锦屏二级水电站大理岩不同应力路径下 加卸载试验研究

李新平1,肖桃李1,2,汪 斌1,3,徐鹏程1,4

(1. 武汉理工大学 道路桥梁与结构工程重点实验室,湖北 武汉 430070; 2. 长江大学 城市建设学院,湖北 荆州 434023;
3. 长江水利委员会 长江勘察规划设计研究院,湖北 武汉 430010; 4. 中国水利水电建设股份有限公司,北京 100048)

摘要:针对锦屏二级水电站引水隧洞赋存于高地应力环境的特点,对隧洞内的大理岩开展常规三轴压缩试验及峰 前、峰后卸围压试验,通过试验数据对比分析,研究大理岩的强度变形特征及破裂机制。主要研究成果:(1)大 理岩峰值强度与实时围压关系密切,应力路径不同、实时围压相同时,峰值强度相同。(2)围压效应明显,峰值 强度随初始围压增加而增加;相比三轴加载试验,峰前卸围压试验峰值强度降低约 19.5%,峰后卸围压试验规律 不明显, 而峰后卸围压试验达到峰值强度时的围压值约占初始围压值的 97.2%, 峰前卸围压试验结果较离散。(3) 相比三轴加载试验,峰前卸围压试验 c 值降低约 27.5%, φ值提高约 22.6%,而与此相反,峰后卸围压试验 c 值 增加约13.7%, φ值降低约6.5%,表明大理岩抗破裂的主控因素峰前卸围压试验由摩擦力控制,峰后卸围压试验 由黏聚力控制。(4) 峰后卸围压试验自卸荷点开始出现明显的应变平台,表现为理想塑性变形。(5) 峰前卸围压试 验的体积应变自卸荷点开始出现明显的转折点。(6) 三轴压缩试验和峰后卸围压试验,大理岩的破坏模式主要为 单一剪切破坏,随着围压增加,剪切破裂面端口的粗糙程度降低;峰前卸围压试验的破坏模式为:低围压时的劈 裂破坏~中等围压时的"X"型共轭剪切破坏~高围压时的单一剪切破坏。这些研究结论揭示了锦屏大理岩加、 卸载应力路径下的力学特性差异,可为西部深埋引水隧洞的开挖、支护设计及稳定性分析提供理论参考。 关键词:岩石力学;大理岩;卸荷试验;强度参数;变形特征;破裂机制 **中图分类号:** TU 45 **文献标识码:** A **文章编号:** 1000 - 6915(2012)05 - 0882 - 08

EXPERIMENTAL STUDY OF JINPING II HYDROPOWER STATION MARBLE UNDER LOADING AND UNLOADING STRESS PATHS

LI Xinping¹, XIAO Taoli^{1, 2}, WANG Bin^{1, 3}, XU Pengcheng^{1, 4}

 (1. Key Laboratory of Roadway Bridge and Structure Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China;
 2. School of Urban Construction, Yangtze University, Jingzhou, Hubei 434023, China; 3. Changjiang Institute of Survey, Planning, Design and Research, Changjiang Water Resources Commission, Wuhan, Hubei 430010, China;
 4. Sinohydro Group Ltd., Beijing 100048, China)

Abstract: In light of that the surrounding rock mass of diversion tunnel group of Jinping II hydropower station lies in the condition of high geostress, two different unloading tests of marble from the diversion tunnel were carried out. In order to analyze rock strength characteristics, deformation behavior and fracture mechanism under different stress paths, the conventional triaxial compression tests of marble were also performed. The results show that: (1) Even if the stress path and initial confining pressure are different, but as long as the real-time confining

作者简介: 李新平(1963 -),男,博士,1983 年毕业于武汉钢铁学院采矿工程专业,现任教授、博士生导师,主要从事岩土工程、爆破工程方面的教 学与研究工作。E-mail: xinpingli@whut.edu.cn

