www.scichina.com csb.scichina.com

近 30 年城市化对北京极端温度的影响

王君¹, 严中伟^{11*}, 李珍¹, 刘伟东², 王迎春²

论文

① 中国科学院东亚区域气候-环境重点实验室,北京 100029;
 ② 北京市气象局,北京 100089
 * 联系人, E-mail: yzw@tea.ac.cn

2013-01-25 收稿, 2013-03-05 接受, 2013-08-22 网络版发表 国家自然科学基金(41075063)和中国科学院战略性先导科技专项(XDA05090000)资助

摘要 基于 1978~2008 年北京地区 20 站均一化逐日气温资料,评估了城市化对温度和极端温度 变化的影响.与以往研究不同,此研究采用聚类分析,客观地将观测站点分为 4 类(城市站、近郊 站、乡村站和山地站),并利用遥感夜晚灯光数据验证了分类结果的合理性.近 30 年来,城市化 所致城市热岛增强的效应对城市站点平均气温增温趋势的贡献为 10.9%(影响最大的站点该贡献 达 18.4%或 0.12 /10 a),对最低气温增温趋势的贡献为 12.7%(影响最大的站点该贡献达 20.8%或 0.19 /10 a),对温度日较差下降趋势的贡献为 24%(影响最大的站点该贡献达 37.4%或 0.15 /10 a). 城市化效应对城市站点最高温度影响较小,但对极端暖夜(冷夜)的增加(减少)趋势贡献为 12.7% 或 2.07 d/10 a(29.0%或 5.06 d/10 a).

关键词 城市化效应

气候变暖 极端温度 聚类分析 夜光指数

近 30 年北京地区经历了快速的城市化进程,所 伴随的城市热岛效应扩张或增强,其影响必然波及 局地气温观测记录.例如,Yan 等人^[1]认为在 1977~ 2006 年间北京观象台的年平均温度序列中由城市化 引起的额外增暖趋势大致是 0.3℃/10 a,而同期北京 地区大尺度增暖趋势大致是 0.5℃/10 a.以往研究较 少触及的一个问题是:如北京这般快速城市化的进 程对局地极端温度影响如何?

已有很多工作探讨如何量化长期温度趋势中的 城市化效应^[2-7].但不同研究者所得中国区域城市化 导致的增暖效应,在量值上大有不同^[3,6,8-11].即使是 对于北京这样的特定城市也是如此^[1,12].这主要是由 于观测数据处理方法不同所致.而对于极端温度(如 暖日、冷夜、热浪和寒潮)记录中是否存在城市化效 应,以往还鲜有研究.很多研究已发现近几十年各地 暖日与暖夜频数增加、冷日和冷夜频数减少^[13].研究 城市化对极端温度记录的影响,有助于准确评估气 候变暖进程中的极端冷暖天气的演变. 为评估温度记录中的城市化效应,关键之一是 局地气温观测序列的前后一致性(或称均一性).由于 站点迁移、观测仪器和规范更改等因素,很多站点观 测序列存在非均一性,即某段或某几段时期的观测 数值存在系统性的偏差.Peterson^[5]发现:在校订了各 序列的非均一性后,美国区域的年平均温度序列里 几无城市化效应的影响.遗憾的是,过去很多研究 (尤其是中国区域气候研究)并未充分考虑观测序列 的均一性问题.

