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Abstract: The fixed point set of the affine Weyl group ( eA2n, eS) under a certain group

automorphism α with α ( eS) = eS can be considered as the affine Weyl group ( eCn, S). Then

the left and two-sided cells of the weighted Coxeter group ( eCn, eℓ), where eℓ is the length

function of eA2n, can be given an explicit description by studying the fixed point set of the

affine Weyl group ( eA2n, eS) under α. We describe the cells of ( eCn, eℓ) corresponding to the

partitions k12n+1-k with 1 6 k 6 2n + 1 and (2n − 1, 2).
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�n��ß�x, ùpé¤k� 1 6 k 6 2n + 1.

'�c: �� Weyl +; ��n; [©�; \�� Coxeter +

0 Introduction

In this article, we will discuss some results about left cells in a weighted Coxeter group

(W,L) as defined by Lusztig in [1], which is, by definition, a Coxeter system (W,S) together

with a weight function L : W −→ Z. When L = ℓ̃, (W,L) is called in split case by Lusztig,

where ℓ̃ is the length function of W . And when W can be realized as the fixed point set of a

finite or an affine Coxeter system (W̃ , S̃) under a group automorphism α with α(S̃) = S̃, where
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the weight function L is the restriction to W of the length function ℓ̃ of W̃ , (W,L) is called in

quasi-split case by Lusztig (see [1, Ch. 16]).

The affine Weyl group W = C̃n can be realized as the fixed point set of the affine Weyl

group W̃ = Ã2n under the group automorphism α determined by α(si) = s2n−i for 0 6

i < 2n + 1, where the Coxeter generator set S̃ = {si | 0 6 i < 2n + 1} of Ã2n satisfies

s2i = 1, sisj = sjsi (j 6≡ i± 1 mod 2n+ 1) and sisi+1si = si+1sisi+1 for any 0 6 i, j < 2n+ 1

(we stipulate s2n+1 = s0). Following the ideas of Shi in [2], we will study certain left cells of

the weighted Coxeter group (C̃n, ℓ̃), where ℓ̃ is the length function of Ã2n.

1 Cells theories of a weighted Coxeter group

We assemble in this section some basic concepts and results of a weighted Coxeter group,

which follow from Lusztig in [1] except for 1.7 from Shi in [2].

1.1 Let (W,S) be a Coxeter system with ℓ its length function and 6 the Bruhat-Chevalley

order on W . An expression w = s1s2 · · · sr ∈ W with si ∈ S is called reduced if r = ℓ(w).

By a weight function on W , we mean a map L : W −→ Z satisfying that L(s) = L(t) for any

s, t ∈ S conjugate in W and that L(w) = L(s1)+L(s2)+ · · ·+L(sr) for any reduced expression

w = s1s2 · · · sr ∈ W . Call (W,L) is a weighted Coxeter group.

Suppose that there exists a group automorphism α : W −→ W with α(S) = S. Let

Wα = {w ∈ W | α(w) = w}. For any α-orbit J in S, let wJ ∈ W
α be the longest element

in the subgroup WJ of W generated by J . Let Sα be the set of elements wJ with J ranging

over all α-orbits on S. Then (Wα, Sα) is a Coxeter group and the restriction to Wα of the

length function ℓ : W −→ N is a weight function on Wα. The weighted Coxeter group (Wα, ℓ)

is called in the quasi-split case.

1.2 Let A = Z[v, v−1] be the ring of Laurent polynomials in an indeterminant v with

integer coefficients. Denote vw = vL(w) for any w ∈ W . Define a ring involution a −→ a of A

by setting
∑
aivi =

∑
aiv

−i where ai ∈ Z in the sum. Define A<m = {f ∈ A | deg f < m} for

any m ∈ Z.

1.3 Let (W,S) be a Coxeter system. For any w, x, y, z ∈ W and s ∈ S with sx < x <

y < sy, define pz,w,M
s
x,y ∈ A recurrently by the following requirements:

pz,w = 0 if z 
 w, pw,w = 1 and pz,w ∈ A<0 if z < w. (1.3.1)

pz,w = vǫ
spz,sw + psz,sw −

∑
z6z′<sw

sz′<z′

M s
z′,swpz,z′ for z < w and sw < w, where ǫ = 1 if sz < z,

and −1 if sz > z (see [1, The proof of Theorem 6.6]). (1.3.2)

∑

x6z<y

sz<z

M s
z,ypx,z ≡ vspx,y(mod A<0), (1.3.3)

M s
x,y = M s

x,y. (1.3.4)

The condition (1.3.3) determines the coefficients of vk in M s
x,y for all k > 0; then (1.3.4)

determines all the other coefficients (see [1, Proposition 6.3]).
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1.4 Let (W,S) be a Coxeter system. For y 6= w ∈W , if there exists s ∈ S with w < sw,

such that either y = sw or M s
y,w 6= 0, then we denote y ←

L
w; if there exists s ∈ S with w < ws,

such that either y = ws or M s
y−1,w−1 6= 0, then we denote y ←

R
w. Let 6

L
(resp., 6

R
) be the

preorder on W which is transitively generated by the relation y ←
L
w (resp., y ←

R
w). The

equivalence relation associated to this preorder is denoted by ∼
L

(resp., ∼
R

). The corresponding

equivalence classes in W are called left cells (resp., right cells) of W . Write y 6
LR

w in W , if there

exists a sequence y0 = y, y1, . . . , yr = w in W with some r > 0 such that for every 1 6 i 6 r,

either yi−1 6
L
yi or yi−1 6

R
yi holds. The equivalence relation associated to the preorder 6

LR
is

denoted by ∼
LR

and the corresponding equivalence classes in W are called two-sided cells of W .

1.5 For w ∈ W , define L(w) = {s ∈ S | sw < w} and R(w) = {s ∈ S | ws < w}. If

y, w ∈ W satisfy y 6
L
w (resp., y 6

R
w), then R(y) ⊇ R(w) (resp., L(y) ⊇ L(w)). In particular,

if y ∼
L
w (resp., y ∼

R
w), then R(y) = R(w) (resp., L(y) = L(w)) (see [1, Lemma 8.6]).