收稿日期: 2011 - 11 - 10; 修回日期: 2012 - 02 - 24

基金项目: 国家自然科学基金资助项目(50974100, 41102182); 三峡库区地质灾害教育部重点实验室开放基金项目(2008KDZ08)

pressure is the same, the peak strength is equal. (2) The peak strength increases as the initial confining pressure increases. Comparing with triaxial compression test, it decreases by 19.5% of unloading confining pressure at pre-peak, and the peak strength appears when the real-time confining pressure accounts for about 97.2% of the initial confining pressure during the post-peak test. (3) The cohesion *c* decreases and the internal friction angle φ increases at pre-peak test, compared with the post-tests. The value of *c* decreases about 27.5% and φ increases about 22.6% at pre-peak test, but the value of *c* increases about 13.7% and φ decreases about 6.5% at pre-peak test. (4) From the unloading point to strain softening stage, the stress-strain curves have obvious strain platforms, which is the characteristics of the ideal plastic deformation. The strain platform increases with the confining pressure increases. (5) The unloading confining pressure test at pre-peak shows that the marble expansion is limited. (6) The fracture mode is mainly the single shear fracture for the triaxial compression test and post-peak test; and the fracture mode of the pre-peak test is the splitting failure—X conjugate shear rupture—single shear fracture as the confining pressure increases. These conclusions reveal the loading and unloading mechanical properties of marble under high geostress and provide reliable theoretical reference for the numerical simulation about excavation and design for the stability analysis of deep diversion tunnels in West China.

Key words: rock mechanics; marble; unloading test; strength parameters; deformation feature; fracture mechanism

1 引 言

21 世纪以来,随着我国国民经济建设的迅猛 发展,基本建设规模的不断扩大,基础建设在向空 间发展的同时,地下资源和空间的开发也在不断走 向深部,地下岩体工程的高应力特征也越来越显著。 地下岩体工程的开挖,从力学本质来说,主要是卸 荷行为,岩体在卸载和加载条件下的力学性质有着 本质的区别^[1]。

目前在建的锦屏二级水电站引水隧洞实测最大 地应力为 42~46 MPa, 预计最大埋深处地应力为 70 MPa,最大外水压力为 10.2 MPa^[2]。近年来,针 对锦屏水电站高地应力特点开展的加卸载试验研究 取得了较大的进展^[2-6]。汪 斌等^[2]进行了常规三轴 压缩试验和峰前、峰后卸围压试验,认为大理岩峰 前卸围压试验的围压效应最明显,峰前、峰后卸围 压c值均降低,而内摩擦角 ϕ 值则均增加。黄润秋 和黄 达^[3]通过室内三轴卸荷试验和破裂断口SEM 细观扫描,研究高应力环境中不同卸荷速率对大理 岩的变形破裂及强度特征的影响,得出的结论为: 卸荷速率和初始围压越大, 岩石脆性及张性断裂特 征愈明显, 卸荷条件下岩体的c 值大大减小, 而 ρ 值 却有较少增大。李宏哲等^[4]认为,大理岩体积变形 几乎按照侧向变形的规律增大,峰前卸荷条件下抗剪 强度参数c值比加载条件下低 14%,而ø值比加载 条件下高 23%。刘豆豆^[5]的研究表明,无论是峰前 还是峰后卸围压,试样都表现出脆性破坏的特征,

试样破坏峰前卸围压比峰后卸围压更为强烈;试样 在加、卸载件下的变形均随主应力差的增大而增 大,但在相同的主应力差下,卸载产生的扩容量比 加载的扩容量更大;峰前卸围压试验当围压卸到初 始围压值 60%左右时,试样发生破坏;峰后卸围压 试验当围压卸到初始围压 80%左右时,试样发生 破坏。高春玉等^[6]根据升轴压、降围压的峰前卸围 压试验,认为卸荷导致*c*值大幅减小而*φ*值略有增 加。

此外, J. L. LI等^[7]对具有水平层状和竖向层状 的砂岩进行的加卸载试验表明,相比加载试验而 言, 卸荷试验时水平层状砂岩的c值增加而 φ 值降 低,而竖向层状的c, φ 值变化则与水平层状刚好 相反; 张黎明等^[8]对粉砂岩试样进行了常规三轴加 载后保持轴向变形不变的峰前、峰后卸围压试验, 并对试样破坏特征、强度和变形特性进行了定性分 析; 黄润秋和黄 达^[9]基于岩石试样的卸荷试验, 认为相对于加载试验,卸荷岩石的c值减小而 ϕ 值增 大; 吕颖慧等^[10]对取自大渡河大岗山水电站的花岗 岩开展高应力下 2 种卸荷方案的力学特性试验研 究,认为岩石卸荷过程中向卸荷方向回弹变形强 烈、扩容显著, 脆性破坏特征明显, 相比较于常规 三轴压缩试验,卸荷时的抗剪强度参数c值减小而 φ值增大; 刘 建和李建朋^[11]对采自重庆鱼嘴的砂 岩开展保持轴压不变峰前卸围压试验,从偏应力变 化量角度证明卸荷应力路径更容易引起砂岩试样的 破坏,卸荷条件下的抗剪强度参数c值比加载条件 下低 1.2%, φ 值则高 4.8%。

