氧与其反应,所以臭 氧氧化对膜性能的影响更加明显. 过滤 20min 后, 堵 寒后的膜孔和所形成的滤饼对颗粒物均有很好的 截留作用,此阶段膜出水颗粒物数量变化不明显.

实验中所用的陶瓷膜平均孔径分布为100 nm, 但膜出水中仍可检测到大于2 μm 的颗粒物.其原 因可能如下:一方面,可能是因为陶瓷膜存在大于 平均孔径分布的非正常膜孔;另一方面,单纯的有 机质颗粒物在压力作用下可能发生形变,并通过蠕 动作用透过膜,然后又恢复原状,从而导致膜出水 中含有大于膜孔径的颗粒物.后一种原因对于解释 细胞或者芽孢形式的病菌微生物通过膜孔的过程 具有启示作用,其微观过程有待于进一步详细研究.

表 3 臭氧氧化对原水颗粒物数量的影响

Table 3 Effect of ozone on the particulate matter in raw water					
浊度	臭氧投加量	颗粒物数量变化量/(个 ⋅mL ⁻¹)			
/NTU	$/(mg \cdot L^{-1})$	2~3 µm	3~5 µm	5 ~7 μm	7 ~10 μm
14	1	794	1753	79	- 1348
	2	880	1710	50	- 1046
	3	1416	2807	- 17	- 1921
	5	1547	3083	484	- 1051
52	1	940	- 2620	- 1990	- 2630
	2	2140	1920	- 9630	- 3750
	3	1870	- 2290	- 4410	- 5080
	5	2800	-3140	- 3490	- 3790
108	1	- 100	- 380	500	260
	2	5320	1300	100	- 840
	3	9600	- 5260	- 2440	-4040
	5	9680	13220	640	- 3020

注:正值表示增加,负值表示减少;510 NTU 原水浊度高,测定颗 粒数需要稀释倍数过大(颗粒计数仪擅长测定水厂出水等较清洁的 水样),导致较大的偏差,因此,表3未给出其数据.

5 结论(Conclusions)

1) 臭氧氧化改变有机物结构是膜通量提高的 主要原因.3~5 mg·L⁻¹臭氧投加量下,14、52、108 和510 NTU 原水的陶瓷膜通量相对于没有投加臭 氧情况分别增加了 104.9%~116.3%、65.8%~ 65.1%、52.2%~71.1%和21.7%~23.6%;1~2 mg·L⁻¹臭氧可将膜通量提高 2.6%~36.8%.随着 原水浊度的提高,臭氧对膜通量的影响程度减弱.

2) 投加 3~5 mg·L⁻¹臭氧导致过滤初期膜出 水中 2~3 μm 颗粒物数量增加.集成工艺可去除原 水中 99% 以上的颗粒物,不同浊度原水的膜出水 中,2~3 μm 颗粒物数量低于 40 个·mL⁻¹.

3) 臭氧氧化可改变原水中有机物分子结构, 小分子量有机物增多,显著影响其膜过滤特性.1~ 3 mg·L⁻¹ 臭氧使膜出水中 COD_{Mn}略微升高,5 mg·L⁻¹臭氧对 14、52 和 108 NTU 原水中 COD_{Mn}的 去除率由未投加臭氧时的 27.4%、28.1%和 39.1% 分别提高至 28.7%、43.5%和 46.9%. 责任作者简介:张锡辉,男,教授,清华大学博士生导师, 主要从事饮用水安全净化和水环境修复领域的理论探讨和 技术研究, E-mail: xihuizh@mail.tsinghua.edu.cn.

参考文献 (References):

