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An alternate model for rumor spreading over small-world networks is suggested, of which two rumors 
(termed rumor 1 and rumor 2) have different nodes and probabilities of acceptance. The propagation is 
not symmetric in the sense that when deciding which rumor to adopt, high-degree nodes always consider 
rumor 1 first, and low-degree nodes always consider rumor 2 first. The model is a natural generalization 
of the well-known epidemic SIS model and reduces to it when some of the parameters of this model are 
zero. We find that rumor 1 (preferred by high-degree nodes) is dominant in the network when the degree 
of nodes is high enough and/or when the network contains large clustered groups of nodes, expelling ru-
mor 2. However, numerical simulations on synthetic networks show that it is possible for rumor 2 to oc-
cupy a nonzero fraction of the nodes in many cases as well. Specifically, in the NW small-world model a 
moderate level of clustering supports its adoption, while increasing randomness reduces it. 
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Introduction 

Rumor spreading is a complex socio-psychological process. 
Pioneering contributions to their modeling, based on epidemi-
ological models, date back to (Landahl, 1953; Rapoport, 1952). 
In those days both deterministic models and stochastic models 
were used, and the former were so simple that they were solved 
analytically and regarded as the first approximation of the latter. 
To above study, Daley and Kendall (Daley, 1965) explained the 
importance of dealing with stochastic rumor models rather than 
deterministic ones, henceforth stochastic models have been 
actively studied (Cane, 1966; Sudbur, 1985; Watson, 1987). 
The basic rumor spreading model which they used is called 
Daley-Kendall model after Daley (Daley, 1965). 

The most popular model for information or rumor spreading, 
introduced by Daley and Kendall (Daley, 1964) is conceptually 
similar to the SIR model for epidemiology. Other widely used 
models for describing collective social behavior are the thresh-
old models, first proposed by Granovetter in (Granovetter, 
1978). Each individual has a specific threshold, based on which 
a binary decision is made. More formal definitions which take 
social network structure into account have appeared since, the 
simplest version of which is the linear threshold model (Kempe, 
2003). A variant of the threshold model has been used, for ex-
ample, in (Guardiola, 2002) for describing diffusion of innova-
tions in a population, and the effects of network topology have 
been analyzed by Yunhao Liu (Liu, 2011). 

However, the co-hypothesis of above research is that only 
one type of rumor spreads through networks. In this paper we 
propose a model of rumor spreading, where two different types 
of rumor affect the nodes, and consider the behavior of the 
model on a small-world network. 

Our model follows this idea of the SIS epidemiological 
model. Nodes are divided into three classes: ignorants, rumor 1 
spreaders, and rumor 2 spreaders. Namely, each node is “sus-
ceptible” to the effects of two kinds of “infections” and is able 
to recover from them as well. Moreover, the source of rumor 1 
and rumor 2 both have special meaning, and some nodes will 
always consider one of them first. This formulation could be 
significant for describing four w-o-m processes circulating in a 
social network. For example, when two opposing information 
appear at the same time, both of them have a special meaning in 
the public eye. But high degree means the one can get informa-
tion more, easier and more quickly (Christley, 2005), to get the 
reality and choose which information to believe. 

Finally, we outline a study which is close to our work in the 
sense that two rumor types spread through the network. Namely, 
in (Goldenberg, 2007), Goldenberg investigated the effects of 
both positive and negative w-o-m on a firm’s profits. In this study, 
negative w-o-m is limited to traveling two hops away from its 
source. Trpevski (Trpevski, 2010) made an advance to investi-
gate both rumor types with different probabilities of acceptance. 
In this study, rumor 1 is limited to be considered first. In our 
model, both rumors can be selected by different types of nodes. 

We structure the paper as follows. After defining the model 
fully, we analyze the stability of its dynamics in Rumor 
Spreading Model. In Behavior of the Model on Small-World 
Network we describe the behavior of the model on NW 
small-world topology and confirm, via further analysis and 
dissemination simulations, a number of our calculations. We 
offer some concluding remarks and points out potential re-
search directions in Conclusions and Discussion. 