认真总结近几年来针对高地应力岩石的加卸载 室内试验成果,主要存在以下几种趋势:(1)对初 始围压效应研究^[2-3, 5, 7-8]较多,而缺乏对实时围压 效应的研究;(2)开展峰前卸围压试验较多,成果 也丰富^[2, 4, 6, 9-11],而峰后卸围压试验的研究相对较 少;(3)对试样变形特性的定性分析^[2-3, 5, 11]多,定 量分析少。

本文对采自锦屏二级水电站引水隧洞的大理岩 试样开展了不同围压(20,40,60 MPa)下的保持轴 压不变峰前、峰后卸围压试验,并与同围压下的常 规三轴试验结果进行对比分析,研究大理岩加、卸 荷过程中的强度特征、变形特性及破坏形态,揭示 了高应力条件下锦屏大理岩的特有力学特性,为深 部地下工程的开挖、支护设计及其稳定性分析提供 理论参考。

2 试验方案

2.1 试验条件

试验在山东科技大学 MTS815.03 电液伺服岩 石试验机上进行,采取全程微机控制,围压采用应 力控制,轴压采用位移控制。试样取自锦屏二级水 电站引水隧洞,埋深约为2 100 m,岩层为厚层状 白山组(T_{2b})大理岩,岩体完整,未见明显结构面或 溶蚀裂隙。试样尺寸为¢50 mm×100 mm。试样烘干 密度为 2.70 g/cm³,弹性模量为 24.13 GPa,泊松比 为 0.282,单轴抗压强度为 199.20 MPa。

2.2 试验应力路径

岩体处于空间三向应力状态中,开挖方式不同, 三向应力的重分布会有多种组合。围岩应力的变化 是一种复杂的三维加、卸载变化过程。围压 σ_3 不变, 通过增加轴向应力 σ_1 来增加主应力差($\sigma_1 - \sigma_3$)使 试样破坏即为加载试验,或者保持轴向应力 σ_1 不 变,而减小围压 σ_3 来增加偏应力,同样可以使得试 样破坏,此种应力路径即为卸荷试验,其更接近实 际的岩体开挖工程。

2.3 试验方案

为研究大理岩卸荷路径下的变形和破坏特征并 与常规三轴压缩路径对比分析,设计了3组典型试 验方案。定义: σ_0 为卸围压试验设计的初始围压, σ_3 为试验过程的实时围压,峰值强度指应力 - 应变 曲线中主应力差($\sigma_1 - \sigma_3$)的极大值,强度比为卸围 压试验的峰值强度与三轴压缩试样的峰值强度的百 分比,围压比为卸围压试验实时围压与初始围压的 百分比。

(1) 方案 I(常规三轴压缩试验)

为了设计后续卸荷试验方案的卸荷点、应力水 平及与其变形、强度成果对比分析,首先进行了常 围压三轴全过程试验,其围压的设计水平分别为 10,20,30,40,50,60,70 MPa,试验程序按规 程规定进行,此处不再赘述。

(2) 方案 II(峰前恒轴压卸围压试验)

试验分 4 个阶段:① 施加一定的预加载使试样 在上下压头之间充分固定,然后以 0.1 MPa/s 的速 率手动施加围压至预定的初始围压值 σ_0 (分别为 20,40,60 MPa);② 稳定 σ_0 ,逐步增加 σ_1 至试 样破坏前的某一应力状态(即临界卸荷点),临界卸 荷点根据方案 I 的成果,按峰值强度的 75%确定; ③ 保持 σ_1 恒定的同时以 0.05 MPa/s 的速率逐渐降 低 σ_3 直到试样破坏;④ 继续以轴向位移控制施加应 力直至应力差 ($\sigma_1 - \sigma_3$)不随轴向应变的增加而降低 时结束试验。