1.6 In [1, Chapter 13], Lusztig defined a function a : W −→ N ∪ {∞} in terms of

structural coefficients of the Hecke algebra associated to W .

In [1, Chapters 14 -16], Lusztig proved the following results when W is either a finite or

an affine Coxeter group and when (W,L) is either in the split case or in the quasi-split case.

(1) y 6
LR

w in W implies a(w) 6 a(y). Hence y ∼
LR

w in W implies a(w) = a(y).

(2) If w, y ∈ W satisfy a(w) = a(y) and y 6
L
w (resp., y 6

R
w, y 6

LR
w), then y ∼

L
w (resp.,

y ∼
R
w, y ∼

LR
w).

For any X ⊂W , write X−1 := {x−1 | x ∈ X}.

Lemma 1.7 (see [2, Lemma 1.7]) Suppose that W is either a finite or an affine Coxeter

group and that (W,L) is either in the split case or in the quasi-split case.

Let E be a non-empty subset of W satisfying the following conditions :

(a) There exists some k ∈ N with a(x) = k for any x ∈ E;

(b) E is a union of some left cells of W ;

(c) E−1 = E.

Then E is a union of some two-sided cells of W .

2 The weighted Coxeter groups (Ã2n, ℓ̃) and (C̃n, ℓ̃)

2.1 The affine Weyl group Ã2n can be realized as the following permutation group on

the integer set Z (see [3, Subsection 3.6] and [4, Subsection 4.1]:

Ã2n =
{
w : Z −→ Z | (i+ 2n+ 1)w = (i)w + 2n+ 1,

2n+1∑

i=1

(i)w =

2n+1∑

i=1

i
}
.

The Coxeter generator set S̃ = {si | 0 6 i < 2n+ 1} of Ã2n is given by

(t)si =





t, if t 6≡ i, i+ 1 (mod 2n+ 1),

t+ 1, if t ≡ i (mod 2n+ 1),

t− 1, if t ≡ i+ 1 (mod 2n+ 1),
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for any t ∈ Z and 0 6 i < 2n + 1. Any w ∈ Ã2n can be realized as a Z × Z monomial

matrix Aw = (aij)i,j∈Z, where aij is 1 if j = (i)w and 0 if otherwise. The row (resp., column)

indices of Aw are increasing from top to bottom (resp., from left to right). We can conveniently

use some familiar operations in linear algebra on the matrix Aw. For example, Aw−1 is just

the transposed matrix of Aw; Asiw (resp., Awsi
) can be obtained from Aw by transposing the

(2nq + q + i)th and the (2nq + q + i+ 1)th rows (resp., columns) for all q ∈ Z.

Let α : Ã2n −→ Ã2n be the group automorphism determined by α(si) = s2n−i for 0 6 i <

2n+ 1. Then the affine Weyl group C̃n can be realized as the fixed point set of Ã2n under α,

which can also be described as a permutation group on Z as follows.

C̃n = {w : Z −→ Z | (i+ 2n+ 1)w = (i)w + 2n+ 1, (−i)w = −(i)w, ∀i ∈ Z}

with the Coxeter generator set S = {ti | 0 6 i 6 n}, where ti = sis2n−i for 1 < i < n,

t0 = s0s2ns0 and tn = sn. For any w ∈ C̃n, we can see that (k(2n+ 1))w = k(2n+ 1), for any

k ∈ Z. For the sake of convenience, we define si for any i ∈ Z by setting s2qn+q+b to be sb for

any q ∈ Z and 0 6 b < 2n+ 1.

2.2 Denote the set {1, 2, · · · , k} by [k] for any k ∈ N. By a partition of a positive integer

n, we mean an r-tuple λ := (λ1, λ2, · · · , λr) of weakly decreasing positive integers λ1 > · · · > λr

with
r∑

k=1

λk = n for some r > 1. λi is called a part of λ. We usually denote λ in the form

jk1

1 jk2

2 · · · j
km
m (boldfaced) with j1 > j2 > · · · > jm > 1 if ji is a part of λ with multiplicity

ki > 1 for i > 1. For example, 8522312 stands for the partition (8, 5, 5, 2, 2, 2, 1, 1) of 26.

Fix w ∈ Ã2n. For any i 6= j in [2n+ 1], we write i ≺w j, if there exist some p, q ∈ Z such

that both inequalities 2pn+p+i > 2qn+q+j and (2pn+p+i)w < (2qn+q+j)w hold. In terms

of matrix entries of w, this means that the entry 1 at the position (2qn+q+ j, (2qn+q+ j)w) is

located to the northeast of the entry 1 at the position (2pn+ p+ i, (2pn+ p+ i)w) (see Fig. 1).

This defines a partial order ≺w on the set [2n+ 1].




1

1



−−−−−(2qn+ q + j)-th row

−−−−−(2pn+ p+ i)-th row

Fig. 1 Illustration of i ≺w j

A sequence a1, a2, · · · , ar in [2n + 1] is called a w-chain, if a1 ≺w a2 ≺w · · · ≺w ar. We

identify a w-chain a1, a2, · · · , ar with the corresponding set {a1, a2, · · · , ar}. For any k > 1,

a k-w-chain-family is by definition a disjoint union X =
k⋃

i=1

Xi of k w-chains X1, · · · , Xk in

[2n+ 1]. Let dk be the maximally possible cardinal of a k-w-chain-family for any k > 1. Then

there exists some r > 1 such that d1 < d2 < · · · < dr = 2n+1. Let λ1 = d1 and λk = dk−dk−1

for any 1 < k 6 r. Then λ1 > λ2 > · · · > λr by a result of Curtis Greene in [2n+1]. Let Λ2n+1

be the set of partitions of 2n+ 1. Hence w 7→ ψ(w) = (λ1, · · · , λr) defines a map from the set

Ã2n to the set Λ2n+1.
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2.3 Let ℓ̃, ℓ be the length functions on the Coxeter systems (Ã2n, S̃), (C̃n, S), respec-

tively. By the definition in 1.1, we see that the weighted Coxeter group (Ã2n, ℓ̃) is in the split

case, while (C̃n, ℓ̃) is in the quasi-split case (see [1, Lemma 16.2]).