Rumor Spreading Model 

Definition of the Model *This work was supported in part by the National Natural Science Founda-
tion of China under Grant 91024030 (Modeling crowd psychology and 
behaviors based on multi-agent theory for commonality secure). Consider a clustered populations composed by N individuals, 
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connected by a interaction structure which is represented by 
graph G = (V, E), with V and E denote the node and the edges, 
respectively. A denotes the adjacency matrix of the graph G, 
and aij = 1 if  ,i j E  and aij = 0 otherwise. Our model is a 
discrete stochastic model, describing rumor spreading in a 
small-world network. There are two different types of rumor 
(rumor 1 and rumor 2) spreading from two different sources. At 
time k, each node I only adopts one of three possible states: 1, 2, 
and 3. The state of the node is indicated by a status vector, 

       1 2 3 , 1, , .
T

i i i is k s k s k s k i N      

State 1 or 2 signifies that there is a adopter or spreader of 
rumor 1 or 2. A node being in state 3 indicates it is a neutral in 
relation to the two rumors. Every status vector above is com-
prised by two sub-states, which denote the degree of nodes. 
Suppose  1j

is k  or  2j
is k  (j = 1, 2, 3) be the status vector 

of node i, signifying it is a high-degree or low-degree node in 
state j. The state of node i becomes  

     1 11 12,i i is k s k s k    , 

     2 21 22,i i is k s k s k    ,  

     3 31 32,i i is k s k s k    ,  

i.e.,      1 2,j j j
i i is k s k s k    (j = 1, 2, 3). 

Let                    31 31 3
i ik s k s k  ,  

       32 32 3 321i ik s k s k k      

be the fraction of nodes with high or low degree in state 3, with  

 31

i 1

N

i is k d


 , 

di = 1 if degreei ≥ m0, otherwise, di = 0. The critical degree m0, 
distinguishing the high-degree nodes from low-degree nodes, is 
defined according to special situation. In a given network, both 
of the fractions are calculable though simulation. In order to 
facilitate the mathematical analysis, we rewrite  31 k  and 

 32 k  as  k  and .  1 k 
Suppose the probability mass function of node i is  

       1 2 3, ,i i i ip k p k p k p k     

at time k. For every node i it states the probability of being in 
each potential state at time k. Then the dynamics equations of 
each node, i.e., the evolution of the model can be defined as 

        1 31 32 1
11 1i i i i i i ip k s k f s k g f a s k       

        2 31 32 2
21 1i i i i i i ip k s k f g s k g a s     k  

 

       

       

           

3

31 32

1 2
1 2

3 1
1 2

1

1 1 1 1

1 1

1 1 1 1

i

i i i i i i

i i

i i i i i

p k

s k f g s k g f

a s k a s k

2s k f g a s k a s



     

   

       k

 (1) 

   1 MultiRealize 1T T
i is k p k      

So, Equation (1) could be 

          
 

1 3 3

1
1

1 1

,

i i i i

i

p k k s k f k s k g f

a s k

         


1 i i
 

            2 3 3
21 1 1i i i i i ip k k s k f g k s k g a s k          

2
i

 
           
         
           

3

3 3

1 2
1 2

3 1
1 2

1

1 1 1 1

1 1 1

1 1 1 1

i

i i i i i

i i i

i i i i i

p k

k s k f g k s k g

f a s k a s k
2s k f g a s k a s k



       

    

      

    (2) 

   1 MultiRealize 1J J
i is k p k     . 

Here, MultiRealize[·] performs the realization for probability 
distribution given with  1J

ip k  ，a1 and a2 are parameters 
(  1 2, 0,a a 

N

1 ). We define fi and gi as 

   1

1

1 1i i
j

j jf k s


k     ,    2

1

1 1
N

i i
j

j jg k s


      k . 

(3) 

In Equation (3), β and γ are parameters ( ). If a2 = 0, γ 
= 0, 

, [0,1] 
  1k   and no node in status 2 initially, a discrete stochas-

tic SIS model can be obtained as a special case of our model. Then 
Status 1 and status 3 is the infective or susceptible state respec-
tively, with the curing rate being  (Trpevski, 2010).  1

The degree-related preference mechanism of spreading is the 
following. All nodes in status 1 try to spread rumor 1 to all of 
their neighbors at time k, with probability β and the transmittals 
are independent of other. All nodes in status 2 also send rumor 
2 to all of their neighbors with probability γ. Therefore, fi and gi 
are the probabilities that node i receives rumor 1 or rumor 2 
from its neighbor supporting rumors 1 or 2, accordingly. How-
ever, note from the formulation of Equation (2) that node i with 
high degree will become an adopter of rumor 2 at (k + 1) only if, 
at time k, it does not receive a rumor 1 from its neighbors, or 
node i with low degree will become an adopter of rumor 1 at (k 
+ 1) only if, it does not receive rumor 2. More precisely, the 
probability of high-degree nodes converting from an undecided 
status 3 to status 1 is not fi, but multiplied by (1 − gi) which in 
general is smaller than 1. Conversely, node i with high degree 
can become an adopter of rumor 1 regardless of whether it re-
ceives rumor 2 or not. It is the same to nodes with low-degree 
nodes. In this way, our model has performed two preferences in 
each node for the rumor 1 and 2. Additionally, after supporting 
a particular kind of rumor, the nodes in state 1 or 2 continue to 
reserve their status with a rate of a1 or a2, respectively, i.e., they 
convert back to status 3 at a rate of (1 − a1) or (1 − a2). Hence, 
parameters a1 and a2 signify the remembrance rate of each ru-
mor, or how long nodes want to support the adopted rumor 
before abandoning it and converting back to undecided status 
(see Figure 1). 