另一个关键问题在于不同站点类型(如城市站和 乡村站)的划分方法.过去的研究大都采用人口或经 济规模^[9,10],夜晚灯光指数^[5]以及遥感观测的土地覆 盖信息^[14]进行城乡站点划分.不同方法得到的分类 结果很不一致,导致气候趋势分析结果也不一致.例 如,Gallo等人^[15]发现使用不同方法定义乡村站点, 乡村地区的气温日较差趋势的变动范围为-0.41~ -0.64℃/100 a.很多人口数据都是多年前的记录,特 别在中国快速城市化进程中,很多"乡村"正迅速转

引用格式: 王君, 严中伟, 李珍, 等. 近 30 年城市化对北京极端温度的影响. 科学通报, 2013, 58: 3464–3470
 英文版见: Wang J, Yan Z W, Li Z, et al. Impact of urbanization on changes in temperature extremes in Beijing during 1978–2008. Chin Sci Bull, 2013, 58: 4679–4686, doi: 10.1007/s11434-013-5976-y

变成城市.相对于人口资料,近年的夜晚灯光指数和 其他遥感数据应该是表示城市地区更为可靠的指标, 但"城市"不等同于"城市化".局地气候观测记录中的 城市化效应也并非与"城市"本身直接相关.

本文使用一套均一化的逐日气温序列集,评估 城市化效应对温度特别是极端温度记录的影响,首 次提出一种将北京地区 20 个气象站客观划分城乡类 型的方法,进而通过城乡记录之差,推断城市化效应 对气温变化(尤其是极端事件如暖日、冷夜、热浪和 寒潮)的影响.

1 数据和方法

本文采用的北京地区 20 个气象站 1978~2008 年 逐日平均、最高和最低气温观测数据,是由北京气象 局气象信息中心收集整理的.通过 MASH 方法^[16], 订正了资料中存在的非均一性.为便于分析,剔除了 闰年 2 月 29 日的气温数据,使每年都保持 365 天观 测值.这一处理可能影响个别年份的极端温度频数 计算,但不会改变长期趋势分析结果.图 1 显示 20 个气象站的具体位置.可见,这些站点较均匀地分布 于北京地区.更多站点信息可见于文献[1,16].

前人研究一般基于百分位阈值来定义极端温度^[17,18].本文采用 Yan 等人^[19]提供的方法定义极端 温度:对于一个给定的站点,如某天气温高于(低于) 该天的某个较高(较低)百分位阈值,该天就算作一次 极端暖(冷)事件.我们在研究中使用了一系列不同阈 值定义极端温度.将持续3d或3d以上的极端温度 事件记作一个极端温度持续期.

采用聚类分析方法将北京地区 20 个气象站点客 观地划分成不同的类别.这一想法来源于一个常识: 同类站点应具有相似的气候学特征,这些特征在不 同类型的站点之间则极为不同.基于北京地区一些 基本气候学特征,选用 3 个温度指标:年平均气温、 年炎热天数(日平均气温高于 25℃)和年寒冷天数(日 平均气温低于 5℃),对 20 个气象站点进行聚类分析. 由于热岛效应,平均气温是一个用来划分城乡站点 的常见指标.我们引进其他两个极端温度指标,为的 是更好地反映城市化效应对极端温度的影响.当然,

图 1 北京地区 1992(a)、2000(b)和 2008(c)年夜晚灯光值空间分布以及北京地区 20 个气象站的地理位置以及该地区 1978~2008 年平均气温的空间分布(d)

也可以采用更多指标进行聚类分析.但从结果判断, 本文做法相当有效.

聚类分析的结果通过一个三维散点图(图 2)显示. 图中每个站点的坐标是 3 个温度指标由聚类分析决 定的排列次序号.由图可见,20 个气象站被客观地分 为了 4 类,在三维空间中的位置井然有别.基于这些 站点的地理分布信息,将这 4 类站点命名为:城市、 近郊、乡村和山地.详细信息列在表 1 中.西边和北 边的 6 个站(海拔高度大都高于 300 m)被划分为山地 站.3 个乡村站位于北京地区的东北部平原地区.朝 阳站位于北京市中心但却被分为近郊站.这是由于 朝阳站坐落在朝阳公园这个拥有大面积植被覆盖的 全亚洲最大的城市绿地,当地气温记录所处的环境 更像是近郊.另一个值得解释的结果是,传统看法认 为昌平和门头沟是郊区,但昌平站和门头沟站被划 分成城市站,这是因为这两个站点都靠近 30 年经历 快速城市化的城镇中心区.

