Article ID: 1000-5641(2013)01-091-13

Left cells in the weighted Coxeter group C_n

HUANG Qian

(Department of Mathematics, East China Normal University, Shanghai 200241, China)

Abstract: The fixed point set of the affine Weyl group $(\widetilde{A}_{2n}, \widetilde{S})$ under a certain group automorphism α with $\alpha(\widetilde{S}) = \widetilde{S}$ can be considered as the affine Weyl group (\widetilde{C}_n, S) . Then the left and two-sided cells of the weighted Coxeter group $(\widetilde{C}_n, \widetilde{\ell})$, where $\widetilde{\ell}$ is the length function of \widetilde{A}_{2n} , can be given an explicit description by studying the fixed point set of the affine Weyl group $(\widetilde{A}_{2n}, \widetilde{S})$ under α . We describe the cells of $(\widetilde{C}_n, \widetilde{\ell})$ corresponding to the partitions $\mathbf{k1}^{2\mathbf{n}+1\mathbf{-k}}$ with $1 \leq k \leq 2n+1$ and (2n-1, 2).

Key words: affine Weyl groups; left cells; quasi-split case; weighted Coxeter group CLC number: O15 Document code: A DOI: 10.3969/j.issn.1000-5641.2013.01.012

加权的 Coxeter 群 \widetilde{C}_n 的左胞腔

黄 谦

(华东师范大学 数学系,上海 200241)

摘要: 仿射 Weyl 群 (\tilde{A}_{2n} , \tilde{S}) 在某个群同构 α (其中 $\alpha(\tilde{S}) = \tilde{S}$) 下的固定点集合能被看作是仿 射 Weyl 群 (\tilde{C}_n ,S). 那么加权的 Coxeter 群 (\tilde{C}_n , $\tilde{\ell}$)的左和双边胞腔($\tilde{\ell}$ 是仿射 Weyl 群 \tilde{A}_{2n} 的 长度函数), 就能通过研究仿射 Weyl 群 (\tilde{A}_{2n} , \tilde{S}) 在群同构 α 下的固定点集合而给出一个清晰 的划分. 因此给出了加权的 Coxeter 群 (\tilde{C}_n , $\tilde{\ell}$) 对应于划分 $\mathbf{k1}^{2n+1-k}$ 和 (2n-1,2) 的所有左 胞腔的清晰刻画, 这里对所有的 $1 \leq k \leq 2n+1$.

关键词: 仿射 Weyl 群; 左胞腔; 拟分裂; 加权的 Coxeter 群

0 Introduction

In this article, we will discuss some results about left cells in a weighted Coxeter group (W, L) as defined by Lusztig in [1], which is, by definition, a Coxeter system (W, S) together with a weight function $L : W \longrightarrow \mathbb{Z}$. When $L = \tilde{\ell}$, (W, L) is called in split case by Lusztig, where $\tilde{\ell}$ is the length function of W. And when W can be realized as the fixed point set of a finite or an affine Coxeter system $(\widetilde{W}, \widetilde{S})$ under a group automorphism α with $\alpha(\widetilde{S}) = \widetilde{S}$, where

收稿日期: 2012-02

基金项目: 华东师范大学博士学术新人奖基金(XRZZ2010019)

作者简介: 黄谦, 男, 博士研究生, 研究方向为 Hecke 代数. E-mail: wanshi-1118@163.com.

the weight function L is the restriction to W of the length function ℓ of \widehat{W} , (W, L) is called in quasi-split case by Lusztig (see [1, Ch. 16]).

The affine Weyl group $W = \hat{C}_n$ can be realized as the fixed point set of the affine Weyl group $\widetilde{W} = \widetilde{A}_{2n}$ under the group automorphism α determined by $\alpha(s_i) = s_{2n-i}$ for $0 \leq \alpha(s_i) = s_{2n-i}$ i < 2n+1, where the Coxeter generator set $\widetilde{S} = \{s_i \mid 0 \leq i < 2n+1\}$ of \widetilde{A}_{2n} satisfies $s_i^2 = 1, s_i s_j = s_j s_i \ (j \neq i \pm 1 \mod 2n + 1) \text{ and } s_i s_{i+1} s_i = s_{i+1} s_i s_{i+1} \text{ for any } 0 \leq i, j < 2n + 1$ (we stipulate $s_{2n+1} = s_0$). Following the ideas of Shi in [2], we will study certain left cells of the weighted Coxeter group $(\widetilde{C}_n, \widetilde{\ell})$, where $\widetilde{\ell}$ is the length function of \widetilde{A}_{2n} .

1 Cells theories of a weighted Coxeter group

We assemble in this section some basic concepts and results of a weighted Coxeter group, which follow from Lusztig in [1] except for 1.7 from Shi in [2].

1.1 Let (W, S) be a Coxeter system with ℓ its length function and \leq the Bruhat-Chevalley order on W. An expression $w = s_1 s_2 \cdots s_r \in W$ with $s_i \in S$ is called reduced if $r = \ell(w)$. By a weight function on W, we mean a map $L: W \longrightarrow \mathbb{Z}$ satisfying that L(s) = L(t) for any $s, t \in S$ conjugate in W and that $L(w) = L(s_1) + L(s_2) + \cdots + L(s_r)$ for any reduced expression $w = s_1 s_2 \cdots s_r \in W$. Call (W, L) is a weighted Coxeter group.

Suppose that there exists a group automorphism $\alpha: W \longrightarrow W$ with $\alpha(S) = S$. Let $W^{\alpha} = \{ w \in W \mid \alpha(w) = w \}$. For any α -orbit J in S, let $w_J \in W^{\alpha}$ be the longest element in the subgroup W_J of W generated by J. Let S_{α} be the set of elements w_J with J ranging over all α -orbits on S. Then (W^{α}, S_{α}) is a Coxeter group and the restriction to W^{α} of the length function $\ell: W \longrightarrow \mathbb{N}$ is a weight function on W^{α} . The weighted Coxeter group (W^{α}, ℓ) is called in the *quasi-split* case.

1.2 Let $\mathcal{A} = \mathbb{Z}[v, v^{-1}]$ be the ring of Laurent polynomials in an indeterminant v with integer coefficients. Denote $v_w = v^{L(w)}$ for any $w \in W$. Define a ring involution $a \longrightarrow \overline{a}$ of \mathcal{A} by setting $\overline{\sum a_i v^i} = \sum a_i v^{-i}$ where $a_i \in \mathbb{Z}$ in the sum. Define $\mathcal{A}_{\leq m} = \{f \in \mathcal{A} \mid \deg f < m\}$ for any $m \in \mathbb{Z}$.

y < sy, define $p_{z,w}, M^s_{x,y} \in \mathcal{A}$ recurrently by the following requirements:

$$p_{z,w} = 0 \text{ if } z \notin w, p_{w,w} = 1 \text{ and } p_{z,w} \in \mathcal{A}_{<0} \text{ if } z < w.$$

$$(1.3.1)$$

$$p_{z,w} = v_s^{\epsilon} p_{z,sw} + p_{sz,sw} - \sum_{\substack{z \le z' < sw \\ sz' < z'}} M_{z',sw}^s p_{z,z'} \text{ for } z < w \text{ and } sw < w, \text{ where } \epsilon = 1 \text{ if } sz < z,$$

-1 if $sz > z$ (see [1, The proof of Theorem 6.6]). (1.3.2)

and -1 if sz > z (see [1, The proof of Theorem 6.6]).

$$\sum_{\substack{x \leqslant z < y \\ sz < z}} M_{z,y}^s p_{x,z} \equiv v_s p_{x,y} (\text{mod } \mathcal{A}_{<0}),$$
(1.3.3)

$$\overline{M_{x,y}^s} = M_{x,y}^s. \tag{1.3.4}$$

The condition (1.3.3) determines the coefficients of v^k in $M^s_{x,y}$ for all $k \ge 0$; then (1.3.4) determines all the other coefficients (see [1, Proposition 6.3]).