For any x ∈ Ã2n and k ∈ Z, let mk(x) =# {i ∈ Z | i < k and (i)x > (k)x} and

mn(x) =# {i ∈ Z | i < n+ 1 and (i)x > n}. Then the formulae for the functions ℓ̃ and ℓ are as

follows.

Proposition 2.4 For any w ∈ Ã2n and x ∈ C̃n, we have

(1) ℓ̃(w) =
∑

16i<j62n+1

|⌊ (j)w−(i)w
2n+1 ⌋| =

2n+1∑
k=1

mk(w);

(2) ℓ(x) = 1
2 (ℓ̃(x)−m0(x) +mn(x)),

where ⌊a⌋ stands for the largest integer not larger than a and |a| stands for the absolute value

of a for any a ∈ Q.

Proof (1) follows from Shi in [8, Proposition 2.4].

(2) When ℓ(x) = 0, ℓ̃(x) = m0(x) = mn(x) = 0.

When ℓ(x) = 1, if x = ti with 0 < i < n, then ℓ̃(x) = 2 and m0(x) = mn(x) = 0; if x = t0,

then ℓ̃(x) = 3, m0(x) = 1 and mn(x) = 0; if x = tn, then ℓ̃(x) = 1, m0(x) = 0 and mn(x) = 1.

These imply that the equality is right when ℓ(x) 6 1.

Now suppose that the equality is right when ℓ(x) 6 k with k ∈ N.

When ℓ(x) = k + 1, if ti ∈ L(x) with 0 < i < n, then ℓ̃(tix) = ℓ̃(x) − 2, m0(tix) = m0(x)

and mn(tix) = mn(x); if t0 ∈ L(x), then ℓ̃(t0x) = ℓ̃(x)−3, m0(t0x) = m0(x)−1 and mn(t0x) =

mn(x); if tn ∈ L(x), then ℓ̃(tnx) = ℓ̃(x)−1, m0(tnx) = m0(x) and mn(tnx) = mn(x)−1. These

imply that the equality is right when ℓ(x) = k + 1. Hence (2) is obtained.

2.5 Let 6,6C be the Bruhat-Chevalley orders on the Coxeter systems (Ã2n, S̃), (C̃n, S),

respectively. Since the condition x 6C y is equivalent to x 6 y for any x, y ∈ C̃n, it will cause

no confusion if we use the notation 6 in the place of 6C . Hence from now on we shall use 6

instead of both 6 and 6C .

Let L̃(x) = {s ∈ S̃ | sx < x} and R̃(x) = {s ∈ S̃ | xs < x} for x ∈ Ã2n and let

L(y) = {t ∈ S | ty < y} and R(y) = {t ∈ S | yt < y} for y ∈ C̃n.

Corollary 2.6 For any x ∈ C̃n and 0 6 i 6 n,

si ∈ L̃(x) ⇐⇒ s2n−i ∈ L̃(x) ⇐⇒ ti ∈ L(x) ⇐⇒ (i)x > (i + 1)x ⇐⇒ (2n + 1 − i)x <

(2n− i)x,

si ∈ R̃(x)⇐⇒ s2n−i ∈ R̃(x)⇐⇒ ti ∈ R(x)⇐⇒ (i)x−1 > (i+1)x−1 ⇐⇒ (2n+1−i)x−1 <

(2n− i)x−1.

Proof The results follow from Shi in [2, Corollary 2.6].

2.7 For any a ∈ Z, denote by 〈a〉 the unique integer in [2n+1] satisfying a ≡ 〈a〉mod 2n+

1. It is known that every w ∈ C̃n is determined uniquely by the n-tuple ((1)w, (2)w, · · · , (n)w).

Hence we shall identify w with the n-tuple ((1)w, (2)w, · · · , (n)w) and denote the latter by

[(1)w, (2)w, · · · , (n)w] in such a sense. Let w = [a1, a2, · · · , an], w′ = tiw = [a′1, a
′
2, · · · , a

′
n]

and w′′ = wti = [a′′1 , a
′′
2 , · · · , a

′′
n] be in C̃n. When i ∈ [n − 1], we have a′j = aj for j ∈

[n] \ {i, i + 1}, a′i = ai+1 and a′i+1 = ai; when i = 0, we have a′j = aj for 1 < j 6 n and

a′1 = −a1; when i = n, we have a′j = aj for j ∈ [n − 1] and a′n = 2n + 1 − an. On the other
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hand, when i ∈ [n − 1], we have a′′j = aj if 〈aj〉 /∈ {i, i+ 1, 2n− i, 2n + 1 − i}, a′′j = aj + 1 if

〈aj〉 ∈ {i, 2n− i} and a′′j = aj − 1 if 〈aj〉 ∈ {i + 1, 2n+ 1 − i}; when i = 0, we have a′′j = aj

if 〈aj〉 /∈ {1, 2n}, a
′′
j = aj + 2 if 〈aj〉 = 2n and a′′j = aj − 2 if 〈aj〉 = 1; when i = n, we have

a′′j = aj if 〈aj〉 /∈ {n, n+ 1}, a′′j = aj + 1 if 〈aj〉 = n and a′′j = aj − 1 if 〈aj〉 = n+ 1.

The following results provide some information from w = [a1, a2, · · · , an] ∈ C̃n.

Proposition 2.8 Let w = [a1, a2, · · · , an] ∈ C̃n. Then

(1) Let 0 6 k 6 n. tk ∈ L(w) if and only if ak > ak+1, with the convention that a0 = 0

and an+1 = n.