为进一步检验上述分类的合理性,使用卫星数 据研究了北京地区夜晚灯光指数的空间分布.图1给 出了特定3年(1992,2000和2008年)的夜晚灯光指 数空间分布.夜晚灯光指数>57的地区被定义为高强 度城市化地区.该图显示出图2中的城市站(除昌平 站)早在20世纪90年代初就已经处在高强度的城市 化地区.近郊站(除朝阳)直到2000年左右才处于这 样的地区.即使是在最近的2008年,乡村站依然只 是靠近一些孤立的小城镇.山地站几乎处在完全没

图 2 采用 3 个温度指标(年平均气温、年寒冷天数和年炎热 天数)进行聚类分析结果的三维散点图

站点名称	编号	增暖趋势	平均气温	米山
		(°C/10 a)	(°°)	尖別
北京	1	0.659	12.893	城市
昌平	2	0.554	12.570	城市
丰台	6	0.599	12.661	城市
门头沟	8	0.554	12.417	城市
通州	11	0.631	13.025	城市
海淀	14	0.642	12.620	城市
石景山	18	0.585	12.738	城市
朝阳	3	0.590	12.214	近郊
大兴	4	0.674	12.003	近郊
房山	5	0.566	11.934	近郊
顺义	10	0.609	12.128	近郊
怀柔	7	0.550	11.497	乡村
平谷	9	0.559	11.357	乡村
密云	19	0.503	11.262	乡村
霞云岭	12	0.480	10.514	山地
延庆	13	0.499	9.301	山地
汤河口	15	0.391	8.915	山地
上甸子	16	0.426	10.410	山地
斋堂	17	0.483	10.038	山地
佛爷顶	20	0.455	5.554	山地

表1 北京地区 20 个气象站的基本信息

有夜晚灯光的地区.北京地区 1978~2008 年平均气温 显示在图 1(d)和表 1 中.可以看到,城市站所处地区 的气温最高,接下来是乡村站和近郊站,山地站气温 最低.这些特征完全符合城市热岛的空间格局,即城 市地区气温要比周边乡村地区高^[20].

通过客观地分辨各地气候特点进行站点分类, 可以避免以往各种主观定义跟不上客观发展造成的 认识偏差.显然,城市站的记录最直接地受到城市化 效应的影响,因为它们处在急剧加强的城市热岛辐 射范围.近郊站的记录也受到日益扩张的城市热岛 的影响.城市化对乡村站和山地站的气温记录应该 很少有直接影响.高海拔(山地站)地区的气候及其变 化特征则应该有别于平原地区.因此,本文利用城市 和乡村站的温度趋势之差来衡量北京气温记录中的 城市化效应大小.线性趋势通过最小二乘法计算,并 通过 *t*-test 进行显著性检验.

2 结果

2.1 城市化效应对平均气温和日较差的影响

表 2 显示了各处的最高温、最低温和平均温都有

显著的上升趋势,但是城市和近郊站的增温速率要 比乡村和山地站更高.北京地区年平均气温日较差 有显著的下降趋势.根据表2,我们发现城市化效应 对过去 30 年中最低温、平均温和气温日较差变化趋 势具有显著影响,但对最高温却不存在显著影响.通 过将城市和乡村站点的趋势之差作为该区域平均的 城市化效应大小,我们得到城市化效应对最低温、平 均温和气温日较差变化趋势分别具有 12.7%(0.105℃/ 10 a)、10.9%(0.066℃/10 a)和 24%(-0.079℃/10 a)的 贡献.

Hua 等人^[9]发现在 1960~2000 年期间,中国地区的大城市站的最低温、平均温和气温日较差趋势中分别存在 0.08, 0.05 和-0.07 ℃/10 a 的城市化效应.本文给出的北京地区的城市化增暖效应较大,对此有两点解释.第一,1978~2008 年期间城市化发展比1960~2000 年更快,并且北京是城市化最剧烈的地区之一.第二,Hua 等人^[9]是通过人口数据划分的乡村站点,其中部分"乡村"站按照本文划分标准不是真正的乡村站.