1.4 Let (W, S) be a Coxeter system. For $y \neq w \in W$, if there exists $s \in S$ with w < sw, such that either y = sw or $M_{y,w}^s \neq 0$, then we denote $y \underset{L}{\leftarrow} w$; if there exists $s \in S$ with w < ws, such that either y = ws or $M_{y^{-1},w^{-1}}^s \neq 0$, then we denote $y \underset{R}{\leftarrow} w$. Let $\underset{L}{\leqslant}$ (resp., $\underset{R}{\leqslant}$) be the preorder on W which is transitively generated by the relation $y \underset{L}{\leftarrow} w$ (resp., $y \underset{R}{\leftarrow} w$). The equivalence relation associated to this preorder is denoted by $\underset{L}{\sim}$ (resp., $\underset{R}{\approx}$). The corresponding equivalence classes in W are called *left cells* (resp., *right cells*) of W. Write $y \underset{L}{\leqslant} w$ in W, if there exists a sequence $y_0 = y, y_1, \ldots, y_r = w$ in W with some $r \ge 0$ such that for every $1 \le i \le r$, either $y_{i-1} \underset{L}{\leqslant} y_i$ or $y_{i-1} \underset{R}{\leqslant} y_i$ holds. The equivalence classes in W are called *two-sided cells* of W.

1.5 For $w \in W$, define $\mathcal{L}(w) = \{s \in S \mid sw < w\}$ and $\mathcal{R}(w) = \{s \in S \mid ws < w\}$. If $y, w \in W$ satisfy $y \leq w$ (resp., $y \leq w$), then $\mathcal{R}(y) \supseteq \mathcal{R}(w)$ (resp., $\mathcal{L}(y) \supseteq \mathcal{L}(w)$). In particular, if $y \sim w$ (resp., $y \sim w$), then $\mathcal{R}(y) = \mathcal{R}(w)$ (resp., $\mathcal{L}(y) = \mathcal{L}(w)$) (see [1, Lemma 8.6]).

1.6 In [1, Chapter 13], Lusztig defined a function $a : W \longrightarrow \mathbb{N} \cup \{\infty\}$ in terms of structural coefficients of the Hecke algebra associated to W.

In [1, Chapters 14-16], Lusztig proved the following results when W is either a finite or an affine Coxeter group and when (W, L) is either in the split case or in the quasi-split case.

(1) $y \leq w$ in W implies $a(w) \leq a(y)$. Hence $y \underset{LR}{\sim} w$ in W implies a(w) = a(y).

(2) If $w, y \in W$ satisfy a(w) = a(y) and $y \leq w$ (resp., $y \leq w, y \leq w$), then $y \underset{L}{\sim} w$ (resp.,

 $y \underset{R}{\sim} w, y \underset{LB}{\sim} w).$

For any $X \subset W$, write $X^{-1} := \{x^{-1} \mid x \in X\}$.

Lemma 1.7 (see [2, Lemma 1.7]) Suppose that W is either a finite or an affine Coxeter group and that (W, L) is either in the split case or in the quasi-split case.

Let E be a non-empty subset of W satisfying the following conditions:

(a) There exists some $k \in \mathbb{N}$ with a(x) = k for any $x \in E$;

- (b) E is a union of some left cells of W;
- (c) $E^{-1} = E$.

Then E is a union of some two-sided cells of W.

2 The weighted Coxeter groups $(\widetilde{A}_{2n}, \widetilde{\ell})$ and $(\widetilde{C}_n, \widetilde{\ell})$

2.1 The affine Weyl group \widetilde{A}_{2n} can be realized as the following permutation group on the integer set \mathbb{Z} (see [3, Subsection 3.6] and [4, Subsection 4.1]:

$$\widetilde{A}_{2n} = \Big\{ w : \mathbb{Z} \longrightarrow \mathbb{Z} \mid (i+2n+1)w = (i)w + 2n+1, \sum_{i=1}^{2n+1} (i)w = \sum_{i=1}^{2n+1} i \Big\}.$$

The Coxeter generator set $\widetilde{S} = \{s_i \mid 0 \leq i < 2n+1\}$ of \widetilde{A}_{2n} is given by

$$(t)s_i = \begin{cases} t, & \text{if } t \not\equiv i, i+1 \pmod{2n+1}, \\ t+1, & \text{if } t \equiv i \pmod{2n+1}, \\ t-1, & \text{if } t \equiv i+1 \pmod{2n+1}, \end{cases}$$

2013 年

for any $t \in \mathbb{Z}$ and $0 \leq i < 2n + 1$. Any $w \in A_{2n}$ can be realized as a $\mathbb{Z} \times \mathbb{Z}$ monomial matrix $A_w = (a_{ij})_{i,j\in\mathbb{Z}}$, where a_{ij} is 1 if j = (i)w and 0 if otherwise. The row (resp., column) indices of A_w are increasing from top to bottom (resp., from left to right). We can conveniently use some familiar operations in linear algebra on the matrix A_w . For example, $A_{w^{-1}}$ is just the transposed matrix of A_w ; A_{s_iw} (resp., A_{ws_i}) can be obtained from A_w by transposing the (2nq + q + i)th and the (2nq + q + i + 1)th rows (resp., columns) for all $q \in \mathbb{Z}$.

Let $\alpha : \widehat{A}_{2n} \longrightarrow \widehat{A}_{2n}$ be the group automorphism determined by $\alpha(s_i) = s_{2n-i}$ for $0 \leq i < 2n + 1$. Then the affine Weyl group \widetilde{C}_n can be realized as the fixed point set of \widetilde{A}_{2n} under α , which can also be described as a permutation group on \mathbb{Z} as follows.

$$\widetilde{C}_n = \{ w : \mathbb{Z} \longrightarrow \mathbb{Z} \mid (i+2n+1)w = (i)w + 2n+1, (-i)w = -(i)w, \forall i \in \mathbb{Z} \}$$

with the Coxeter generator set $S = \{t_i \mid 0 \leq i \leq n\}$, where $t_i = s_i s_{2n-i}$ for 1 < i < n, $t_0 = s_0 s_{2n} s_0$ and $t_n = s_n$. For any $w \in \widetilde{C}_n$, we can see that (k(2n+1))w = k(2n+1), for any $k \in \mathbb{Z}$. For the sake of convenience, we define s_i for any $i \in \mathbb{Z}$ by setting $s_{2qn+q+b}$ to be s_b for any $q \in \mathbb{Z}$ and $0 \leq b < 2n+1$.

2.2 Denote the set $\{1, 2, \dots, k\}$ by [k] for any $k \in \mathbb{N}$. By a partition of a positive integer n, we mean an r-tuple $\lambda := (\lambda_1, \lambda_2, \dots, \lambda_r)$ of weakly decreasing positive integers $\lambda_1 \ge \dots \ge \lambda_r$ with $\sum_{k=1}^r \lambda_k = n$ for some $r \ge 1$. λ_i is called a *part* of λ . We usually denote λ in the form $\mathbf{j}_1^{\mathbf{k}_1}\mathbf{j}_2^{\mathbf{k}_2}\cdots\mathbf{j}_m^{\mathbf{k}_m}$ (boldfaced) with $j_1 > j_2 > \dots > j_m \ge 1$ if j_i is a part of λ with multiplicity $k_i \ge 1$ for $i \ge 1$. For example, $\mathbf{85^22^31^2}$ stands for the partition (8, 5, 5, 2, 2, 2, 1, 1) of 26.