(2) Let 〈ai〉, 〈aj〉 ∈ {k, k + 1, 2n− k, 2n+ 1 − k} for some i 6= j in [n]. Then tk ∈ R(w),

0 < k 6 n, if one of the following conditions holds :

(i) either aj − ai > 2n+ 1, or i > j and aj > ai if (〈ai〉, 〈aj〉) ∈ {(k, k + 1), (2n− k, 2n+

1− k)};

(ii) ai + aj < 0 if (〈ai〉, 〈aj〉) = (k, 2n− k);

(iii) ai + aj > 2n+ 1 if (〈ai〉, 〈aj〉) = (2n+ 1− k, k + 1).

Let 〈ai〉 ∈ {1, 2n}. Then t0 ∈ R(w) if one of the following conditions holds :

(iv) ai < 0 if 〈ai〉 = 2n;

(v) ai > 2n+ 1 if 〈ai〉 = 1.

Proof The results follow from Shi in [2, Proposition 2.8], by 2.7 and Corollary 2.6.

2.9 For any λ = (λ1, λ2, · · · , λr) and µ = (µ1, µ2, · · · , µt) in Λ2n+1, we write λ 6 µ if

λ1 + · · ·+λk 6 µ1 + · · ·+µk for any 1 6 k 6 min{r, t}. This defines a partial order on Λ2n+1. It

is well known that if x ∈ Ã2n, s ∈ L̃(x) and t ∈ R̃(x) then ψ(sx), ψ(xt) 6 ψ(x) (see [4, Lemma

5.5 and Corollary 5.6]). This implies by Corollary 2.6 that if x ∈ C̃n, s ∈ L(x) and t ∈ R(x),

then ψ(sx), ψ(xt) 6 ψ(x).

Let ã, a be the a-functions of the weighted Coxeter groups (Ã2n, ℓ̃) (C̃n, ℓ̃), respectively

(see 2.3 and 1.6).

Lemma 2.10(see [1, Lemma 16.5]) a(z) = ã(z) for any z ∈ C̃n.

Lemma 2.11(see [1, Lemma 16.14]) Let x, y ∈ C̃n. Then x∼
L
y (resp., x∼

R
y) in C̃n if

and only if x∼
L
y (resp., x∼

R
y) in Ã2n.

By Lemma 2.11, we can just use the notation x∼
L
y (resp., x∼

R
y) for x, y ∈ C̃n without

indicating whether the relation refers to the group Ã2n or C̃n.

For any λ = (λ1, λ2, · · · , λr) ∈ Λ2n+1, define µ = (µ1, µ2, · · · , µt) ∈ Λ2n+1 by setting

µj =# {k > 1 | λk > j}, for any j > 1, and call µ the dual partition of λ.

Lemma 2.12 Let x, y ∈ Ã2n.

(1) x 6
LR

y if and only if ψ(y) 6 ψ(x). In particular, x ∼
LR

y if and only if ψ(x) = ψ(y)

(see [5, Theorem 6], [4, Theorem 17.4] and [6, Theorem B]).

(2) ã(x) =
t∑

i=1

(i − 1)µi, where (µ1, µ2, · · · , µt) is the dual partition of ψ(x) (see [7, Sub-

section 6.27]).

2.13 A non-empty subset E of a Coxeter group W = (W,S) is said left-connected, (resp.,

right-connected) if for any x, y ∈ E, there exists a sequence x0 = x, x1, · · · , xr = y in E such
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that xi−1x
−1
i ∈ S (resp., x−1

i xi−1 ∈ S) for every i ∈ [r]. E is said two-sided-connected if for

any x, y ∈ E, there exists a sequence x0 = x, x1, · · · , xr = y in E such that either xi−1x
−1
i or

x−1
i xi−1 is in S for every i ∈ [r].

Let F ⊆ E in W . Call F a left-connected component of E, if F is a maximal left-connected

subset of E. One can define a right-connected component and a two-sided-connected component

of E similarly.

For any λ ∈ Λ2n+1, define Eλ := C̃n ∩ ψ
−1(λ).

Lemma 2.14 Let λ ∈ Λ2n+1.

(1) Any left-connected (resp., right-connected, two-sided-connected) set of ψ−1(λ) is con-

tained in some left (resp., right, two-sided) cell of Ã2n.

(2) Any left-connected (resp., right-connected, two-sided-connected) set of Eλ is contained

in some left (resp., right, two-sided) cell of C̃n.

(3) The set Eλ is either empty or a union of some two-sided cells of C̃n.

Proof The results follow from Shi in [8, Corollary 2.18].

Corollary 2.15 Let x, y ∈ Ã2n satisfy x, y ∈ ψ−1(λ) for some λ ∈ Λ2n+1.

(1) If ℓ̃(y) = ℓ̃(x)+ ℓ̃(yx−1), then x, y are in the same left-connected component of ψ−1(λ)

and hence x∼
L
y.

(2) If ℓ̃(y) = ℓ̃(x)+ ℓ̃(x−1y), then x, y are in the same right-connected component of ψ−1(λ)

and hence x∼
R
y.

Let x, y ∈ C̃n satisfy x, y ∈ ψ−1(λ) for some λ ∈ Λ2n+1.

(3) If ℓ(y) = ℓ(x)+ ℓ(yx−1), then x, y are in the same left-connected component of Eλ and

hence x∼
L
y.

(4) If ℓ(y) = ℓ(x) + ℓ(x−1y), then x, y are in the same right-connected component of Eλ

and hence x∼
R
y.

Proof The results follow from Shi in [2, Corollary 2.19].

3 Partial order �w on [2n+1] determined by element w

In this section, we introduce two technical tools following Shi in [2, Section 3]. One is a

transformation on an element in 3.3, which is a crucial step in proving the left-connectedness

of a left cell and in finding a representative set for the left cells of C̃n in the set Eλ, λ ∈ Λ2n+1.