1 a  

Our model is potentially suitable for a number of real-world 
situations. In a structured organization, when a grave even 
happened, managers with high degree, having more number of 
contacts with different people and shorter path between other 
individuals, can get more information about the reality and 
adopt a kind of information. However, employees with low 
degree, can not get the first hand information, and would like to 
support an opposing rumor. In marketing circumstances, one 

Copyright © 2012 SciRes. 478 



Z. ZHU  ET  AL. 

can imagine two products competing for the market share with 
similar customer orientation. Therefore, it is safe to use our 
model to simulate the spread of word-of-mouth about two op-
posing information from different spreader, or two different 
products. 

Suppose the total number of nodes in statuses 1, 2, and 3 at 
time k, be 

   1

1

N

i
i

X k s


  k , 

   2

1

N

i
i

Y k s k


  

and 

       3
1 2

1

N

i
i

Z k s k Z k Z


   k   

respectively. Suppose the number of high degree and low de-
gree nodes in stratus 3 be 

   1
1

1

N
j

j i
i

Z k s


 k , 

   2
2

1

N
j

j i
i

Z k s


 k , (j = 1, 2, 3), 

respectively. Suppose  1N E X     , , and   2N E Y    

 3 31 32N E Z N N       , 

 1 1j jN E Z    , 

 2 2j jN E Z   , (j = 1, 2, 3). 

The object of interest is the average number of nodes that 
eventually (when ) support statuses 1 and 2, N1, N2, N3, 
Nj1 and Nj2, (j = 1, 2, 3),compared to the total number of nodes 
N and N3, respectively, in the network. 

k 

In order to facilitate the mathematical analysis, we rewrite 
our model as 

           
 

1 3 3

1
1

1 1i i i i

i

p k k p k f k p k g f

a p k

      



1 i i
 

           

 

2 3

2
2

1 1 1i i i i

i

p k k p k f g k p k g

a p k

      



3
i i

  (4) 

         

   

3 3
1

2
2

1 1 1 1

1

i i i i

i

p k p k f g a p k

a p k

     

 

1
i

 

And fi, gi and  k  as 

   1

1

1 1
N

i i
j

j jf k a


     p k

ij j

  

   2

1

1 1
N

i
j

g k a p


k                (5) 

   
 

31

3
i

i

s k
k

s k
   

11
is

12
is

1
is

21
is

22
is

2
is

31
is

32
is

3
is1a

11 a

2a

21 a

if

(1 )i ig f

ig

(1 )i if g
 

Figure 1.  
The model of rumor spreading with degree-related preference mecha-
nism. 
 

Equivalently N1, N2, N3, Nj1 and Nj2, (j = 1, 2, 3), can be com-
puted with Equation (3) as  

 1
1

1
i

i

N p


N

  ,  2
2 i

i

N p
1

N



  ,  3
3 iN p  ,  

1

N

i

  1
1

1

N
j j

i

N k p


j i   ,  

    1
2

1

1
N

j j
j i

i

N k p


    , (j  2, 3). 

Dynamical Systems Approach 

To simulate our model better, we adopt a dynamical systems 
e the probabilities for the 

ation (4) with 

= 1,

approach to the model. We replac
node i to support rumor 1 and 2 in Equ 1

i ix p  
and 2

i iy p , respectively. The evolution of our model can be 
rewritten as 

         

 

1
11 1 1 1

1

i i i i i

i i        2
21 1

i

i i i i

x k x k y k g f a x k

y k

              

 
 (6) 

x k y k f g a y k       

and  

j j   
1

1 1
N

i i
j

f k a


      x k

j j   2

1

1 1
N

i i
j

g k a


      y k           (7)  

   
 

31

3
i

i

s k
k

s k
   

Equation (6) denotes a nonlinear dynamical system 
F: [0, 1]2N → [0, 1]2N. Since xi and yi  probabilities, and as-
suming that the corresponding graph is connected, then the 
er  guaran-

are

godicity of the Markov chain of the whole system is
teed, if 1 2, 1, , 1a a    . 