Fix $w \in A_{2n}$. For any $i \neq j$ in [2n+1], we write $i \prec_w j$, if there exist some $p, q \in \mathbb{Z}$ such that both inequalities 2pn+p+i > 2qn+q+j and (2pn+p+i)w < (2qn+q+j)w hold. In terms of matrix entries of w, this means that the entry 1 at the position (2qn+q+j, (2qn+q+j)w) is located to the northeast of the entry 1 at the position (2pn+p+i, (2pn+p+i)w) (see Fig. 1). This defines a partial order \prec_w on the set [2n+1].

$$\begin{pmatrix} 1 \\ 1 \end{pmatrix} ----(2qn+q+j)\text{-th row}$$
$$(2pn+p+i)\text{-th row}$$

Fig. 1 Illustration of $i \prec_w j$

A sequence a_1, a_2, \dots, a_r in [2n + 1] is called a *w*-chain, if $a_1 \prec_w a_2 \prec_w \dots \prec_w a_r$. We identify a *w*-chain a_1, a_2, \dots, a_r with the corresponding set $\{a_1, a_2, \dots, a_r\}$. For any $k \ge 1$, a *k*-*w*-chain-family is by definition a disjoint union $X = \bigcup_{i=1}^k X_i$ of *k w*-chains X_1, \dots, X_k in [2n + 1]. Let d_k be the maximally possible cardinal of a *k*-*w*-chain-family for any $k \ge 1$. Then there exists some $r \ge 1$ such that $d_1 < d_2 < \dots < d_r = 2n + 1$. Let $\lambda_1 = d_1$ and $\lambda_k = d_k - d_{k-1}$ for any $1 < k \le r$. Then $\lambda_1 \ge \lambda_2 \ge \dots \ge \lambda_r$ by a result of Curtis Greene in [2n+1]. Let Λ_{2n+1} be the set of partitions of 2n + 1. Hence $w \mapsto \psi(w) = (\lambda_1, \dots, \lambda_r)$ defines a map from the set \widetilde{A}_{2n} to the set Λ_{2n+1} .

2.3 Let $\tilde{\ell}$, ℓ be the length functions on the Coxeter systems $(\tilde{A}_{2n}, \tilde{S})$, (\tilde{C}_n, S) , respectively. By the definition in 1.1, we see that the weighted Coxeter group $(\tilde{A}_{2n}, \tilde{\ell})$ is in the split case, while $(\tilde{C}_n, \tilde{\ell})$ is in the quasi-split case (see [1, Lemma 16.2]).

For any $x \in \widetilde{A}_{2n}$ and $k \in \mathbb{Z}$, let $m_k(x) = \# \{i \in \mathbb{Z} \mid i < k \text{ and } (i)x > (k)x\}$ and $m^n(x) = \# \{i \in \mathbb{Z} \mid i < n+1 \text{ and } (i)x > n\}$. Then the formulae for the functions $\tilde{\ell}$ and ℓ are as follows.

Proposition 2.4 For any
$$w \in \widetilde{A}_{2n}$$
 and $x \in \widetilde{C}_n$, we have
(1) $\widetilde{\ell}(w) = \sum_{1 \leq i < j \leq 2n+1} |\lfloor \frac{(j)w - (i)w}{2n+1} \rfloor| = \sum_{k=1}^{2n+1} m_k(w);$

(2) $\ell(x) = \frac{1}{2}(\ell(x) - m_0(x) + m^n(x)),$

where $\lfloor a \rfloor$ stands for the largest integer not larger than a and |a| stands for the absolute value of a for any $a \in \mathbb{Q}$.

Proof (1) follows from Shi in [8, Proposition 2.4].

(2) When $\ell(x) = 0$, $\bar{\ell}(x) = m_0(x) = m^n(x) = 0$.

When $\ell(x) = 1$, if $x = t_i$ with 0 < i < n, then $\ell(x) = 2$ and $m_0(x) = m^n(x) = 0$; if $x = t_0$, then $\tilde{\ell}(x) = 3$, $m_0(x) = 1$ and $m^n(x) = 0$; if $x = t_n$, then $\tilde{\ell}(x) = 1$, $m_0(x) = 0$ and $m^n(x) = 1$. These imply that the equality is right when $\ell(x) \leq 1$.

Now suppose that the equality is right when $\ell(x) \leq k$ with $k \in \mathbb{N}$.

When $\ell(x) = k + 1$, if $t_i \in \mathcal{L}(x)$ with 0 < i < n, then $\tilde{\ell}(t_i x) = \tilde{\ell}(x) - 2$, $m_0(t_i x) = m_0(x)$ and $m^n(t_i x) = m^n(x)$; if $t_0 \in \mathcal{L}(x)$, then $\tilde{\ell}(t_0 x) = \tilde{\ell}(x) - 3$, $m_0(t_0 x) = m_0(x) - 1$ and $m^n(t_0 x) = m^n(x)$; if $t_n \in \mathcal{L}(x)$, then $\tilde{\ell}(t_n x) = \tilde{\ell}(x) - 1$, $m_0(t_n x) = m_0(x)$ and $m^n(t_n x) = m^n(x) - 1$. These imply that the equality is right when $\ell(x) = k + 1$. Hence (2) is obtained.

2.5 Let $\leq \leq_C$ be the Bruhat-Chevalley orders on the Coxeter systems $(\widetilde{A}_{2n}, \widetilde{S}), (\widetilde{C}_n, S),$ respectively. Since the condition $x \leq_C y$ is equivalent to $x \leq y$ for any $x, y \in \widetilde{C}_n$, it will cause no confusion if we use the notation \leq in the place of \leq_C . Hence from now on we shall use \leq instead of both \leq and \leq_C .

Let $\widetilde{\mathcal{L}}(x) = \{s \in \widetilde{S} \mid sx < x\}$ and $\widetilde{\mathcal{R}}(x) = \{s \in \widetilde{S} \mid xs < x\}$ for $x \in \widetilde{A}_{2n}$ and let $\mathcal{L}(y) = \{t \in S \mid ty < y\}$ and $\mathcal{R}(y) = \{t \in S \mid yt < y\}$ for $y \in \widetilde{C}_n$.

Corollary 2.6 For any $x \in \tilde{C}_n$ and $0 \leq i \leq n$,

 $s_i \in \widetilde{\mathcal{L}}(x) \iff s_{2n-i} \in \widetilde{\mathcal{L}}(x) \iff t_i \in \mathcal{L}(x) \iff (i)x > (i+1)x \iff (2n+1-i)x < (2n-i)x,$

$$s_i \in \widetilde{\mathcal{R}}(x) \Longleftrightarrow s_{2n-i} \in \widetilde{\mathcal{R}}(x) \Longleftrightarrow t_i \in \mathcal{R}(x) \Longleftrightarrow (i)x^{-1} > (i+1)x^{-1} \Longleftrightarrow (2n+1-i)x^{-1} < (2n-i)x^{-1}.$$

Proof The results follow from Shi in [2, Corollary 2.6].

2.7 For any $a \in \mathbb{Z}$, denote by $\langle a \rangle$ the unique integer in [2n+1] satisfying $a \equiv \langle a \rangle \mod 2n+1$. It is known that every $w \in \widetilde{C}_n$ is determined uniquely by the *n*-tuple $((1)w, (2)w, \cdots, (n)w)$. Hence we shall identify w with the *n*-tuple $((1)w, (2)w, \cdots, (n)w)$ and denote the latter by $[(1)w, (2)w, \cdots, (n)w]$ in such a sense. Let $w = [a_1, a_2, \cdots, a_n]$, $w' = t_i w = [a'_1, a'_2, \cdots, a'_n]$ and $w'' = wt_i = [a''_1, a''_2, \cdots, a''_n]$ be in \widetilde{C}_n . When $i \in [n-1]$, we have $a'_j = a_j$ for $j \in [n] \setminus \{i, i+1\}, a'_i = a_{i+1}$ and $a'_{i+1} = a_i$; when i = 0, we have $a'_j = a_j$ for $1 < j \leq n$ and $a'_1 = -a_1$; when i = n, we have $a'_j = a_j$ for $j \in [n-1]$ and $a'_n = 2n + 1 - a_n$. On the other hand, when $i \in [n-1]$, we have $a''_j = a_j$ if $\langle a_j \rangle \notin \{i, i+1, 2n-i, 2n+1-i\}$, $a''_j = a_j+1$ if $\langle a_j \rangle \in \{i, 2n-i\}$ and $a''_j = a_j-1$ if $\langle a_j \rangle \in \{i+1, 2n+1-i\}$; when i=0, we have $a''_j = a_j$ if $\langle a_j \rangle \notin \{1, 2n\}$, $a''_j = a_j+2$ if $\langle a_j \rangle = 2n$ and $a''_j = a_j-2$ if $\langle a_j \rangle = 1$; when i=n, we have $a''_i = a_j$ if $\langle a_j \rangle \notin \{n, n+1\}$, $a''_j = a_j+1$ if $\langle a_j \rangle = n$ and $a''_j = a_j-1$ if $\langle a_j \rangle = n+1$.