(3) 方案 III(峰后恒轴压卸围压试验)

该试验方案分 3 个阶段:① 同方案 II 的第① 阶段;② 稳定 σ_0 ,逐步增高 σ_1 至试样的屈服极限, 屈服极限根据方案 I 及试验实时曲线形态确定,一 旦实时曲线接近方案 I 的峰值强度并出现软化趋势,即停止施加 σ_1 ,此阶段关键在于能否有效确定 卸荷点,使曲线顺利越过峰值进入软化阶段;③ 保 持 σ_1 恒定的同时逐渐缓慢降低 σ_3 直到试样破坏。

3 强度特性分析

3.1 峰值强度分析

将试验中不同应力路径的峰值强度与围压关系 进行统计,结果见图1,2及表1。

Fig.1 Relationships between peak strength and initial confining pressure of marble

Fig.2 Relationship between peak strength and real-time confining pressure of marble

表 1	大理岩峰值强度与围压关系

 Table 1
 Relationship between peak strength and confining pressure of marble

初始围压 σ_0 /MPa	试验方案 编号	峰值强度/ MPa	强度比/ %	实时围压/ MPa	围压比/%
20	Ι	292.04		20.00	
	II	234.46	80.3	5.61	28.1
	III	302.88	103.7	19.46	97.3
40	Ι	358.49		40.00	
	II	287.81	80.3	19.07	47.7
	III	359.93	100.4	38.86	97.2
60	Ι	404.96		60.00	
	II	327.72	80.9	23.73	39.6
	III	406.13	100.3	58.24	97.1

图 1 表明,试样的峰值强度对围压敏感,3 种 试验方案数据的线性拟合表明,3 种方案的线性相 关系数均达到 0.99 以上,说明不管是常规三轴压缩 试验,还是峰前或峰后卸围压试验,随着初始围压 的增加,试样的峰值强度呈现良好的线性增加;而 把试样在不同应力路径下的峰值强度与该强度对应 的围压进行统计分析。图 2 表明,即使应力路径不 同、初始围压不同,一旦试验中的围压相近,试样 的峰值强度大小也呈现大致相等的趋势。

图 1 及表 1 研究表明,相比常规三轴压缩试验, 试样的峰前卸围压试验导致峰值强度降低了约 19.5%,而峰后卸围压试验对峰值强度的影响不大; 卸围压试验峰值强度对应的围压,峰前卸围压试验 表现出较大的随机性,而峰后卸围压试验达到峰值 强度时对应的围压值约占初始围压值的 97.2%。

为进一步分析峰前卸围压试验与峰后卸围压试 验对试样强度的影响,引入卸荷点与卸荷比的概念。 卸荷点表示卸围压试验中卸围压开始时对应的偏应 力强度与常规三轴压缩试验偏应力峰值强度之比, 卸荷比表示卸围压开始时对应的偏应力强度与卸荷 试验偏应力峰值强度之比,图3给出了卸围压试验 卸荷点与卸荷比关系,图中曲线表明,峰前卸荷点 约0.75,卸荷比约0.92,峰后卸荷点约1.00,卸荷 比1.00左右,峰前卸围压比峰后卸围压曲线陡峻, 说明峰前卸围压吸收的能量远大于峰后卸围压试 验,造成这一现象的原因是:在卸荷点的应力状态 下,试件内部均有裂纹损伤存在。峰前卸围压时, 裂纹损伤较小,塑性变形少,试样破坏必须吸收足 够的能量,故峰前卸围压试样破坏剧烈;而峰后卸 围压时,岩石已经经历了屈服变形阶段,有了较大 的塑性变形,且微裂纹趋于贯通,试样已经吸收了 一定的弹性变形能,继续卸围压时,试样达到完全 破坏吸收的能量就较少,试样破坏相对平缓。

