

Environmental Chemistry

Part 3 Hydrospheric Chemistry

3.3 Adsorption and Reaction at Surfaces

Adsorption

Adsorption and Reaction at Surfaces

PHYSISORPTION	CHEMISORPTION	
weak, long range bonding	strong, short range bonding	
van der waals interactions (e.g. london dispersion, dipole-dipole)	chemical bonding involving orbital overlap and charge transfer.	
not surface specific	surface specific	
physisorption takes place between all molecules on any surface providing the temperature is low enough.	e.g. chemisorption of hydrogen takes place on transition metals but not on gold or mercury.	
DH _{ads} = 5 50 kJ mol ⁻¹	DH _{ads} = 50 500 kJ mol ⁻¹	
Non activated with equilibrium achieved relatively quickly. Increasing temperature always reduces surface coverage.	Can be activated, in which case equilibrium can be slow and increasing temperature can favour adsorption.	
No surface reactions.	Surface reactions may take place:- Dissociation, reconstruction, catalysis.	
multilayer adsorption	monolayer adsorption	
bet isotherm used to model adsorption equilibrium.	langmuir isotherm used to model adsorption equilibrium	

Adsorption

- Studies involving the behaviour between solutes & surfaces in solution .
- The process occurs naturally in the environment.(Sediments & Soils)
- A method of the removal of contaminants from gases & liquids using adsorbents primarily activated charcoal.

adsorption isotherm(吸附等温线)

The nature of the surface and the compound determine it ability to be adsorb. Charged Compounds → Charged surface Nonpolar Compounds → Non polar surfaces The state which describes the equilibria existing between absorbate, absorbent, solute and solvent at constant temperature is an adsorption **isotherm**.

Adsorption(Major isotherms)

Langmuir's adsorption Isotherm(L型) Freundlich adsorption Isotherm(F型) (包含HENY ADSORPTION(H型)) BET adsorption Isotherm

Adsorption

The degree of a compound can be measured and the extent of adsorption θ expressed as a fraction.

 $\theta = \frac{\text{Number of adsorption sites Occupied (V)}}{\text{Number of adsorption sites available (V}_{\infty})}$

Types of Adsorption

$\equiv S(H_2O)_m + X(H_2O)_n^{q_+} \Leftrightarrow \equiv SX(H_2O)_p^{r_+} + (q_-r)H^+ + (m_+n_-p)H_2O$

- Physical adsorption van der Waals forces
- Electrostatic adsorption electric charge
- Chemical adsorption bond to solid

Linear Distribution Coefficient $(H_{ENRY} 型)$

G (或q)= kC

Adsorption (Freundlich Adsorption Isotherm)

Freundlich Adsorption Isotherm Follows the relationship

 $G(或q)=kC^{1/n}$

The constants can be determined by

 $\log_{10}q = \log_{10}k + 1/n \log_{10}C$

Important in determining the removal capability and effectiveness of activated carbon in removing compounds.

- Adsorption (Freundlich Isotherm)
- Priority Pollutant k 1/n
- Chlordane氯丹 245 0.38
- Dieldrin 狄氏剂 606 0.51
- DDE 232
- DDT dichloro-diphenyl-trichloroethane
- Lindane

232 0.37
322 0.50
256 0.49

Adsorption

(Langmuir Adsorption Isotherm等温线)

Simplest isotherm assumes

- (1) Only monolayer adsorption
- (2) All sites are the same & surface is uniform
- (3) The ability to adsorb at a site is independent of the occupation of neighbouring sites

$$A_{(g)} + M_{(surface)} \longrightarrow AM_{(surface)}$$

Langmuir 1

Langmuir Isotherm

An isotherm describes the dependence of volume, concentration , or in the case of a surface, coverage \mathbf{Q} , on pressure \mathbf{p} at constant temperature \mathbf{T} at equilibrium.

$\mathbf{Q} = [f(\mathbf{p})]^{\mathsf{T}}$

In the equilibrium between the gas phase and the adsorbed phase, LeChatelier's Principle predicts that at constant temperature **an increase in pressure will increase the number of molecules adsorbed on the surface** since the volume occupied by the molecules at the surface (per mole) is smaller.

This can, however, reach a limiting value. The number of molecules adsorbed at any pressure **p** will also depend on the strength of the adsorbate bond to the surface.

Langmuir Isotherm

Langmuir 4

Langmuir's "checkerboard" model of chemisorption assumes that a surface is composed of a finite number of equivalent adsorption sites.

So the maximum coverage is obtained when all sites are filled. The coverage Θ is expressed in terms of the number of molecules adsorbed in relation to the number of available sites. i.e. When all sites are filled, $\Theta = 1$.

Rate of desorption proportional to:

1) the fraction of surface covered by adsorbate Θ .

i.e rate of desorption = $\mathbf{k}_{des} \Theta$

At equilibrium $\Theta = 1$ Rate of adsorption = Rate of desorption **b** = 100 $\mathbf{K}_{ads} \mathbf{p} (1 - \Theta) = \mathbf{k}_{des} \Theta$ b = 10(If we write $\mathbf{b} = \mathbf{k}_{ads} / \mathbf{k}_{des}$ p $\Theta = bp / (1+bp)$ The Langmuir Isotherm

Since **b** = k_{ads} / k_{des} , this is the same as an equilibrium constant K

And since $In K = -\Delta G/RT$ one can write:

b = exp (-DG/RT), i.e **b** reflects the strength of the adsorbate bond to the surface.

Since

 $p / n_{ads} = 1 / b n_{max} + p / n_{max}$

The equation above can be linearised for testing of experimental data by inversion ;

• Since $\mathbf{Q} = \mathbf{n}_{ads} / \mathbf{n}_{max}$

•
$$p / n_{ads} = 1 / b n_{max} + p / n_{max}$$

$$G = n_{ads}$$
 $G^0 = n_{max}$ $p=c$

• $1/G = 1/G^0 + 1/(K G^0) * 1/c$

Adsorption(Langmuir's Adsorption Isotherm) Can also be expressed as

 $q/q_{\rm m} = k_{\rm b}C/(1 + k_{\rm b}C)$

 $q_m = max$ no moles adsorbed / mass adsorbent q = number of moles adsorbed / mass of adsorbent $k_b = constant$ related to enthalpy of adsorption C = solution concentration at equilibrium

ZPC - Isoelectric Point

Typical Isoelectric Points

Substance	pH _{ZPC}	Substance	pH _{ZPC}
Quartz	1-3	Kaolinite	≤2 - 4.6
SiO ₂ gel	3.5	Montmor.	≤2 - 3
Feldspars	6 - 7	Gibbsite	~9
Hematite	4.2 - 6.9	β -MnO ₂	4.6 - 7.3
Goethite	6 - 9	δ -MnO ₂	1.5 - 2.8

Cation and Anion Adsorption

Electrostatic Adsorption Models

- Sorbing surface contains functional groups that react with sorbing solutes to form surface complexes
- Surface complexing can be described my mass-action equations (K) corrected for electrostatic effects

Electrostatic Adsorption Models

- Surface charge σ and electrical potential Ψ are consequences of chemical reactions involving the surface groups
- Binding constants are empirical parameters related to the intrinsic thermodynamic constants by the activity coefficient of the surface species.