The following results provide some information from $w = [a_1, a_2, \cdots, a_n] \in \widetilde{C}_n$.

Proposition 2.8 Let $w = [a_1, a_2, \cdots, a_n] \in \widetilde{C}_n$. Then

(1) Let $0 \leq k \leq n$. $t_k \in \mathcal{L}(w)$ if and only if $a_k > a_{k+1}$, with the convention that $a_0 = 0$ and $a_{n+1} = n$.

(2) Let $\langle a_i \rangle, \langle a_j \rangle \in \{k, k+1, 2n-k, 2n+1-k\}$ for some $i \neq j$ in [n]. Then $t_k \in \mathcal{R}(w)$, $0 < k \leq n$, if one of the following conditions holds:

(i) either $a_j - a_i > 2n + 1$, or i > j and $a_j > a_i$ if $(\langle a_i \rangle, \langle a_j \rangle) \in \{(k, k+1), (2n-k, 2n+1-k)\};$

(ii) $a_i + a_j < 0$ if $(\langle a_i \rangle, \langle a_j \rangle) = (k, 2n - k);$

(iii) $a_i + a_j > 2n + 1$ if $(\langle a_i \rangle, \langle a_j \rangle) = (2n + 1 - k, k + 1).$

Let $\langle a_i \rangle \in \{1, 2n\}$. Then $t_0 \in \mathcal{R}(w)$ if one of the following conditions holds:

(iv) $a_i < 0$ if $\langle a_i \rangle = 2n$;

(v) $a_i > 2n + 1$ if $\langle a_i \rangle = 1$.

Proof The results follow from Shi in [2, Proposition 2.8], by 2.7 and Corollary 2.6.

2.9 For any $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ and $\mu = (\mu_1, \mu_2, \dots, \mu_t)$ in Λ_{2n+1} , we write $\lambda \leq \mu$ if $\lambda_1 + \dots + \lambda_k \leq \mu_1 + \dots + \mu_k$ for any $1 \leq k \leq \min\{r, t\}$. This defines a partial order on Λ_{2n+1} . It is well known that if $x \in \widetilde{A}_{2n}$, $s \in \widetilde{\mathcal{L}}(x)$ and $t \in \widetilde{\mathcal{R}}(x)$ then $\psi(sx), \psi(xt) \leq \psi(x)$ (see [4, Lemma 5.5 and Corollary 5.6]). This implies by Corollary 2.6 that if $x \in \widetilde{C}_n$, $s \in \mathcal{L}(x)$ and $t \in \mathcal{R}(x)$, then $\psi(sx), \psi(xt) \leq \psi(x)$ and $t \in \mathcal{R}(x)$, then $\psi(sx), \psi(xt) \leq \psi(x)$.

Let \tilde{a}, a be the *a*-functions of the weighted Coxeter groups $(\tilde{A}_{2n}, \tilde{\ell})$ $(\tilde{C}_n, \tilde{\ell})$, respectively (see 2.3 and 1.6).

Lemma 2.10(see [1, Lemma 16.5]) $a(z) = \tilde{a}(z)$ for any $z \in C_n$.

Lemma 2.11(see [1, Lemma 16.14]) Let $x, y \in \widetilde{C}_n$. Then $x \underset{L}{\sim} y$ (resp., $x \underset{R}{\sim} y$) in \widetilde{C}_n if and only if $x \underset{L}{\sim} y$ (resp., $x \underset{R}{\sim} y$) in \widetilde{A}_{2n} .

By Lemma 2.11, we can just use the notation $x \underset{L}{\sim} y$ (resp., $x \underset{R}{\sim} y$) for $x, y \in \widetilde{C}_n$ without indicating whether the relation refers to the group \widetilde{A}_{2n} or \widetilde{C}_n .

For any $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r) \in \Lambda_{2n+1}$, define $\mu = (\mu_1, \mu_2, \dots, \mu_t) \in \Lambda_{2n+1}$ by setting $\mu_j = \# \{k \ge 1 \mid \lambda_k \ge j\}$, for any $j \ge 1$, and call μ the *dual partition* of λ .

Lemma 2.12 Let $x, y \in A_{2n}$.

(1) $x \leq y$ if and only if $\psi(y) \leq \psi(x)$. In particular, $x \sim_{LR} y$ if and only if $\psi(x) = \psi(y)$ (see [5, Theorem 6], [4, Theorem 17.4] and [6, Theorem B]).

(2) $\widetilde{a}(x) = \sum_{i=1}^{\flat} (i-1)\mu_i$, where $(\mu_1, \mu_2, \cdots, \mu_t)$ is the dual partition of $\psi(x)$ (see [7, Subsection 6.27]).

2.13 A non-empty subset E of a Coxeter group W = (W, S) is said *left-connected*, (resp., *right-connected*) if for any $x, y \in E$, there exists a sequence $x_0 = x, x_1, \dots, x_r = y$ in E such

that $x_{i-1}x_i^{-1} \in S$ (resp., $x_i^{-1}x_{i-1} \in S$) for every $i \in [r]$. *E* is said *two-sided-connected* if for any $x, y \in E$, there exists a sequence $x_0 = x, x_1, \dots, x_r = y$ in *E* such that either $x_{i-1}x_i^{-1}$ or $x_i^{-1}x_{i-1}$ is in *S* for every $i \in [r]$.

Let $F \subseteq E$ in W. Call F a *left-connected component* of E, if F is a maximal left-connected subset of E. One can define a right-connected component and a two-sided-connected component of E similarly.

For any $\lambda \in \Lambda_{2n+1}$, define $E_{\lambda} := \widetilde{C}_n \cap \psi^{-1}(\lambda)$.

Lemma 2.14 Let $\lambda \in \Lambda_{2n+1}$.

(1) Any left-connected (resp., right-connected, two-sided-connected) set of $\psi^{-1}(\lambda)$ is contained in some left (resp., right, two-sided) cell of \widetilde{A}_{2n} .

(2) Any left-connected (resp., right-connected, two-sided-connected) set of E_{λ} is contained in some left (resp., right, two-sided) cell of \widetilde{C}_n .

(3) The set E_{λ} is either empty or a union of some two-sided cells of C_n .

Proof The results follow from Shi in [8, Corollary 2.18].

Corollary 2.15 Let $x, y \in \widetilde{A}_{2n}$ satisfy $x, y \in \psi^{-1}(\lambda)$ for some $\lambda \in \Lambda_{2n+1}$.

(1) If $\tilde{\ell}(y) = \tilde{\ell}(x) + \tilde{\ell}(yx^{-1})$, then x, y are in the same left-connected component of $\psi^{-1}(\lambda)$ and hence $x \sim y$.

(2) If $\tilde{\ell}(y) = \tilde{\ell}(x) + \tilde{\ell}(x^{-1}y)$, then x, y are in the same right-connected component of $\psi^{-1}(\lambda)$ and hence $x \sim y$.

Let $x, y \in \widetilde{C}_n$ satisfy $x, y \in \psi^{-1}(\lambda)$ for some $\lambda \in \Lambda_{2n+1}$.

(3) If $\ell(y) = \ell(x) + \ell(yx^{-1})$, then x, y are in the same left-connected component of E_{λ} and hence $x \sim y$.

(4) If $\ell(y) = \ell(x) + \ell(x^{-1}y)$, then x, y are in the same right-connected component of E_{λ} and hence $x \sim y$.

Proof The results follow from Shi in [2, Corollary 2.19].

3 Partial order \leq_w on [2n+1] determined by element w

In this section, we introduce two technical tools following Shi in [2, Section 3]. One is a transformation on an element in 3.3, which is a crucial step in proving the left-connectedness of a left cell and in finding a representative set for the left cells of \tilde{C}_n in the set E_λ , $\lambda \in \Lambda_{2n+1}$. The other is the generalized tabloids in 3.5, by which we can check whether two elements of \tilde{C}_n are in the same left cell.