Ren 等人^[12]认为北京站 1961~2000 和 1981~2000 年间的城市化增暖效应分别为 0.26 和 0.47℃/10 a. Yan 等人^[1]认为北京站 1977~2006 年间的城市化增暖 大致为 0.30℃/10 a. 这些结果大大高于本文对北京 城市化增暖的估计(0.12℃/10 a). 原因如下:第一, 本文使用均一化的气温序列,而过去大多数研究没 有对观测资料中的非均一性偏差(由站点迁址和观测 系统变更等因素所致的系统性偏差)进行订正.第二, 过去研究选取的乡村站包含一些山地站,如佛爷顶 站(海拔高度 1217 m). Pepin 等人^[21]认为地面气温的 增暖趋势比自由大气的温度更强更明显.高海拔地 区站点的气候变化和平原地区站点不具可比性. 我 们的研究结果表明在 1978~2008年间,城市化效应对 北京站(北京地区受城市化效应影响最严重的站点)

表 2 北京地区 1978~2008 年 4 类站点年平均(最高、最低 和平均)气温和气温日较差线性趋势(单位: ℃/10 a)

	城市	近郊	乡村	山地	城乡差异 ^{а)}
最高温	0.500*	0.481*	0.474*	0.455*	0.026
最低温	0.828*	0.821*	0.723*	0.679*	0.105*
平均温	0.604*	0.610*	0.538*	0.456*	0.066*
气温日较差	-0.328*	-0.341*	-0.249*	-0.224*	-0.079*

a) 城乡间线性趋势的差异也列于表中,* 表示显著水平到 95%的趋势 的平均气温和最低气温整体增暖趋势的贡献为 18.4%(0.12℃/10 a)和 20.8%(0.19℃/10 a). 城市化效 应引起北京站的气温日较差的额外下降趋势为 0.15℃/10 a,由于温度日较差的整个下降趋势本身较 小,城市化效应的贡献相对较大,达 37.4%.

以往研究通常分季节讨论城市化效应. 为更细 致地了解城市化效应在全年哪些时间段是显著的, 我们将一年分为 36 个 10 d 的间隔(去掉最后的 5 d) 并且计算每个时间间隔的气温线性趋势(图3).相比 其他季节,晚冬初春季节的城市和乡村地区的增暖 趋势都要更大. 这与过去很多关于中国地区季节温 度增暖趋势研究的结论一致^[22,23]. 夏季和秋季的最 高、最低和平均气温的增暖趋势在城乡站点之间存在 很大的不同. 夏季和秋季的城市地区最高气温、最低 气温和平均气温的增暖趋势中分别有 13.5%和 19%, 14.3%和 27.6%, 13.1%和 18.8%是由城市化效应引起 的. Ren 等人^[12]也认为北京地区在 1981~2000 年间的 城市化增暖效应最明显的季节是秋季,夏季次之.我 们还发现城市和乡村站点在春季和秋季的气温日较 差趋势差异很显著,城市化对于城市地区气温日较 差的变化趋势的贡献分别达到 39%和 37.6%.

2.2 城市化效应对极端冷暖事件的影响

一些研究将日气温高于(低于)该日气温历史分 布第 90(10)百分位的情况定义为一次极端高(低)温事 件.为了找到日气温分布中变化最大的部分,Yan 等 人^[12]使用一系列百分位(3%,5%,10%和 20%,以及 97%,95%,90%和 80%)分析极端冷暖事件的变化.我 们采用更为一般的方法,将日气温分布分为 20 个 5 百分位的区间,以便于找到气温记录中受到城市化 效应影响最显著的部分.