3.2 强度参数分析

研究表明,岩石的强度不仅与其赋存的地质环 境有关^[12],而且还与其加、卸载的速率有关^[13-15], Mohr-Coulomb(简称M-C)强度准则是岩土工程中应 用最广泛的强度准则之一,汪 斌等^[2, 10]在分析 中亦多采用,M-C强度准则的表达式^[16]为

$$\tau = c + \sigma \tan \varphi \tag{1}$$

式中: τ , σ 分别为剪切破坏面上的剪应力与正应力。对于三轴试验, σ , τ 可分别表示为

$$\sigma = \frac{1}{2}(\sigma_1 + \sigma_3) + \frac{1}{2}(\sigma_1 - \sigma_3)\cos(2\varphi)$$

$$\tau = \frac{1}{2}(\sigma_1 - \sigma_3)\sin(2\varphi)$$
(2)

除此之外,为减小人为因素的影响,利用三轴 试验的结果,在 σ_1 - σ_3 曲线上取最佳直线段可拟合 为下列线性关系式:

$$\sigma_1 = m\sigma_3 + b \tag{3}$$

式中: *m*, *b*分别为拟合直线的斜率与截距。由参数 *m*和*b*可确定岩石的内摩擦角和黏聚力分别如下:

$$\varphi = \sin^{-1}[(m-1)/(m+1)]$$
(4)

$$c = \frac{b}{2\sqrt{m}} \tag{5}$$

以表 1 中的试验数据为参考,由式(3)~(5)计算的不同应力路径下大理岩的抗剪强度参数见表 2。

表 2 不同应力路径下大理岩的抗剪强度参数

 Table 2
 Parameters of shear strength of marble under different stress paths

试验 方案 - 编号	M-C 包络线法		σ_1 - σ_3 曲线法		平均值	
	c/MPa	<i>φ</i> /(°)	c/MPa	<i>φ</i> /(°)	c/MPa	<i>φ</i> /(°)
Ι	54.25	38.6	61.13	35.8	57.69	37.2
Π	41.46	46.1	42.16	45.2	41.81	45.6
III	65.60	34.8	65.44	34.8	65.52	34.8

表 2 中列出了 2 种不同方法计算出的抗剪强度 参数,分析可知,方案 I 中 2 种方法的计算结果偏 差较大,方案 II 中 2 种方法的计算结果基本吻合, 方案 III 中 2 种方法的计算结果则非常接近。由此可 见,卸围压试验可以选择 M-C 包络线法或 σ_1 - σ_3 曲 线法进行岩石 c, φ 值计算,而常规三轴压缩试验 时, c, φ 值的计算建议取 2 种方法的平均值。

对于不同的应力路径,显然,无论是 M-C 包络 线法,还是 σ_1 - σ_3 曲线法,卸荷路径与加载路径得 出的试样强度参数不同,相比常规三轴压缩试验而 言,峰前卸围压试验黏聚力c值降低约 27.5%,内 摩擦角 φ 值增加约 22.6%, 而峰后卸围压试验黏聚 力 c 值则增加约 13.7%,内摩擦角 φ 值降低约 6.5%, 峰前卸围压试验与峰后卸围压试验对大理岩的强度 参数呈现正好相反的影响。究其原因可以理解为: 峰前卸围压时大理岩处于屈服变形的初级阶段,塑 性变形较小,岩石刚开始起裂,破裂面由岩石的黏 聚力与摩擦力共同控制,当围压降低时,岩石破裂 加剧,塑性变形激增,裂纹沿着起裂角快速扩展, 此时岩石抗破裂主控因素为摩擦力的大小,因此, 黏聚力影响降低,而摩擦力影响增强。相对而言, 峰后卸围压时,岩石已经经历了屈服变形阶段,有 了一定塑性变形,而且微裂纹趋于贯通,基本形成 贯通的细观断裂面,仅由于黏聚力的作用而没有完 全开裂,峰后卸围压时,岩石抗破裂的主控因素则 由黏聚力承担,因此黏聚力影响增加而摩擦力影响 降低。

4 变形特性分析

图 4,5 分别给出了不同应力路径下大理岩主应 力差 - 应变(轴向应变 ε_1 ,侧向应变 ε_3)和主应力 差 - 体积应变(ε_4)的关系曲线。

分析图 4 可知: (1) 相同的初始围压下,峰前 卸围压试验的峰值应变(峰值强度对应的应变值)最 小,峰后卸围压试验与三轴压缩试验的峰值应变基 本相当,自屈服点开始,侧向应变 ε_3 急剧增大,明 显大于轴向应变增长速率,约为轴向应变 ε_1 增长速 率的 2 倍,表现为明显的侧向扩容; (2) 相同的初