3.1 $i, j \in [2n]$ are said 2n-dual, if i + j = 2n + 1; in this case, we denote $j = \overline{i}$ (hence $i = \overline{j}$ also). Recall the partial order \preceq_w on [2n + 1] defined in 2.2 for any $w \in \widetilde{A}_{2n}$ and \widetilde{C}_n can be regarded as a subset of \widetilde{A}_{2n} (see 2.1). Fix $w \in \widetilde{A}_{2n}$. $i \neq j$ in [2n + 1] are said w-comparable if either $i \prec_w j$ or $j \prec_w i$, and w-uncomparable if otherwise. When $w \in \widetilde{C}_n$, $i \in [2n]$ is said w-wild if i and \overline{i} are w-comparable and w-tame if otherwise. $i \in [2n]$ is said a w-wild head (resp., a w-tame head), if i is w-wild (resp., w-tame) with $(\overline{i})w < (i)w$.

It is easily seen that i < j in [2n + 1] are w-uncomparable if and only if (i)w < (j)w < (i)w + 2n + 1.

Lemma 3.2 Fix $w \in C_n$.

(i) For any $j \neq k$ in [2n], $j \prec_w k$ if and only if $\overline{k} \prec_w \overline{j}$.

Now suppose that $j \neq k$ in [2n] are w-wild heads and $i \in [2n]$ is a w-tame head.

(ii) $\overline{j} \prec_w k$ if and only if j, \overline{k} are w-comparable.

(iii) If j, \overline{k} are w-uncomparable then so are j, k (resp., $\overline{j}, \overline{k}$).

(iv) i and k are w-comparable if and only if $i \prec_w k$.

(v) j, i, \overline{j} is a w-chain if and only if j is w-comparable with both i and \overline{i} .

(vi) $\{j, k, \overline{j}, \overline{k}\}$ is a w-chain if and only if j, k are w-comparable.

(vii) If (j)w > 2n+1, then $\overline{j} \prec_w 2n+1 \prec_w j$; or else, j, \overline{j} are w-uncomparable with 2n+1. (viii) i, \overline{i} are w-uncomparable with 2n+1.

Proof The results (i)–(vi) follow by [2, Lemma 3.2] and (vii)–(viii) can be checked directly.

3.3 Let

$$t'_{k} = \begin{cases} t_{\langle k \rangle}, & \text{if } \langle k \rangle \in [n], \\ t_{\overline{\langle k \rangle} - 1}, & \text{if } \langle k \rangle \in [2n] \setminus [n], \\ 1, & \text{if } \langle k \rangle = 2n + 1, \end{cases}$$

and

$$t_{i,j} = t'_{i+j-1}t'_{i+j-2}\cdots t'_{i+1}t'_i.$$
(3.3.1)

for any $i, j, k \in \mathbb{Z}$ with j > 0. Suppose $x \in \widetilde{C}_n$ and $i \in \mathbb{Z}$ satisfy (i)x - 2n - 1 > (j)x for any $i < j \leq i + a$ with some $a \in [2n]$. Let $x' = t_{i,a}x$. Then $\ell(x') = \ell(x) - \ell(t_{i,a})$ and $\psi(x) = \psi(x')$. Moreover, if (i)x - 2n - 1 > (j)x for any i < j < i + 2n + 1, let $x'' = t_{i,2n+1}x$, then

$$(m)x'' = \begin{cases} (m)x - 2n - 1, & \text{if } \langle m \rangle = \langle i \rangle, \\ (m)x + 2n + 1, & \text{if } \langle m \rangle = \langle 2n + 1 - i \rangle, \\ (m)x, & \text{otherwise,} \end{cases}$$

for any $m \in \mathbb{Z}$, where x'' satisfies $\ell(x'') = \ell(x) - 2n - 1$ and $\psi(x) = \psi(x'')$.

Fix $w \in \widetilde{C}_n$. Suppose that $E_1 = \{i_1, i_2, \cdots, i_a\}$ and $E_2 = \{j_1, j_2, \cdots, j_b\}$ are two subsets of [2n] satisfying that

- (i) $i_1 < i_2 < \dots < i_a$ and $j_1 < j_2 < \dots < j_b$ with $a > 0, b \ge 0$ and a + b = n;
- (ii) the elements of $E_1 \cup E_2$ are pairwise not 2*n*-dual;

(iii) $(\overline{k})w < (k)w$ for any $k \in E_1 \cup E_2$;

(iv) (i)w - (j)w > l(2n+1) for any $i \in E_1$ and $j \in E_2 \cup \{2n+1\}$, where l is nonnegative integer.

By repeatedly left-multiplying the elements $t_{i,j}$, $i, j \in \mathbb{Z}$, to w, we can obtain some $w' \in \tilde{C}_n$ such that there are some $1 \leq k_1 < k_2 < \cdots < k_b \leq 2b$ satisfying that

(1) $\ell(w') = \ell(w) - \ell(ww'^{-1});$

(2) if b > 0, then $[2b] = \{k_1, k_2, \dots, k_b, 2b + 1 - k_1, 2b + 1 - k_2, \dots, 2b + 1 - k_b\}$ and the map $\phi : \{j_1, j_2, \dots, j_b, \overline{j}_1, \overline{j}_2, \dots, \overline{j}_b\} \longrightarrow [2b]$ given by $\phi(j_m) = k_m$ and $\phi(\overline{j}_m) = 2b + 1 - k_m$ for $m \in [b]$ is an order-preserving bijection.

(4) $(\overline{c})w' < (c)w'$ for any $c \in [a] \cup \{a + k_m \mid m \in [b]\};$

(5) if b > 0, then $0 < \min\{(c)w' - (a + k_m)w' \mid c \in [a], m \in [b]\} \le 2n + 1$.

We see by Lemma 3.2 that $\psi(w') = \psi(w)$, where $\lambda = \psi(w') = \psi(w)$, and by Corollary 2.15 that w, w' are in the same left-connected component of E_{λ} .

Example 3.4 Let $x = [19, 11, 20] \in \widetilde{C}_3$. Then $E_1 = \{1, 3\}$ and $E_2 = \{2\}$ satisfy the conditions (i)–(iv) in 3.3 with n = 3 and (a, b, l) = (2, 1, 1). Let $y = t_{2,5}t_{3,4}x$. Then $y = [12, 13, 11] \in \widetilde{C}_3$. Hence y satisfies the conditions (1)–(5) in 3.3 and $\psi(x) = \psi(y) = 52$.

3.5 By a composition of 2n + 1, we mean an r-tuple (a_1, a_2, \dots, a_r) of positive integers a_1, a_2, \dots, a_r with some $r \ge 1$ such that $\sum_{i=1}^r a_i = 2n+1$. Let $\widetilde{\Lambda}_{2n+1}$ be the set of all compositions of 2n + 1. Clearly, $\Lambda_{2n+1} \subseteq \widetilde{\Lambda}_{2n+1}$.

A generalized tabloid Y of rank 2n + 1 is, by definition, an r-tuple $T = (T_1, T_2, \cdots, T_r)$ with some $r \in \mathbb{N}$ such that [2n + 1] is a disjoint union of its non-empty subsets $T_j, j \in [r]$. We have $\xi(T) := (|T_1|, |T_2|, \cdots, |T_r|) \in \tilde{\Lambda}_{2n+1}$, where $|T_i|$ denotes the cardinal of the set T_i . Let i_1, i_2, \cdots, i_r be a permutation of $1, 2, \cdots, r$ such that $|T_{i_1}| > |T_{i_2}| > \cdots > |T_{i_r}|$. Then $\zeta(T) := (|T_{i_1}|, |T_{i_2}|, \cdots, |T_{i_r}|) \in \Lambda_{2n+1}$. Two generalized tabloids $T = (T_1, T_2, \cdots, T_r)$ and $T' = (T'_1, T'_2, \cdots, T'_r)$ of 2n + 1 are said equal, if r = t and $T_i = T'_i$ for any $i \in [r]$. Let \mathcal{C}_{2n+1} be the set of all generalized tabloids of rank 2n + 1. Then both $\xi : \mathcal{C}_{2n+1} \longrightarrow \tilde{\Lambda}_{2n+1}$ and $\zeta : \mathcal{C}_{2n+1} \longrightarrow \Lambda_{2n+1}$ are surjective maps.