The other is the generalized tabloids in 3.5, by which we can check whether two elements of C̃n

are in the same left cell.

3.1 i, j ∈ [2n] are said 2n-dual, if i + j = 2n + 1; in this case, we denote j = i (hence

i = j also). Recall the partial order �w on [2n+ 1] defined in 2.2 for any w ∈ Ã2n and C̃n can

be regarded as a subset of Ã2n (see 2.1). Fix w ∈ Ã2n. i 6= j in [2n+ 1] are said w-comparable

if either i ≺w j or j ≺w i, and w-uncomparable if otherwise. When w ∈ C̃n, i ∈ [2n] is said

w-wild if i and i are w-comparable and w-tame if otherwise. i ∈ [2n] is said a w-wild head

(resp., a w-tame head), if i is w-wild (resp., w-tame) with (i)w < (i)w.

It is easily seen that i < j in [2n + 1] are w-uncomparable if and only if (i)w < (j)w <

(i)w + 2n+ 1.
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Lemma 3.2 Fix w ∈ C̃n.

(i) For any j 6= k in [2n], j ≺w k if and only if k ≺w j.

Now suppose that j 6= k in [2n] are w-wild heads and i ∈ [2n] is a w-tame head.

(ii) j ≺w k if and only if j, k are w-comparable.

(iii) If j, k are w-uncomparable then so are j, k (resp., j, k).

(iv) i and k are w-comparable if and only if i ≺w k.

(v) j, i, j is a w-chain if and only if j is w-comparable with both i and i.

(vi) {j, k, j, k} is a w-chain if and only if j, k are w-comparable.

(vii) If (j)w > 2n+1, then j ≺w 2n+1 ≺w j; or else, j, j are w-uncomparable with 2n+1.

(viii) i, i are w-uncomparable with 2n+ 1.

Proof The results (i)–(vi) follow by [2, Lemma 3.2] and (vii)–(viii) can be checked

directly.

3.3 Let

t′k =





t〈k〉, if 〈k〉 ∈ [n],

t
〈k〉−1

, if 〈k〉 ∈ [2n] \ [n],

1, if 〈k〉 = 2n+ 1,

and

ti,j = t′i+j−1t
′
i+j−2 · · · t

′
i+1t

′
i. (3.3.1)

for any i, j, k ∈ Z with j > 0. Suppose x ∈ C̃n and i ∈ Z satisfy (i)x − 2n− 1 > (j)x for any

i < j 6 i+ a with some a ∈ [2n]. Let x′ = ti,ax. Then ℓ(x′) = ℓ(x)− ℓ(ti,a) and ψ(x) = ψ(x′).

Moreover, if (i)x− 2n− 1 > (j)x for any i < j < i+ 2n+ 1, let x′′ = ti,2n+1x, then

(m)x′′ =





(m)x− 2n− 1, if 〈m〉 = 〈i〉,

(m)x+ 2n+ 1, if 〈m〉 = 〈2n+ 1− i〉,

(m)x, otherwise,

for any m ∈ Z, where x′′ satisfies ℓ(x′′) = ℓ(x)− 2n− 1 and ψ(x) = ψ(x′′).

Fix w ∈ C̃n. Suppose that E1 = {i1, i2, · · · , ia} and E2 = {j1, j2, · · · , jb} are two subsets

of [2n] satisfying that

(i) i1 < i2 < · · · < ia and j1 < j2 < · · · < jb with a > 0, b > 0 and a+ b = n;

(ii) the elements of E1 ∪E2 are pairwise not 2n-dual;

(iii) (k)w < (k)w for any k ∈ E1 ∪ E2;

(iv) (i)w− (j)w > l(2n+ 1) for any i ∈ E1 and j ∈ E2 ∪ {2n+ 1}, where l is nonnegative

integer.

By repeatedly left-multiplying the elements ti,j , i, j ∈ Z, to w, we can obtain some w′ ∈ C̃n

such that there are some 1 6 k1 < k2 < · · · < kb 6 2b satisfying that

(1) ℓ(w′) = ℓ(w)− ℓ(ww′−1);

(2) if b > 0, then [2b] = {k1, k2, · · · , kb, 2b+ 1 − k1, 2b + 1 − k2, · · · , 2b+ 1 − kb} and the

map φ : {j1, j2, · · · , jb, j1, j2, · · · , jb} −→ [2b] given by φ(jm) = km and φ(jm) = 2b + 1 − km

for m ∈ [b] is an order-preserving bijection.
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(3) (p)w′ = (ip)w − l
′(2n+ 1) and (a+ kq)w

′ = (jq)w for any p ∈ [a] and q ∈ [b], where l′

is some integer > l;

(4) (c)w′ < (c)w′ for any c ∈ [a] ∪ {a+ km | m ∈ [b]};

(5) if b > 0, then 0 < min{(c)w′ − (a+ km)w′ | c ∈ [a],m ∈ [b]} 6 2n+ 1.

We see by Lemma 3.2 that ψ(w′) = ψ(w), where λ = ψ(w′) = ψ(w), and by Corollary

2.15 that w,w′ are in the same left-connected component of Eλ.

Example 3.4 Let x = [19, 11, 20] ∈ C̃3. Then E1 = {1, 3} and E2 = {2} satisfy

the conditions (i)–(iv) in 3.3 with n = 3 and (a, b, l) = (2, 1, 1). Let y = t2,5t3,4x. Then

y = [12, 13, 11] ∈ C̃3. Hence y satisfies the conditions (1)–(5) in 3.3 and ψ(x) = ψ(y) = 52.

3.5 By a composition of 2n+ 1, we mean an r-tuple (a1, a2, · · · , ar) of positive integers

a1, a2, · · · , ar with some r > 1 such that
r∑

i=1

ai = 2n+1. Let Λ̃2n+1 be the set of all compositions

of 2n+ 1. Clearly, Λ2n+1 ⊆ Λ̃2n+1.