始围压下,试样破坏前的 ε_1 , ε_3 曲线,三轴压缩试 验较平滑,而卸围压试验自卸荷点开始, ε_1 , ε_3 曲 线变化平缓,出现明显的应变平台,表现为理想塑 性;(3)随着初始围压的增加,峰后卸围压试验 ε_1 , ε_3 应变平台增宽;20 MPa围压时,峰后卸围压试验 的塑性变形小于三轴加载试验的塑性变形,而 60 MPa围压时,峰后卸围压试验的塑性变形,而 60 MPa围压时,峰后卸围压试验的塑性变形,面 50 处于三轴加载试验的塑性变形,峰后卸围压试验的 变形特性表现出低围压下的脆性向高围压下的理想 塑性转换特征;(4)峰前卸围压试验,初始围压从 20 MPa增至 40 MPa时,轴向应变 ε_1 的破坏应变(即试 样破坏对应的应变值)从12.67×10⁻³增至19.26×10 ⁻³,增幅约 52.0%,侧向应变 ε_3 的破坏应变从 -13.80×10⁻³增至-23.24×10⁻³,增幅约 68.4%;当初 始围压自 40 MPa增至 60 MPa时,轴向应变 ε_1 的破坏 应变为 19.91×10⁻³,增幅约 3.4%,侧向应变 ε_3 的破 坏应变为 25.10×10⁻³,增幅约 8.0%。以上数据表明: 初始围压相同时,侧向破坏应变 ε_3 大于轴向破坏应 变 ε_1 ,扩容特征明显,初始围压不同时, ε_3 增幅大 于 ε_1 增幅也验证了岩石扩容的性质;当初始围压等 比增加,无论是 ε_1 还是 ε_3 ,其增幅则呈现急剧减小 趋势,表明峰前卸围压试验岩石的扩容是有限的。

分析图 5 可以发现: (1) 峰前卸围压试验,自 卸荷点开始体积应变 ε_v 出现明显的应变转折点,而 三轴压缩试验与峰后卸荷试验则无此现象; (2) 以 岩石开始扩容至破坏的体积应变量作为扩容量,相 同的初始围压时,低围压(20 MPa)阶段三轴压缩试 验的扩容量最大,峰前卸围压次之,峰后卸围压试 验的扩容量最小,中高等围压(40,60 MPa)时,峰 后卸围压试验的扩容量最大,三轴压缩试验次之,峰 后卸围压试验的扩容量最大,三轴压缩试验次之,峰 后卸围压试验的扩容量最小; (3) 随着围压的增大, 不同应力路径的体积应变 ε_v 曲线越接近于水平,且 应变平台逐渐增宽,说明围压越大,岩石的脆性越 不明显。

5 破坏特征分析

图 6 给出了大理岩典型破坏形态。无论三轴压 缩的加载破坏试验还是峰前、峰后卸围压的卸载破 坏试验,试样破坏都是随着一声清脆"砰"的响声 发生的,表现出了典型的脆性破坏特征。试样破坏 时均呈现微鼓状,产生了很明显的横向扩容现象。

对比分析图 6 中 3 种不同试验方案的破坏形态

围压 20 MPa 围压 40 MPa (a) 方案 I 围压 60 MPa

可以看出,三轴压缩试验和峰后卸围压试验的试样 破坏基本为宏观单一破坏断面的剪切破坏,低围压 (20 MPa)时,试样的宏观破裂面延伸至试样的两端, 破裂面较粗糙,随着围压的增大,试样的主破裂面 趋于平整, 主破裂面从端面向侧面发展; 峰前卸载 试验破坏形态则较复杂,而且破坏程度更为剧烈, 主破裂面外还伴随较多的节理、裂纹产生。图 6(b) 中 20 MPa 围压峰前卸载破坏形式基本呈现轴向张 性破裂,各种张裂纹和微张裂纹的强烈发育,张拉 破裂面与 σ ,方向的夹角很小,基本呈近似平行的状 态,破坏后的试样表面剥落严重;图 6(b)中 40 MPa 围压峰前卸载试验出现了较少见的"X"型共轭剪 切破裂,试样表面产生共轭剪切面的同时也伴随有 较多的张性裂纹发育,尤其在共轭剪切带交汇处。 图 6(b)中 60 MPa 围压峰前卸载破坏表现为单个宏 观剪切破裂面。