Let Ω be the set of all elements w of A_{2n} such that there is a generalized tabloid $T = (T_1, T_2, \dots, T_r) \in \mathcal{C}_{2n+1}$ satisfying:

(i) For any i < j in [r], we have $a \prec_w b$ for any $a \in T_i$ and $b \in T_j$;

(ii) For any $i \in [r]$, a and b are w-uncomparable for any $a \neq b$ in T_i .

Clearly, T is determined entirely by $w \in \Omega$, denote T by T(w). The map $T : \Omega \longrightarrow \mathcal{C}_{2n+1}$ is surjective by [4, Proposition 19.1.2]. By a result of Curtis Greene in [8], we see that the partition $\zeta(T(w))$ is the dual of $\psi(w)$.

The following known result will be crucial in the proof of Lemmas 4.4 and 5.4.

Lemma 3.6(see [4, Lemma 19.4.6]) Suppose that $y, w \in A_{2n}$ are two elements in Ω with $\xi(T(y)) = \xi(T(w))$. Then $y \sim w$ if and only if T(y) = T(w).

4 The set $E_{k1^{2n+1-k}}$

Recall that in 2.13 we defined the set E_{λ} for any $\lambda \in \Lambda_{2n+1}$. We have $E_{\lambda}^{-1} = E_{\lambda}$. In the present section, we shall describe all the cells of \widetilde{C}_n in the set $E_{\mathbf{k}1^{2n+1}\mathbf{\cdot k}}$ for all $k \in [2n+1]$. Evidently, $E_{1^{2n+1}}$ consists of the identity element of \widetilde{C}_n . Hence in the subsequent discussion of this section, we shall always assume k > 1.

4.1 Assume k = 2m + 1 odd (resp., k = 2m even) and l = n - m. Then 2n + 1 - k = 2l (resp., 2n + 1 - k = 2l + 1). By Lemma 3.2, we see that $w \in \widetilde{C}_n$ is in the set $E_{kl^{2n+1-k}}$, k = 2m + 1 (resp., k = 2m) if and only if w satisfies the conditions (4.1.1) (i), (ii) (resp., the conditions (4.1.1) (i), (ii)') below.

(4.1.1) There exist $i_1, i_2, \dots, i_l, j_1, j_2, \dots, j_m \in [2n]$ which are pairwise not 2*n*-dual such that

(i) i_1, i_2, \dots, i_l are all w-tame heads with $i_1 < i_2 < \dots < i_l$ and $(i_1)w < (i_2)w < \dots < (i_l)w$; j_1, j_2, \dots, j_m are all w-wild heads with $j_1 \prec_w j_2 \prec_w \dots \prec_w j_m$;

(ii) $2n+1 \prec_w j_1$ or $i_1, \overline{i_1} \prec_w j_1$ (resp., (ii)' $2n+1 \not\prec_w j_1$ and either $i_1 \not\prec_w j_1$ or $\overline{i_1} \not\prec_w j_1$).

Let F_1 (resp., F_2) be the set of all $w \in \tilde{C}_n$ satisfying the conditions (4.1.2) (i), (ii), (iii) (resp., the conditions (4.1.2) (i), (ii) (iii)').

(4.1.2) There exist $i_1, i_2, \dots, i_l, j_1, j_2, \dots, j_m \in [2n]$ which are pairwise not 2*n*-dual such that

(i) i_1, i_2, \dots, i_l are all w-tame heads with $i_1 < i_2 < \dots < i_l$ and $(i_1)w < (i_2)w < \dots < (i_l)w$; j_1, j_2, \dots, j_m are all w-wild heads with $j_1 \prec_w j_2 \prec_w \dots \prec_w j_m$;

(ii) $(\overline{i}_l, \overline{i}_{l-1}, \cdots, \overline{i}_1, j_m, j_{m-1}, \cdots, j_1) = (1, 2, \cdots, n);$

(iii) $3n+1 < (j_1)w < 5n+3$ and $0 < (j_{a+1})w - (j_a)w < 2n+1$, for any $a \in [m-1]$ (resp., (iii)' $n < (j_1)w < (i_1)w$, $4n+2 < (j_2)w < 6n+3$ and $0 < (j_{a+2})w - (j_{a+1})w < 2n+1$, for any $a \in [m-2]$).

By 3.3 and 4.1, it is easily seen that

Lemma 4.2 For any $w \in E_{k1^{2n+1-k}}$, k = 2m+1 (resp., k = 2m), there exists some $w' \in F_1$ (resp., $w' \in F_2$) such that w', w are in the same left-connected component of $E_{k1^{2n+1-k}}$, k = 2m+1 (resp., k = 2m).

Lemma 4.3 The set F_1 (resp., F_2) in Lemma 4.2 is contained in a right-connected component of $E_{k1^{2n+1-k}}, k = 2m + 1$ (resp., k = 2m).

Proof Let $w_J = [1, 2, \dots, l, 2n - l, 2n - l - 1, \dots, n + 1]$ with $J = \{t_{l+1}, t_{l+2}, \dots, t_n\}$. Then $w_J \in E_{k1^{2n+1-k}}, k = 2m$. Let $w \in F_2$. We have $\mathcal{L}(w) = J$ by Corollary 2.6. Then $w = w_J y$ with $\ell(w) = \ell(w_J) + \ell(y)$ for some $y \in \tilde{C}_n$. Hence w, w_J are contained in a right-connected component of $E_{k1^{2n+1-k}}, k = 2m$ by Corollary 2.15. This implies that all the elements of F_2 are contained in a right-connected component of $E_{k1^{2n+1-k}}, k = 2m$ by Corollary 2.15. This implies that all the elements of F_2 are contained in a right-connected component of $E_{k1^{2n+1-k}}, k = 2m$.

Next we consider $w \in F_1$. Let $x = t_1 \cdots t_1 t_0 t_1 \cdots t_n$ and the set $F'_1 = \{x^m y \mid y \in F_1\}$. We see that $w' \in \tilde{C}_n$ is in the set F'_1 if and only if w' satisfies the conditions (4.1.2) (i), (ii) and $n < (j_1)w' < 3n + 2$, $0 < (j_{a+1})w' - (j_a)w' < 2n + 1$, for any $a \in [m - 1]$. Then $w_J \in F'_1$ and $x^m w_J \in F_1$. For any $w' \in F'_1$, by Corollary 2.6, we have $\mathcal{L}(w') = J$. Then for any $w' \in F'_1$, $w' = w_J y$ with $\ell(w') = \ell(w_J) + \ell(y)$ for some $y \in \tilde{C}_n$. We see that $w = x^m w'$ satisfies $\ell(w) = \ell(x^m) + \ell(w')$ for some $w' \in F'_1$. This implies that $w = x^m w_J y$ satisfies $\ell(w) = \ell(x^m w_J) + \ell(y)$ for some $y \in \tilde{C}_n$. Hence $w, x^m w_J$ are contained in a right-connected component of $E_{k1^{2n+1-k}}, k = 2m + 1$ by Corollary 2.15. This implies that all the elements of F_1 are contained in a right-connected component of $E_{k1^{2n+1-k}}, k = 2m + 1$.

Lemma 4.4 (1) No two elements of F_1 (resp., F_2) in Lemma 4.2 are in the same left cell of \widetilde{C}_n .

(2) $|F_1| = n!2^m/(n-m)!$ and $|F_2| = n!2^{m-1}/(n-m+1)!$.

Proof In \widetilde{A}_{2n} , we have $F_1 \subseteq \Omega$ and $T(F_1) = \{(T_1, T_2, \cdots, T_{2m+1}) \in \mathcal{C}_{2n+1} \mid |T_i| = 1, T_{2m+2-i} = \{\overline{j} \mid j \in T_i\}, i \in [m], 2n+1 \in T_{m+1}\}$ (see 3.5). Then for any $x, y \in F_1$, we see

that $\xi(T(x)) = \xi(T(y))$ and $T(x) \neq T(y)$. So for any $x, y \in F_1$, x, y are not in the same left cell of \widetilde{A}_{2n} by Lemma 3.6. Hence no two elements of F_1 are in the same left cell of \widetilde{C}_n by Lemma 2.11 and $|F_1| = |T(F_1)| = n!2^m/(n-m)!$.