Therefore, when condition (8) is satisfied, dynamical system 
(6) has a unique globally stable fixed point. System (6) has a 
fixed point all i. 

Chakr
at (xi, yi) = (0, 0) for 

abarti and Draief etc have already been proved the ex-  
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istence of a network threshold 1   in several epidemiological 
models of virus spreading e.g. SIS model and SIR model 
(Chakrabarti, 2008; Draief, 2008). This threshold value is a 
critical point in the system dynamics, and is not related to node 
specific thresholds in the class of threshold models. We follow 
this idea, adopt the Jacobian matrix of system (6) to evaluate 
the local stability of the fixed point, and the result proved the 
threshold of our model is 1  . 

Behavior of the Model on Small-World Network 

We now investigate th l behavior for small-world 
network topologies. Small-worl

e mode
d characteristics have been 

w

in

testified in many real world networks and social networks. We 
use the NW model (Newman, 1999) for generating the net-

orks. According to the algorithm, we generate a ring lattice, 
where each node has K neighbors, K/2 in the clockwise, and 
K/2 in the anticlockwise direction. Each edge is added with 
probability , forbidding self-loops or multiple edges between 
nodes. Additionally, all experiments start with one node in 
status 1 and one in status 2, which can change their status as 
time progresses. Moreover, in most of experiments rumor 1 and 
2 are nearly equal, so as to observe their spread in the networks.  

Figure 2 depicts the steady-state behavior of our model 
when the rewiring parameter  is changed. The results are 
shown for networks of two different sizes with the same clus-
tering coefficient of the initial ring lattice. The fraction of nodes 

 each status is given, as well as the fraction of nodes with 
high degree in state j, (j = 1, 2, 3), normalized by  1j k , re-
spectively. 
 

a1 = 0.5, a2 = 0.5 
β = 0.3, γ = 0.4 
N = 100, K = 4 
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s1
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(b) 

Figure 2.  
The final-state behavior of the model for different values of . Th
parameters include the fraction of nodes in each status and normaliz  
clustering coefficient. (a) Results obtained from 100 nodes network 

for each , run for k = 500 time units; (b) Results obtained 
odes network realizations run for k = 1000 time units. 

e 
ed
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Figure 3. 
The final-state behavior of the model for networks generated with the 
NW small-world algorithm, using a starting ring lattice with 1000 
nodes and K = 10. 

 
tly, the results are the same due to the same level of 

liquishness of the environment enables rumor 
1 

both of which are always preferred by a 
given populat umors are 
spreading thro h every node 
is

Eviden
clustering in the networks. Furthermore, for the particular val-
ues of the model parameters, status 1 and 2 also present a fixed 
pr portion. The co

to occupy a majority of high-degree nodes. However, as the 
networks become increasingly random, status 2 expanded 
mostly at the expense of status 1. The high degree clustering in 
the small-world networks undermines the spreading of the ru-
mor 1. 

Moreover, if the level of clustering in the networks is lower, 
i.e., the cliquish neighborhoods are less, as in Figure 3, then 
status 2 is the main remaining status, even if the parameters of 
rumor 1 are much higher than those of rumor 2. The low clus- 
tering of the networks acts to strengthen the influence of status 2.  

In conclusion, few neighborhoods in a small-world network 
disable the influence of the preferred rumor 1, and strengthen-
ing the spread of rumor 2. Rumor 1 is also easy to spread 
through many long-range connections, quickly spreading the 
rumor. While, Rumor 2 could only be the main status if a 
small-world network does not have large highly connected 
groups of nodes. 

Conclusion and Discussion 

In conclusion, we present a model of two rumors’ spread-
ing in this paper, 

ion in a network. In this model, r
ugh small-world networks, in whic

 classified into two kinds: high-degree and low-degree. And 
each node has one of three potential states: 1, 2 and 3, corre- 
sponding to supporter of rumor 1 or 2 and neutral. Our model 
follows the idea of SIS model, and can be reduced to it when 
some key parameters are changed. This model also has an 
intrinsic propagating threshold 1   for rumor spreading, 
where λ is the largest given value of adjacency matrix A, as 
previous studies proved. There is also a unique stable fixed 
point for our model, implying the choice of starting rumor 1 
and 2 supporters. 

We also present the preference of rumor 1 or 2 when the dis-
tribution degree of nodes is even enough and/or when the net-
work does not contain large clustered groups of nodes. This is 
preformed in the model behavior on NW small-world network. 
The number of nodes supporting rumor 1 and 2 is well ap-
proximated, which is similar in BA networks as the critical 
degree m0 is increased. 
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