峰后卸载试验是在试样加载到峰值强度附近后 开始卸围压,更加速了试样的破坏,其卸围压的应 力路径相对较短,故其破坏形态与常规三轴压缩试 验差别不大,主要以单一剪切面破坏为主。

6 结 论

本文对雅砻江锦屏二级水电站引水隧洞深埋大 理岩开展不同应力路径下得室内三轴加、卸载试验 研究,通过对试验数据的对比分析,得到的主要 结论如下:

(1) 大理岩围压效应明显,峰值强度随着围压 增加而线性增加;其峰值强度大小与实时围压关系 密切,应力路径不同、初始围压不同,但实时围压 相近时,峰值强度也大致相等;相比常规三轴压缩 试验,峰前卸围压试验峰值强度降低约 19.5%,峰 后卸围压试验则规律不明显;峰后卸围压试验峰值 强度对应的实时围压值约占初始围压值的 97.2%, 峰前卸围压试验结果较离散。

(2) 卸荷点与卸荷比关系表明:峰前卸围压比 峰后卸围压曲线陡峻,峰前卸围压吸收的能量大于 峰后卸围压试验,造成这一现象的原因是:在卸荷 点的应力状态下,试样内部均有裂纹损伤存在。峰 前卸围压时,裂纹损伤较小,塑性变形少,试样破 坏必须吸收足够的能量,故峰前卸围压试样破坏剧 烈;而峰后卸围压时,岩石已经经历了屈服变形阶 段,有了较大的塑性变形,且微裂纹趋于贯通,试 样已经吸收了一定的弹性变形能,继续卸围压时, 试样达到完全破坏吸收的能量就较少,试样破坏相 对平缓。

(3)相比三轴压缩试验,峰前卸围压试验的c 值降低约 27.5%,φ值提高约 22.6%,而与此相反, 峰后卸围压试验的c值增加约 13.7%,φ值降低约 6.5%,表明大理岩抗破裂的主控因素峰前卸围压试 验由摩擦力控制,峰后卸围压试验则由黏聚力控制。

(4)不考虑试样破坏后应变曲线影响,三轴压 缩试验的应变曲线光滑,卸围压试验的应变曲线自 卸荷点开始出现明显的应变平台,表现为理想塑性 变形;随着围压的增加,峰后卸围压试验的应变平 台增宽,大理岩由低围压的脆性特性向高围压的理 想塑性特性转变,峰前卸围压试验则无此明显规律。

(5) 峰前卸围压试验的体积应变自卸荷点开始 出现明显的转折点,围压增加到一定程度,扩容性 质减弱,扩容量有限,而三轴压缩试验与峰后卸围 压试验的扩容量随着围压的增加而增加。

(6) 三轴压缩试验和峰后卸围压试验,大理岩

的破坏模式主要为单一剪切破坏,随着围压增加, 剪切破裂面端口的粗糙程度降低;峰前卸围压试验 的主控破裂面与围压关系密切,主要破坏模式为: 低围压时的劈裂破坏~中等围压时的"X"型共轭 剪切破坏~高围压时的单一剪切破坏。

参考文献(References):