A generalized tabloid Y of rank 2n + 1 is, by definition, an r-tuple T = (T1, T2, · · · , Tr)

with some r ∈ N such that [2n + 1] is a disjoint union of its non-empty subsets Tj , j ∈ [r].

We have ξ(T ) := (|T1|, |T2|, · · · , |Tr|) ∈ Λ̃2n+1, where |Ti| denotes the cardinal of the set Ti.

Let i1, i2, · · · , ir be a permutation of 1, 2, · · · , r such that |Ti1 | > |Ti2 | > · · · > |Tir
|. Then

ζ(T ) := (|Ti1 |, |Ti2 |, · · · , |Tir
|) ∈ Λ2n+1. Two generalized tabloids T = (T1, T2, · · · , Tr) and

T ′ = (T ′
1, T

′
2, · · · , T

′
r) of 2n + 1 are said equal, if r = t and Ti = T ′

i for any i ∈ [r]. Let C2n+1

be the set of all generalized tabloids of rank 2n + 1. Then both ξ : C2n+1 −→ Λ̃2n+1 and

ζ : C2n+1 −→ Λ2n+1 are surjective maps.

Let Ω be the set of all elements w of Ã2n such that there is a generalized tabloid T =

(T1, T2, · · · , Tr) ∈ C2n+1 satisfying:

(i) For any i < j in [r], we have a ≺w b for any a ∈ Ti and b ∈ Tj;

(ii) For any i ∈ [r], a and b are w-uncomparable for any a 6= b in Ti.

Clearly, T is determined entirely by w ∈ Ω, denote T by T (w). The map T : Ω −→ C2n+1

is surjective by [4, Proposition 19.1.2]. By a result of Curtis Greene in [8], we see that the

partition ζ(T (w)) is the dual of ψ(w).

The following known result will be crucial in the proof of Lemmas 4.4 and 5.4.

Lemma 3.6(see [4, Lemma 19.4.6]) Suppose that y, w ∈ Ã2n are two elements in Ω with

ξ(T (y)) = ξ(T (w)). Then y∼
L
w if and only if T (y) = T (w).

4 The set Ek12n+1-k

Recall that in 2.13 we defined the set Eλ for any λ ∈ Λ2n+1. We have E−1
λ = Eλ. In the

present section, we shall describe all the cells of C̃n in the set Ek12n+1-k for all k ∈ [2n + 1].

Evidently, E12n+1 consists of the identity element of C̃n. Hence in the subsequent discussion of

this section, we shall always assume k > 1.

4.1 Assume k = 2m+ 1 odd (resp., k = 2m even) and l = n−m. Then 2n+ 1− k = 2l

(resp., 2n + 1 − k = 2l + 1). By Lemma 3.2, we see that w ∈ C̃n is in the set Ek12n+1-k ,

k = 2m + 1 (resp., k = 2m) if and only if w satisfies the conditions (4.1.1) (i), (ii) (resp., the

conditions (4.1.1) (i), (ii)′) below.
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(4.1.1) There exist i1, i2, · · · , il, j1, j2, · · · , jm ∈ [2n] which are pairwise not 2n-dual such

that

(i) i1, i2, · · · , il are all w-tame heads with i1 < i2 < · · · < il and (i1)w < (i2)w < · · · <

(il)w; j1, j2, · · · , jm are all w-wild heads with j1 ≺w j2 ≺w · · · ≺w jm;

(ii) 2n+ 1 ≺w j1 or i1, i1 ≺w j1 (resp., (ii)′ 2n+ 1 ⊀w j1 and either i1 ⊀w j1 or i1 ⊀w j1).

Let F1 (resp., F2) be the set of all w ∈ C̃n satisfying the conditions (4.1.2) (i), (ii), (iii)

(resp., the conditions (4.1.2) (i), (ii) (iii)′).

(4.1.2) There exist i1, i2, · · · , il, j1, j2, · · · , jm ∈ [2n] which are pairwise not 2n-dual such

that

(i) i1, i2, · · · , il are all w-tame heads with i1 < i2 < · · · < il and (i1)w < (i2)w < · · · <

(il)w; j1, j2, · · · , jm are all w-wild heads with j1 ≺w j2 ≺w · · · ≺w jm;

(ii) (il, il−1, · · · , i1, jm, jm−1, · · · , j1) = (1, 2, · · · , n);

(iii) 3n+1 < (j1)w < 5n+3 and 0 < (ja+1)w− (ja)w < 2n+1, for any a ∈ [m−1] (resp.,

(iii)′ n < (j1)w < (i1)w, 4n+ 2 < (j2)w < 6n+ 3 and 0 < (ja+2)w− (ja+1)w < 2n+ 1, for any

a ∈ [m− 2]).

By 3.3 and 4.1, it is easily seen that

Lemma 4.2 For any w ∈ Ek12n+1−k , k = 2m+ 1 (resp., k = 2m), there exists some w′ ∈

F1 (resp., w′ ∈ F2) such that w′, w are in the same left-connected component of Ek12n+1−k , k =

2m+ 1 (resp., k = 2m).

Lemma 4.3 The set F1 (resp., F2) in Lemma 4.2 is contained in a right-connected com-

ponent of Ek12n+1−k , k = 2m+ 1 (resp., k = 2m).

Proof Let wJ = [1, 2, · · · , l, 2n− l, 2n− l − 1, · · · , n + 1] with J = {tl+1, tl+2, · · · , tn}.

Then wJ ∈ Ek12n+1−k , k = 2m. Let w ∈ F2. We have L(w) = J by Corollary 2.6. Then w = wJy

with ℓ(w) = ℓ(wJ ) + ℓ(y) for some y ∈ C̃n. Hence w,wJ are contained in a right-connected

component of Ek12n+1−k , k = 2m by Corollary 2.15. This implies that all the elements of F2 are

contained in a right-connected component of Ek12n+1−k , k = 2m.