图 4(a)显示各个百分位区间的日最高温年频数 变化趋势.在0~5,5~10,90~95和95~100百分位区间 上,城乡站点之间趋势差异不显著,这说明城市化效 应很少波及北京地区暖日和冷日的变化.图4(b)显示 在0~5,5~10,10~15,85~90和90~95百分位区间上, 城乡之间的日最低温年频数趋势差异显著.在暖夜 和冷夜发生频数上,城市化效应的影响很显著,使得 北京地区城市站点过去几十年暖(冷)夜数量的上升 (下降)趋势得到加强.若使用 10/90百分位来定义最 低温的极端冷暖事件,则城市化效应对暖(冷)夜的上 升(下降)趋势具有 12.7%和 29.0%的贡献.

-0.5--1.0-(a) -1.0-(b)

为考察一年中哪个时段极端温度变化受城市化 影响最显著,本文将全年分成 36 个滑动的 30 d 间隔 分别计算上述冷暖日夜频数的变化趋势(图 5).在此, 将极端冷暖事件的百分位阈值定在 10 和 90 百分位.

Ó

10

城乡之间在暖日变化趋势上的差异几乎全年都 不显著. 冷日变化趋势上的城乡间显著差异主要体 现在春季和秋季.城市化效应在暖夜上的显著影响 主要是在 4~7 月之间.相比之下,城市化效应对冷夜 的下降趋势几乎全年都有显著的加强作用.

100

为了解城市化效应如何影响持续的极端温度事件, 计算了持续3,4 和≥5 d 的极端温度持续事件年频数变化趋势.在此,将极端温度的阈值放宽至 20

(a) 暖日;(b) 冷日;(c) 暖夜;(d) 冷夜. 垂直虚线代表存在显著的城乡趋势差异, 显著性水平为 90%

和 80 百分位.结果表明,在暖(冷)日持续事件和暖夜 持续事件变化趋势上,不存在显著的城市化影响.但 城市化效应加强了冷夜持续事件下降的趋势,尤其 是对那些持续 3 d 的冷夜事件的减少趋势,城市化效 应的贡献达 34%(图 6).

3 结论

本文首次使用经过 MASH 方法统一处理的北京 地区均一化逐日气温序列资料,发展了一个客观划分 观测站点的方法,用来评估北京地区近几十年快速城 市化对于局地气温观测的影响.结果表明以往研究很 可能高估了该地区的城市化效应.主要结论包括:

(1)北京地区 1978~2008 年期间日最高、最低和 平均气温都呈现显著的上升趋势.城市化效应对城市站点观测到的年平均最低温增暖趋势(0.828℃/10 a) 具有 12.7%的贡献(受此影响最严重的北京站达到 20.8%),对年平均气温增暖趋势(0.604℃/10 a)具有 10.9%的贡献(受此影响最严重的北京站达到 18.4%). 城市化效应使得气温日较差的下降趋势增强 24%(受

此影响最严重的北京站达到 37.4%). 城市化效应对 气温的影响主要体现在夏季和秋季, 然而对气温日 较差的影响主要是在春季和秋季.

(2) 城市化对白天发生的极端温度事件不存在

显著影响,城乡之间的暖(冷)日的上升(下降)趋势几 乎没有差异.然而,城市化效应对城市站点过去 30 年 暖(冷)夜的上升(下降)趋势分别具有 12.7%(29.0%)的 贡献.城市化效应对暖夜的显著影响主要体现在晚 春初夏季节,而对冷夜的影响几乎贯穿全年.对于持 续(3 d)的极端冷夜事件,城市化效应显著加强了其 减少趋势,贡献达 34%. 如何定量城市化效应对气温记录的影响仍然是 一个富有挑战性的问题,尤其是对于极端事件(如暖 夜、冷夜等)来说.部分原因是由于极端事件具有很 强的年际变率.本文基于目前最完善的均一化观测 资料,范例性地评估了北京地区气温观测中的城市 化效应,结果可为更多地区评估以及进一步的相关 机理研究提供参考.