- [1] 李建林. 卸荷岩体力学[M]. 北京:中国水利水电出版社, 2003: 5-7.(LI Jianlin. Unloading rock mass mechanics[M]. Beijing: China Water Power Press, 2003: 5-7.(in Chinese))
- [2] 汪 斌,朱杰兵,邬爱清,等. 锦屏大理岩加、卸载应力路径下力 学性质试验研究[J]. 岩石力学与工程学报,2008,27(10):2 138-2 145.(WANG Bin, ZHU Jiebing, WU Aiqing, et al. Experimental study of mechanical properties of Jinping marble under loading and unloading stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(10): 2 138 - 2 145.(in Chinese))
- [3] 黄润秋,黄 达. 高地应力条件下卸荷速率对锦屏大理岩力学特性 影响规律试验研究[J]. 岩石力学与工程学报, 2010, 29(1): 21 -33.(HUANG Runqiu, HUANG Da. Experimental research on affection laws of unloading rates on mechanical properties of Jinping marble under high geostress[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(1): 21 - 33.(in Chinese))
- [4] 李宏哲,夏才初,闫子舰,等. 锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J]. 岩石力学与工程学报,2007,26(10):
 2 104 2 109.(LI Hongzhe, XIA Caichu, YAN Zijian, et al. Study of marble unloading mechanical properties of Jinping Hydropower Station under high geostress conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(10): 2 104 2 109.(in Chinese))
- [5] 刘豆豆. 高地应力下岩石卸载破坏机制及其应用研究[博士学位论 文][D]. 济南:山东大学,2008.(LIU Doudou. Research on unloading failure mechanism of rock under high stress and its application[Ph. D. Thesis][D]. Jinan: Shandong University, 2008.(in Chinese))
- [6] 高春玉,徐 进,何 鹏,等.大理岩加卸载力学特性的研究[J]. 岩石力学与工程学报,2005,24(3):456-460.(GAO Chunyu, XU Jin, HE Peng, et al. Study of mechanical properties of marble under loading and unloading conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(3): 456-460.(in Chinese))
- [7] LI J L, WANG L H, WANG X X, et al. Research on unloading nonlinear mechanical characteristics of jointed rock masses[J]. Journal of Rock Mechanics and Engineering, 2010, 2(4): 357 - 364.
- [8] 张黎明,王在泉,宋全锋,等.粉砂岩卸荷破坏全过程的试验
 研究[J].岩石力学与工程学报,2005,24(增1):5043-5047.

(ZHANG Liming, WANG Zaiquan, SONG Quanfeng, et al. Experimental study on the total failure course of silt sand under unloading condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(Supp.1): 5 043 - 5 047.(in Chinese))

- [9] 黄润秋,黄 达. 卸荷条件下花岗岩力学特性试验研究[J]. 岩石力 学与工程学报, 2008, 27(11): 2 205 - 2 213.(HUANG Runqiu, HUANG Da. Experimental research on mechanical properties of granites under unloading condition[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(11): 2 205 - 2 213.(in Chinese))
- [10] 吕颖慧,刘泉声,胡云华. 基于花岗岩卸荷试验的损伤变形特征及 其强度准则[J]. 岩石力学与工程学报,2009,28(10):2096-2102.
 (LU Yinghui, LIU Quansheng, HU Yunhua. Damage deformation characteristics and its strength criterion based on unloading experiments of granites[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(10): 2096-2102.(in Chinese))
- [11] 刘 建,李建朋. 砂岩高应力峰前卸围压试验研究[J]. 岩石力学与 工程学报, 2011, 30(3): 473 - 479.(LIU Jian, LI Jianpeng. Experimental research on sandstone pre-peak unloading process under high confining pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(3): 473 - 479.(in Chinese))
- [12] 周宏伟,谢和平,左建平,等. 赋存深度对岩石力学参数影响的实验研究[J]. 科学通报,2010,55(34):3276-3284.(ZHOU Hongwei, XIE Heping, ZUO Jianping, et al. Experimental study of the effect of depth on mechanical parameters of rock[J]. Chinese Science Bulletin, 2010, 55(34): 3276-3284.(in Chinese))
- [13] OLSSON W A. The compressive strength of tuff as a function of strain rate from 10⁻⁶ to 10³/s[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1991, 28(1): 115 118.
- [14] 鞠庆海,吴绵拨. 岩石材料三轴压缩动力特性的试验研究[J]. 岩土 工程学报, 1993, 15(3): 73 - 80.(JU Qinghai, WU Mianba. Experimental studies of dynamic characteristic of rocks under triaxial compression[J]. Chinese Journal of Geotechnical Engineering, 1993, 15(3): 73 - 80.(in Chinese))
- [15] ZHAO Y H, ZHAO J. Compressive strength of rock material at different strain rates[C]// Proceedings of the International Symposium on Strength Theories' Applications and Developments. Xi'an: [s. n.], 1998: 75 - 429.
- [16] 蔡美峰,何满潮,刘东燕. 岩石力学与工程[M]. 北京:科学出版 社,2002: 219 - 226.(CAI Meifeng, HE Manchao, LIU Dongyan. Rock mechanics and engineering[M]. Beijing: Science Press, 2002: 219 - 226.(in Chinese))