Next we consider w ∈ F1. Let x = tl · · · t1t0t1 · · · tn and the set F ′
1 = {xmy | y ∈ F1}.

We see that w′ ∈ C̃n is in the set F ′
1 if and only if w′ satisfies the conditions (4.1.2) (i),

(ii) and n < (j1)w
′ < 3n + 2, 0 < (ja+1)w

′ − (ja)w′ < 2n + 1, for any a ∈ [m − 1]. Then

wJ ∈ F
′
1 and xmwJ ∈ F1. For any w′ ∈ F ′

1, by Corollary 2.6, we have L(w′) = J . Then for

any w′ ∈ F ′
1, w

′ = wJy with ℓ(w′) = ℓ(wJ ) + ℓ(y) for some y ∈ C̃n. We see that w = xmw′

satisfies ℓ(w) = ℓ(xm) + ℓ(w′) for some w′ ∈ F ′
1. This implies that w = xmwJy satisfies

ℓ(w) = ℓ(xmwJ ) + ℓ(y) for some y ∈ C̃n. Hence w, xmwJ are contained in a right-connected

component of Ek12n+1−k , k = 2m+ 1 by Corollary 2.15. This implies that all the elements of F1

are contained in a right-connected component of Ek12n+1−k , k = 2m+ 1.

Lemma 4.4 (1) No two elements of F1 (resp., F2) in Lemma 4.2 are in the same left

cell of C̃n.

(2) |F1| = n!2m/(n−m)! and |F2| = n!2m−1/(n−m+ 1)!.

Proof In Ã2n, we have F1 ⊆ Ω and T (F1) = {(T1, T2, · · · , T2m+1) ∈ C2n+1 | |Ti| =

1, T2m+2−i = {j | j ∈ Ti}, i ∈ [m], 2n + 1 ∈ Tm+1} (see 3.5). Then for any x, y ∈ F1, we see
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that ξ(T (x)) = ξ(T (y)) and T (x) 6= T (y). So for any x, y ∈ F1, x, y are not in the same left cell

of Ã2n by Lemma 3.6. Hence no two elements of F1 are in the same left cell of C̃n by Lemma

2.11 and |F1| = |T (F1)| = n!2m/(n−m)!.

In Ã2n, let z = (sn · · · s1s0s2ns2n−1 · · · sn+m)m and F ′
2 = {zw | w ∈ F2}. Let w ∈ F2, keep

the notation in (4.1.2) (i) (ii) (iii)′. We see that (j)zw = (j)w, j ∈ [2n+ 1] \ {ja | a ∈ [m]} and

(ja)zw = (ja)w−2n−1, for any a ∈ [m]. This implies that ψ(zw) = ψ(w). Then we have zw∼
L
w

by Lemma 2.14 (1). We see that F ′
2 ⊆ Ω. And for w′ ∈ F ′

2, T (w′) = (T1, T2, · · · , T2m), where

Tb = {〈(jm+1−b)w
′〉}, for any b ∈ [m], Tm+1 = {〈(j1)w

′〉, 2n + 1, 〈(ia)w′〉, 〈(ia)w′〉 | a ∈ [l]},

Tc = {〈(jc−m)w′〉}, for m + 2 6 c 6 2m. For any x, y ∈ F ′
2, we see that ξ(T (x)) = ξ(T (y))

and T (x) 6= T (y). So for any x, y ∈ F ′
2, x, y are not in the same left cell of Ã2n by Lemma 3.6.

Hence no two elements of F2 are in the same left cell of C̃n by Lemma 2.11 and |F2| = |F
′
2| =

|T (F ′
2)| = n!2m−1/(n−m+ 1)!.

Theorem 4.5 (1) Ek12n+1−k , k = 2m + 1 (resp., k = 2m) is a two-sided cell of C̃n

containing n!2m/(n − m)! (resp., n!2m−1/(n − m + 1)!) left cells and each left cell of C̃n in

Ek12n+1−k , k = 2m+ 1 (resp., k = 2m) is left-connected.

(2) Ek12n+1−k is infinite unless k = 1, 2.

Proof By Lemma 2.14, we see that Eλ is either empty or a union of some two-sided

cells of C̃n for any λ ∈ Λ2n+1. Hence the assertion (1) follows by Lemmas 4.2–4.4. For the

assertion (2), we see that if k > 2, then the number of the choices for the integer (jm)w in the

condition (4.1.1) (i) is infinite. On the other hand, we have E12n+1 = {1} and E212n−1 = {tn}.

This proves (2).

5 The set E(2n−1,2)

In the present section, we shall describe all the cells of C̃n in the set E(2n−1,2) for n > 3.

Lemma 5.1 w ∈ C̃n is in the set E(2n−1,2) if and only if w satisfies the condition below.

(5.1.1) There exist j1, j2, · · · , jn ∈ [2n] which are pairwise not 2n-dual such that

j1, j2, · · · , jn are all w-wild heads with 2n+ 1 ≺w j2 ≺w j3 ≺w · · · ≺w jn and there is jk ∈ [2n]

which is w-uncomparable with j1 for some k ∈ [n].

Proof Let w ∈ E(2n−1,2). We claim that for any j ∈ [2n], j is w-wild. For otherwise,

there exists some i ∈ [2n] which is w-tame, then by Lemma 3.2 (viii), w ∈ Eλ with λ =

(λ1, λ2, · · · , λr) and r > 3, which is a contradiction. IfX,Y are both w-chains with |X | = 2n−1,

|Y | = 2 and [2n + 1] = X ∪ Y , we claim that 2n + 1 ∈ X . Otherwise, let Y = {2n + 1, j}

for some j ∈ [2n]. Then j ∈ X , and {j} ∪ X is a w-chain by Lemma 3.2 (i) (vi), which is a

contradiction. Hence the result follows.

Hence by Lemma 3.2, we see that w ∈ C̃n is in the set E(2n−1,2) if and only if w satisfies

the condition (5.1.1).