参考文献_

- 1 Yan Z W, Li Z, Li Q X, et al. Effects of site change and urbanisation in the Beijing temperature series 1977~2006. Int J Climatol, 2010, 30: 1226–1234
- 2 Jones P D, Groisman P Y, Coughlan M, et al. Assessment of urbanization effects in time series of surface air temperature over land. Nature, 1990, 347: 169–172
- Portman D A. Identifying and correcting urban bias in regional time series: Surface temperature in China's Northern Plains. J Clim, 1993,
 6: 2298–2308
- 4 Kim Y H, Baik J J. Maximum urban heat island intensity in Seoul. J Appl Meteorol, 2002, 41: 651-959
- 5 Peterson T C. Assessment of urban versus rural in situ surface temperatures in the contiguous United States: No difference found. J Clim, 2003, 16: 2941–2959
- 6 Zhou L, Dickinson R E, Tian Y H, et al. Evidence for a significant urbanization effect on climate in China. Proc Natl Acad Sci USA, 2004, 101: 9540–9544
- 7 Gaffin S R, Rosenzweig C, Khanbilvardi R, et al. Variations in New York city's urban heat island strength over time and space. Theor Appl Climatol, 2008, 94: 1–11
- 8 Li Q, Zhang H, Liu X, et al. Urban heat island effect on annual mean temperature during the last 50 years in China. Theor Appl Climatol, 2004, 79: 165–174
- 9 Hua L J, Ma Z G, Guo W D. The impact of urbanization on air temperature across China. Theor Appl Climatol, 2008, 93: 179–194
- 10 Ren G Y, Zhou Y Q, Chu Z Y, et al. Urbanization effects on observed surface air temperature trends in North China. J Clim, 2008, 21: 1333–1348
- 11 Jones P D, Lister D H, Li Q. Urbanization effects in large-scale temperature records, with an emphasis on China. J Geophys Res, 2008, 113: D16122
- 12 Ren G Y, Chu Z Y, Chen Z H, et al. Implications of temporal change in urban heat island intensity observed at Beijing and Wuhan stations. Geophys Res Lett, 2007, 34: L05711
- 13 Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis. Contribution of Working Group 1 to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge and New York: Cambridge University Press, 2007
- 14 Gallo K P, McNab A L, Karl T R, et al. The use of NOAA AVHRR data for assessment of the urban heat island effect. J Appl Meteorol, 1993, 32: 899–908
- 15 Gallo K P, Owen T W, Easterling D R, et al. Temperature trends of the U.S. historical climatology network based on satellite-designated land use/land cover. J Clim, 1999, 12: 1344–1348
- 16 Li Z, Yan Z W. Application of multiple analysis of series for homogenization to Beijing daily temperature series (1960–2006). Adv Atmos Sci, 2010, 27: 777–787
- 17 Jones P D, Horton E B, Folland C K, et al. The use of indices to identify changes in climatic extremes. Clim Change, 1999, 42: 131–149
- 18 Peterson T C, Zhang X B, Brunet-India M, et al. Changes in North American extremes derived from daily weather data. J Geophys Res, 2008, 113: D07113
- 19 Yan Z, Jones P D, Davies T D, et al. Trends of extreme temperatures in Europe and China based on daily observations. Clim Change, 2002, 53: 355–392
- 20 Oke T R. The energetic basis of the urban heat island. Q J R Meteorol Soc, 1982, 108: 1-24
- 21 Pepin N C, Seidel D J. A global comparison of surface and free-air temperatures at high elevations. J Geophys Res, 2005, 110: D03104
- Yan Z W, Xia J J, Qian C, et al. Changes in seasonal cycle and extremes in China during the period 1960–2008. Adv Atmos Sci, 2011, 28: 269–283
- 23 钱诚, 严中伟, 符淙斌. 1960~2008 年中国二十四节气气候变化. 科学通报, 2011, 56: 3011-3020