- Becker W C, O'Melia C R. 2001. Ozone: its effect on coagulation and filtration[J]. Water Science & Technology-Water Supply,1(4): 81-88
- Byun S, Davies S H, Alpatova A L, et al. 2011. Mn oxide coated catalytic membranes for a hybrid ozonation-membrane filtration: Comparison of Ti, Fe and Mn oxide coated membranes for water quality[J]. Water Research, 45(1): 163-170
- Chandrakanth M S, Amy G L. 1996. Effects of ozone on the colloidal stability and aggregation of particles coated with natural organic matter[J]. Environmental Science & Technology, 30(2): 431-443
- Connell H, Zhu J, Bassi A. 1999. Effect of particle shape on crossflow filtration flux[J]. Journal of Membrane Science, 153(1): 121-139
- Corneal L M, Baumann M J, Masten S J, et al. 2011. Mn oxide coated catalytic membranes for hybrid ozonation-membrane filtration: Membrane microstructural characterization [J]. Journal of Membrane Science, 369(1/2): 182-187
- Corneal L M, Masten S J, Davies S, et al. 2010. AFM, SEM and EDS characterization of manganese oxide coated ceramic water filtration membranes [J]. Journal of Membrane Science, 360 (1/2): 292-302
- Huang H, Schwab K, Jacangelo J G. 2009. Pretreatment for low pressure membranes in water treatment: A review [J]. Environmental Science & Technology, 43(9): 3011-3019
- Hwang K J, Liao C Y, Tung K L. 2008. Effect of membrane pore size on the particle fouling in membrane filtration [J]. Desalination, 234 (1/3): 16-23
- Jacangelo J G, Trussell R R, Watson M. 1997. Role of membrane technology in drinking water treatment in the United States [J]. Desalination, 113(2/3): 119-127
- Jermann D, Pronk W, Boller M. 2008. Mutual influences between natural organic matter and inorganic particles and their combined effect on ultrafiltration membrane fouling [J]. Environmental Science & Technology, 42(24): 9129-9136
- Jermann D, Pronk W, Meylan S, et al. 2007. Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production [J]. Water Research, 41(8): 1713-1722
- Karnik B S, Baumann M J, Corneal L M, et al. 2009. TEM characterization of iron-oxide-coated ceramic membranes [J]. Journal of Materials Science, 44(15): 4148-4154
- Karnik B S, Davies S H, Baumann M J, et al. 2005. The effects of combined ozonation and filtration on disinfection by-product formation [J]. Water Research, 39(13): 2839-2850
- Karnik B S, Davies S H, Baumann M J, et al. 2007. Use of salicylic acid as a model compound to investigate hydroxyl radical reaction in an ozonation-membrane filtration hybrid process[J]. Environmental Engineering Science, 24(6): 852-860

- Kim J, Davies S, Baumann M J, et al. 2008. Effect of ozone dosage and hydrodynamic conditions on the permeate flux in a hybrid ozonationceramic ultrafiltration system treating natural waters [J]. Journal of Membrane Science, 311(1/2): 165-172
- Lee S, Jang N, Watanabe Y. 2004. Effect of residual ozone on membrane fouling reduction in ozone resisting microfiltration (MF) membrane system[J]. Water Science and Technology, 50(12): 287-292
- Leiknes T. 2009. The effect of coupling coagulation and flocculation with membrane filtration in water treatment: A review [J]. Journal of Environmental Sciences, 21(1): 8-12
- Li M, Wu G, Guan Y, et al. 2011. Treatment of river water by a hybrid coagulation and ceramic membrane process [J]. Desalination, 280 (1/3): 114-119
- Muhammad N, Sinha R, Krishnan E R, et al. 2009. Ceramic filter for small system drinking water treatment: Evaluation of membrane pore Size and importance of integrity monitoring [J]. Journal of Environmental Engineering-Asce, 135(11): 1181-1191
- Patterson C, Anderson A, Sinha R, et al. 2012. Nanofiltration membranes for removal of color and pathogens in small public drinking water sources [J]. Journal of Environmental Engineering-Asce, 138(1): 48-57
- Pendergast M M, Hoek E. 2011. A review of water treatment membrane nanotechnologies [J]. Energy & Environmental Science, 4 (6): 1946-1971

- Sartor M, Schlichter B, Gatjal H, et al. 2008. Demonstration of a new hybrid process for the decentralised drinking and service water production from surface water in Thailand [J]. Desalination, 222 (1/3): 528-540
- Schäfer A I, Schwicker U, Fischer M M, et al. 2000. Microfiltration of colloids and natural organic matter [J]. Journal of Membrane Science, 171(2): 151-172
- Schlichter B, Mavrov V, Chmiel H. 2003. Study of a hybrid process combining ozonation and membrane filtration-filtration of model solutions[J]. Desalination, 156(1/3): 257-265
- Schlichter B, Mavrov V, Chmiel H. 2004. Study of a hybrid process combining ozonation and microfiltration/ultrafiltration for drinking water production from surface water [J]. Desalination, 168: 307-317
- Song Y, Dong B, Gao N, et al. 2010. Huangpu River water treatment by microfiltration with ozone pretreatment [J]. Desalination, 250 (1): 71-75
- Van Geluwe S, Vinckier C, Braeken L, et al. 2011. Ozone oxidation of nanofiltration concentrates alleviates membrane fouling in drinking water industry[J]. Journal of Membrane Science, 378(1/2): 128-137
- Yan M, Wang D, Shi B, et al. 2007. Effect of pre-ozonation on optimized coagulation of a typical North China source water [J]. Chemosphere, 69(11): 1695-1702