Let xm = (tm, · · · , tn−1tntn−1, · · · , t1t0)
m for m ∈ [n] and F = {w ∈ C̃n | 3n+ 1 < (n−

1)w < 5n+3, (n−1)w < (n)w < (n−1)w+2n+1, (n)w < (n−2)w < (n)w+2n+1, (i+1)w <

(i)w < (i+ 1)w + 2n+ 1, i ∈ [n− 3]}.
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Lemma 5.2 For any w ∈ E(2n−1,2), there exists some w′ ∈ F such that w′, w are in the

same left-connected component of E(2n−1,2).

Proof By Lemma 5.1, we know that w ∈ E(2n−1,2) if and only if w satisfies the condition

(5.1.1). Let w ∈ E(2n−1,2), keep the notation in (5.1.1). Let k is the smallest integer of [n] such

that jk is w-uncomparable with j1. Then jk−1 ≺w j1 if k > 2.

By repeatedly left-multiplying the elements ti, i ∈ Z, to w, we can obtain some w(1) ∈

E(2n−1,2) satisfying (j
(1)
n , · · · , j

(1)
k+1, j

(1)
1 , j

(1)
k , j

(1)
k−1, · · · , j

(1)
2 ) = (1, 2, · · · , n) if (jk)w > (j1)w, or

(j
(1)
n , · · · , j

(1)
k+1, j

(1)
k , j

(1)
1 , j

(1)
k−1, · · · , j

(1)
2 ) = (1, 2, · · · , n) if (j1)w > (jk)w and (j

(1)
m )w(1) = (jm)w

for m ∈ [n]. We see that j
(1)
k−1 ≺w j

(1)
1 if k > 2 and j

(1)
1 ≺w j

(1)
k+1 if (jk)w > (j1)w.

If (j
(1)
1 )w(1) < 2n + 1, then (j

(1)
m )xnw

(1) = (j
(1)
m )w(1) + 2n + 1 for m ∈ [n]. We see

that xnw
(1), w(1) are in the same left-connected component of E(2n−1,2). Hence without loss of

generality, let (j
(1)
1 )w(1) > 2n+ 1.

Let w(2) = xi
n−kw

(1) for some i ∈ N such that (j
(1)
k+1)w

(2) > (j
(1)
1 )w(2). Let w(3) =

tmn+k−2,2n+1w
(2) for some m ∈ N such that (n−k+3)w(3) < (n−k+2)w(3) < (n−k+3)w(3) +

2n+1. Let w(4) = tn−k+1w
(3) if (n−k+3)w(3) > (n−k+1)w(3) and w(4) = xn−k+1tn−k+2w

(3)

if (n− k + 3)w(3) < (n− k + 1)w(3).

Fig. 2 displays the matrix forms of w(i) for i = 1, 2, 3, 4, where the symbol
p
· · · stands for

a rectangular submatrix with p rows for some p ∈ [n] each row has a unique non-zero entry 1

Well, the non-zero entries of the matrix are gonging down to the left.

We can see that w(i), i = 1, 2, 3, 4 are in the same left-connected component of E(2n−1,2).

By repeatedly repeating the above process, we see that there exists some w(r) ∈ C̃n for some

r ∈ Z with the matrix form displayed in Fig. 3, such that w(1), w(r) are in the same left-

connected component of E(2n−1,2).

Hence from the Fig. 3, we see that there exists some w′ ∈ F such that w′, w(r),w are in

the same left-connected component of E(2n−1,2) by 3.3.

Lemma 5.3 The set F is contained in a right-connected component of E(2n−1,2).

Proof Let wJ = [2n, · · · , n+2, n+1] with J = {t1, t2, · · · , tn} and F ′ = {xntn−1w | w ∈

F}. Then F ′ = {w ∈ C̃n | n < (n)w < 3n+2, (i+1)w < (i)w < (i+ 1)w+2n+ 1, i ∈ [n− 1]}

and wJ ∈ F
′. For any w′ ∈ F ′, by Corollary 2.6, we have L(w′) = J . Then for any w′ ∈ F ′,

w′ = wJy with ℓ(w′) = ℓ(wJ) + ℓ(y) for some y ∈ C̃n. Let w ∈ F . Then w = tn−1x
−1
n wJy with

ℓ(w) = ℓ(tn−1x
−1
n wJ ) + ℓ(y) for some y ∈ C̃n. This implies that tn−1x

−1
n wJ , w are contained in

a right-connected component of E(2n−1,2) by Corollary 2.15. Hence all the elements of F are

contained in a right-connected component of E(2n−1,2).

Lemma 5.4 (1) |F | = n!2n−2.

(2) No two elements of F are in the same left cell of C̃n.

Proof In Ã2n, we have F ⊆ Ω and T (F ) = {(T1, T2, · · · , T2n−1) ∈ C2n+1 | |Ti| = 1 with

i ∈ [n− 2], |Tn−1| = 2, Tn = {2n+ 1}, T2n−m = {j | j ∈ Ti} with m ∈ [n− 1]} (see 3.5). Then

for any x, y ∈ F , we see that ξ(T (x)) = ξ(T (y)) and T (x) 6= T (y). So for any x, y ∈ F , x, y

are not in the same left cell of Ã2n by Lemma 3.6 and |F | = |T (F )| = n!2n−2. Hence no two

elements of F are in the same left cell of C̃n by Lemma 2.11.
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Fig. 2 The matrix forms of w(i) for i = 1, 2, 3, 4

Fig. 3 The matrix form of w(r)

Theorem 5.5 (1) E(2n−1,2) is a two-sided cell of C̃n containing n!2n−2 left cells and

each left cell of C̃n in E(2n−1,2) is left-connected.

(2) E(2n−1,2) is infinite.

(e=1 114 �)
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Proof The assertion (1) follows by Lemmas 5.2–5.4. For the assertion (2), we see that the

number of the choices for the integer (jn)w in the condition (5.1.1) is infinite. This proves (2).
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