In \widetilde{A}_{2n} , let $z = (s_n \cdots s_1 s_0 s_{2n} s_{2n-1} \cdots s_{n+m})^m$ and $F'_2 = \{zw \mid w \in F_2\}$. Let $w \in F_2$, keep the notation in (4.1.2) (i) (ii) (iii)'. We see that $(j)zw = (j)w, j \in [2n+1] \setminus \{\overline{j}_a \mid a \in [m]\}$ and $(\overline{j}_a)zw = (\overline{j}_a)w - 2n - 1$, for any $a \in [m]$. This implies that $\psi(zw) = \psi(w)$. Then we have $zw \simeq w$ by Lemma 2.14 (1). We see that $F'_2 \subseteq \Omega$. And for $w' \in F'_2$, $T(w') = (T_1, T_2, \cdots, T_{2m})$, where $T_b = \{\langle (\overline{j}_{m+1-b})w' \rangle\}$, for any $b \in [m]$, $T_{m+1} = \{\langle (j_1)w' \rangle, 2n+1, \langle (\overline{i}_a)w' \rangle, \langle (i_a)w' \rangle \mid a \in [l]\}$, $T_c = \{\langle (j_{c-m})w' \rangle\}$, for $m+2 \leqslant c \leqslant 2m$. For any $x, y \in F'_2$, we see that $\xi(T(x)) = \xi(T(y))$ and $T(x) \neq T(y)$. So for any $x, y \in F'_2$, x, y are not in the same left cell of \widetilde{A}_{2n} by Lemma 3.6. Hence no two elements of F_2 are in the same left cell of \widetilde{C}_n by Lemma 2.11 and $|F_2| = |F'_2| = |T(F'_2)| = n!2^{m-1}/(n-m+1)!$.

Theorem 4.5 (1) $E_{k1^{2n+1-k}}, k = 2m + 1$ (resp., k = 2m) is a two-sided cell of \tilde{C}_n containing $n!2^m/(n-m)!$ (resp., $n!2^{m-1}/(n-m+1)!$) left cells and each left cell of \tilde{C}_n in $E_{k1^{2n+1-k}}, k = 2m + 1$ (resp., k = 2m) is left-connected.

(2) $E_{k1^{2n+1-k}}$ is infinite unless k = 1, 2.

Proof By Lemma 2.14, we see that E_{λ} is either empty or a union of some two-sided cells of \widetilde{C}_n for any $\lambda \in \Lambda_{2n+1}$. Hence the assertion (1) follows by Lemmas 4.2–4.4. For the assertion (2), we see that if k > 2, then the number of the choices for the integer $(j_m)w$ in the condition (4.1.1) (i) is infinite. On the other hand, we have $E_{1^{2n+1}} = \{1\}$ and $E_{21^{2n-1}} = \{t_n\}$. This proves (2).

5 The set $E_{(2n-1,2)}$

In the present section, we shall describe all the cells of \widetilde{C}_n in the set $E_{(2n-1,2)}$ for $n \ge 3$. Lemma 5.1 $w \in \widetilde{C}_n$ is in the set $E_{(2n-1,2)}$ if and only if w satisfies the condition below.

(5.1.1) There exist $j_1, j_2, \dots, j_n \in [2n]$ which are pairwise not 2*n*-dual such that j_1, j_2, \dots, j_n are all *w*-wild heads with $2n + 1 \prec_w j_2 \prec_w j_3 \prec_w \dots \prec_w j_n$ and there is $j_k \in [2n]$ which is *w*-uncomparable with j_1 for some $k \in [n]$.

Proof Let $w \in E_{(2n-1,2)}$. We claim that for any $j \in [2n]$, j is w-wild. For otherwise, there exists some $i \in [2n]$ which is w-tame, then by Lemma 3.2 (viii), $w \in E_{\lambda}$ with $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_r)$ and $r \ge 3$, which is a contradiction. If X, Y are both w-chains with |X| = 2n-1, |Y| = 2 and $[2n + 1] = X \cup Y$, we claim that $2n + 1 \in X$. Otherwise, let $Y = \{2n + 1, j\}$ for some $j \in [2n]$. Then $\overline{j} \in X$, and $\{j\} \cup X$ is a w-chain by Lemma 3.2 (i) (vi), which is a contradiction. Hence the result follows.

Hence by Lemma 3.2, we see that $w \in \tilde{C}_n$ is in the set $E_{(2n-1,2)}$ if and only if w satisfies the condition (5.1.1).

Let $x_m = (t_m, \dots, t_{n-1}t_nt_{n-1}, \dots, t_1t_0)^m$ for $m \in [n]$ and $F = \{w \in \widetilde{C}_n \mid 3n+1 < (n-1)w < 5n+3, (n-1)w < (n)w < (n-1)w+2n+1, (n)w < (n-2)w < (n)w+2n+1, (i+1)w < (i)w < (i+1)w+2n+1, i \in [n-3]\}.$

Lemma 5.2 For any $w \in E_{(2n-1,2)}$, there exists some $w' \in F$ such that w', w are in the same left-connected component of $E_{(2n-1,2)}$.

Proof By Lemma 5.1, we know that $w \in E_{(2n-1,2)}$ if and only if w satisfies the condition (5.1.1). Let $w \in E_{(2n-1,2)}$, keep the notation in (5.1.1). Let k is the smallest integer of [n] such that j_k is w-uncomparable with j_1 . Then $j_{k-1} \prec_w j_1$ if k > 2.

By repeatedly left-multiplying the elements $t_i, i \in \mathbb{Z}$, to w, we can obtain some $w^{(1)} \in E_{(2n-1,2)}$ satisfying $(j_n^{(1)}, \dots, j_{k+1}^{(1)}, j_1^{(1)}, j_k^{(1)}, j_{k-1}^{(1)}, \dots, j_2^{(1)}) = (1, 2, \dots, n)$ if $(j_k)w > (j_1)w$, or $(j_n^{(1)}, \dots, j_{k+1}^{(1)}, j_k^{(1)}, j_{k-1}^{(1)}, \dots, j_2^{(1)}) = (1, 2, \dots, n)$ if $(j_1)w > (j_k)w$ and $(j_m^{(1)})w^{(1)} = (j_m)w$ for $m \in [n]$. We see that $j_{k-1}^{(1)} \prec_w j_1^{(1)}$ if k > 2 and $j_1^{(1)} \prec_w j_{k+1}^{(1)}$ if $(j_k)w > (j_1)w$.

If $(j_1^{(1)})w^{(1)} < 2n + 1$, then $(j_m^{(1)})x_nw^{(1)} = (j_m^{(1)})w^{(1)} + 2n + 1$ for $m \in [n]$. We see that $x_nw^{(1)}, w^{(1)}$ are in the same left-connected component of $E_{(2n-1,2)}$. Hence without loss of generality, let $(j_1^{(1)})w^{(1)} > 2n + 1$.

Let $w^{(2)} = x_{n-k}^i w^{(1)}$ for some $i \in \mathbb{N}$ such that $(j_{k+1}^{(1)})w^{(2)} > (j_1^{(1)})w^{(2)}$. Let $w^{(3)} = t_{n+k-2,2n+1}^m w^{(2)}$ for some $m \in \mathbb{N}$ such that $(n-k+3)w^{(3)} < (n-k+2)w^{(3)} < (n-k+3)w^{(3)} + 2n+1$. Let $w^{(4)} = t_{n-k+1}w^{(3)}$ if $(n-k+3)w^{(3)} > (n-k+1)w^{(3)}$ and $w^{(4)} = x_{n-k+1}t_{n-k+2}w^{(3)}$ if $(n-k+3)w^{(3)} < (n-k+1)w^{(3)}$.

Fig. 2 displays the matrix forms of $w^{(i)}$ for i = 1, 2, 3, 4, where the symbol $\stackrel{p}{\cdots}$ stands for a rectangular submatrix with p rows for some $p \in [n]$ each row has a unique non-zero entry 1 Well, the non-zero entries of the matrix are gonging down to the left.

We can see that $w^{(i)}$, i = 1, 2, 3, 4 are in the same left-connected component of $E_{(2n-1,2)}$. By repeatedly repeating the above process, we see that there exists some $w^{(r)} \in \widetilde{C}_n$ for some $r \in \mathbb{Z}$ with the matrix form displayed in Fig. 3, such that $w^{(1)}, w^{(r)}$ are in the same left-connected component of $E_{(2n-1,2)}$.

Hence from the Fig. 3, we see that there exists some $w' \in F$ such that $w', w^{(r)}, w$ are in the same left-connected component of $E_{(2n-1,2)}$ by 3.3.

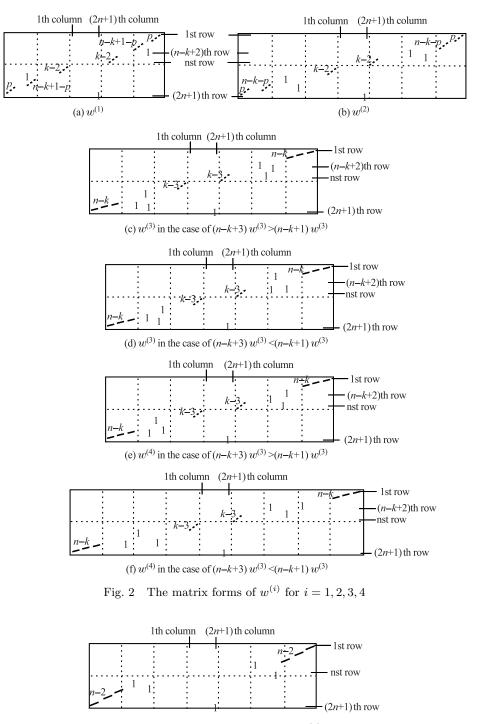
Lemma 5.3 The set F is contained in a right-connected component of $E_{(2n-1,2)}$.

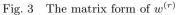
Proof Let $w_J = [2n, \dots, n+2, n+1]$ with $J = \{t_1, t_2, \dots, t_n\}$ and $F' = \{x_n t_{n-1}w \mid w \in F\}$. Then $F' = \{w \in \widetilde{C}_n \mid n < (n)w < 3n+2, (i+1)w < (i)w < (i+1)w+2n+1, i \in [n-1]\}$ and $w_J \in F'$. For any $w' \in F'$, by Corollary 2.6, we have $\mathcal{L}(w') = J$. Then for any $w' \in F'$, $w' = w_J y$ with $\ell(w') = \ell(w_J) + \ell(y)$ for some $y \in \widetilde{C}_n$. Let $w \in F$. Then $w = t_{n-1}x_n^{-1}w_J y$ with $\ell(w) = \ell(t_{n-1}x_n^{-1}w_J) + \ell(y)$ for some $y \in \widetilde{C}_n$. This implies that $t_{n-1}x_n^{-1}w_J$, w are contained in a right-connected component of $E_{(2n-1,2)}$ by Corollary 2.15. Hence all the elements of F are contained in a right-connected component of $E_{(2n-1,2)}$.

Lemma 5.4 (1) $|F| = n! 2^{n-2}$.

(2) No two elements of F are in the same left cell of \tilde{C}_n .

Proof In \widetilde{A}_{2n} , we have $F \subseteq \Omega$ and $T(F) = \{(T_1, T_2, \cdots, T_{2n-1}) \in \mathcal{C}_{2n+1} \mid |T_i| = 1 \text{ with } i \in [n-2], |T_{n-1}| = 2, T_n = \{2n+1\}, T_{2n-m} = \{\overline{j} \mid j \in T_i\} \text{ with } m \in [n-1]\}$ (see 3.5). Then for any $x, y \in F$, we see that $\xi(T(x)) = \xi(T(y))$ and $T(x) \neq T(y)$. So for any $x, y \in F$, x, y are not in the same left cell of \widetilde{A}_{2n} by Lemma 3.6 and $|F| = |T(F)| = n! 2^{n-2}$. Hence no two elements of F are in the same left cell of \widetilde{C}_n by Lemma 2.11.





Theorem 5.5 (1) $E_{(2n-1,2)}$ is a two-sided cell of \widetilde{C}_n containing $n!2^{n-2}$ left cells and each left cell of \widetilde{C}_n in $E_{(2n-1,2)}$ is left-connected. (2) $E_{(2n-1,2)}$ is infinite.

(下转第114页)

[References]

- CUNTZ J. Simple C*-algebras generated by isometries [J]. Communications in Mathematical Physics, 1977, 57(2): 173-185.
- [2] CUNTZ J. K-theory for certain C*-algebras [J]. Annals of Mathematics, 1981, 113: 181-197.
- [3] LIN H X, ZHANG S. On infinite simple C*-algebras [J]. Journal of Functional Analysis. 1991, 100(1): 221-231.
- ZHANG S. A property of purely infinite simple C*-algebras [J]. Proceedings of the American Mathematical Society, 1990, 109(3): 717-720.
- [5] KIRCHBERG E, RORDAM M. Non-simple purely infinite C*-algebras [J]. American Journal of Mathematics, 2000, 122(3): 637-666.
- [6] LIU S D, FANG X C. K-theory for extensions of purely infinite simple C*-algebras(II) [J]. Chinese Annals of Mathematics, 2009, 30A(3): 433-438.
- [7] BLACKADAR B E. A simple unital projectionless C*-algebra [J]. Journal of Operator Theory, 1981, 5: 63-71.
- [8] RORDAM M. A simple C*-algebra with a finite and an infinite projection [J]. Acta Mathematica, 2003, 191(1): 109-142.
- $\begin{bmatrix} 9 \end{bmatrix}$ HU S W, LIN H X, XUE Y F. Tracial limit of C^* -algebras [J]. Acta Mathematica Sinica, 2003, 19(3): 535-556.
- $\begin{bmatrix} 10 \end{bmatrix} \quad \text{LIN H X. The tracial topological rank of C^*-algebras [J]. Proceedings of the London Mathematical Society, 2001, 83(1): 199-234.$
- YAO H L, HU S W. C*-algebras of tracial real rank zero [J]. Journal of East China Normal University, 2004, 2: 5-12.
- [12] FAN Q Z, FANG X C. C*-algebras of tracial stable rank one [J]. Acta Mathematica Sinica, 2005, 148(5): 929-934.
- [13] XIAO X, HU S W. Closing property of C^* -algebras with tracial limit [J]. Journal of East China Normal University, 2006, 3: 8-14.
- [14] JEONG J A, LEE S G. On purely infinite C*-algebras [J]. Proceedings of the American Mathematical Society, 1993, 117(3): 679-682.
- [15] LIN H X. An introduction to the classification of amenable C^* -algebras [M]. New Jersey: World Scientific, 2001.

(上接第103页)

Proof The assertion (1) follows by Lemmas 5.2–5.4. For the assertion (2), we see that the number of the choices for the integer $(j_n)w$ in the condition (5.1.1) is infinite. This proves (2).

[References]

- [1] LUSZTIG G. Hecke algebras with unequal parameters [M]. Providence: American Mathematical Society, 2003.
- $\begin{bmatrix} 2 \end{bmatrix}$ SHI J Y. Cells of the affine Weyl group \widetilde{C}_n in a quasi-split case, [EB/OL]. [2012-12-29]. http://math.ecnu.edu.cn/ ~jyshi/myart/quasisplifl.pdf.
- [3] LUSZTIG G. Some examples in square integrable representations of semisimple p-adic groups [J]. Trans Amer Math Soc, 1983, 277: 623-653.
- [4] SHI J Y. The Kazhdan-Lusztig cells in certain affine Weyl groups [M]. Berlin: Springer-Verlag, 1986.
- [5] KAC V. Infinite Dimensional Groups with Applications [M]. New York: Springer-Verlag, 1985.
- [6] SHI J Y. The partial order on two-sided cells of certain affine Weyl groups [J]. J Algebra, 1996, 179(2): 607-621.
- [7] SHI J Y. A survey on the cell theory of affine Weyl groups [J]. Advances in Science of China, 1990, Math 3: 79-98.
- [8] GREENE C. Some partitions associated with a partially ordered set [J]. J Comb Theory A, 1976, 20: 69-79.