Vol. 33, No. 9 Sep., 2013

林怡雯,杨天,李丹,等. 2013. 基于 CTC-流式细胞仪活性细菌总数的快速检测技术研究[J]. 环境科学学报,33(9);2511-2515 Lin Y W, Yang T, Li D, *et al.* 2013. Rapid detection of viable bacteria by integrated CTC (5-Cyano-2,3-ditoyl tetrazolium chloride) dying and flow cytometry assay (CTC-FCM)[J]. Acta Scientiae Circumstantiae.33(9);2511-2515

基于 CTC-流式细胞仪活性细菌总数的快速检测技术研究

林怡雯,杨天,李丹*,何苗

清华大学环境学院,环境模拟与污染控制国家重点联合实验室,北京100084

收稿日期:2012-11-27

修回日期:2013-01-04

录用日期・2013-01-04

摘要:以大肠杆菌作为研究对象,建立一种 5-cyano-2,3-ditolyl tetrazolium chloride (CTC)染色结合流式细胞仪(CTC-FCM)的方法,以选择性检测水环境中具有代谢活性的细菌总数. 该方法的原理是细菌与具有氧化还原性的染料 CTC 发生反应,形成红色荧光物质,被流式细胞仪特异性识别进而可选择性检测活性菌. 研究结果表明,CTC 染色的最佳反应条件为;CTC 浓度为 2 mmol·L $^{-1}$ 、37 $^{\circ}$ 企避光孵育 3 h. 该方法最低检测限为 10^3 个·mL $^{-1}$. 通过比较培养法和 CTC-FCM 方法检测热灭活后的大肠杆菌,结果表明 CTC-FCM 方法可准确区分活性菌和灭活菌,且与培养法 之间具有较好的线性关系 ($R^2=0.9465$). 应用 CTC-FCM 方法检测实际样品,结果显示该方法与培养法之间有较好的线性关系 ($R^2=0.8121$). 本研究建立的 CTC-FCM 方法可满足饮用水水质标准需求,且检测时间比平板培养法缩短 20 ~40 h,可以用于环境水样中活性细菌总数检测.

关键词: CTC(5-cyano-2,3-ditolyl tetrazolium chloride)染料;流式细胞仪;活性细菌总数;实际环境水样;快速检测

文章编号:0253-2468(2013)09-2511-05

中图分类号:X172,X832

文献标识码:A

Rapid detection of viable bacteria by integrated CTC (5-Cyano-2, 3-ditoyl tetrazolium chloride) dying and flow cytometry assay (CTC-FCM)

LIN Yiwen, YANG Tian, LI Dan*, HE Miao

State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084

Received 27 November 2012; received in revised form 4 January 2013; accepted 4 January 2013

Abstract: An integrated tetrazolium redox CTC (5-Cyano-2,3-ditoyl tetrazolium chloride) dying and flow cytometry assay (CTC-FCM) was developed by using *Escherichia coli* as a representative organism. This method can selectively detect and quantify bacteria with metabolic activity, based on the principle that only active bacteria can react with CTC and form a fluorescent red intracellular CTC-formazan (CTF) easily detected and counted by flow cytometry. The results showed that the optimized detection parameters were 2 mmol·L⁻¹ CTC at 37 $^{\circ}$ C for 3-hour incubation. The detection limit of CTC-FCM method was 10^3 CFU·mL⁻¹. Compared with culture-based method for detection of heat-treated bacteria, CTC-FCM method can effectively distinguish viable bacteria from non-viable bacteria, and a good correlation was observed between these two methods ($R^2 = 0.9465$). This method was also applied to detect viable bacteria in environmental water samples, including tap water and reclaimed water. Results showed that the correlation coefficient (R^2) between CTC-FCM and culture-based method was 0.8121. The CTC-FCM method meets the needs of drinking water quality standards and the detection time was reduced by 20 \sim 40 hours, therefore is an effective and quantitative tool for detecting viable bacteria in environmental waters.

Keywords: CTC stains; flow cytometry; viable bacteria; environmental water sample; fast detection

1 引言(Introduction)

细菌总数是我国《生活饮用水卫生标准》 (GB5749—2006)规定的水质常规指标之一,其标准 检测方法是营养琼脂平板培养法,但具有很多不 足,包括:① 环境中可培养的细胞只占总细胞数量的 0.001%到 6.5% (Staley et al., 1985; Hammes et al., 2008),很多厌氧菌和兼性菌很难利用平板培养法检测(Strous et al., 1998);②平板中不同细菌的生长速度不同,形成菌落大小也不同,微小菌

基金项目: 国家自然科学基金项目(No. 51178242);中国博士后基金项目(No. 023203010)

Supported by the National Natural Science Foundation of China (No. 51178242) and the National Postdoctoral Research Foundation of China (No. 023203010)

作者简介: 林怡雯(1987—),女,E-mail;lyw10@ mails. tsinghua. edu. cn; *通讯作者(责任作者), E-mail;lidan04@ mails. tsinghua. edu. cn Biography: LIN Yiwen(1987—),female, E-mail;lyw10@ mails. tsinghua. edu. cn; *Corresponding author, E-mail;lidan04@ mails. edu. cn; *Correspond

落在计数过程中可能被漏掉(赵新华等, 2003);③ 最重要的是,很多细菌在外界环境压力下,可进入"具有活性但无法培养"(Viable but not culturable, VBNC)状态(Lleo et al., 2000; Roszak et al., 1984; Lemarchand et al., 2004), VBNC 菌无法在平板培养基上生长,但仍然保持一定代谢能力(Berry et al., 2009)和致病性(Liu et al., 2010; Fischer et al., 2002),能在适宜环境条件下复活并大量繁殖(Fera et al., 2008; Cotruvo et al., 2004; Zhang et al., 2002; Jjemba et al., 2010),引发微生物安全风险.

CTC 染料是一种无色可渗透细胞膜的物质,在 细胞内可被细菌细胞通过电子传递链还原形成易 被检测的红色荧光沉淀物质 CTF (CTC-Formazan) (Gruden et al., 2003; Schaule et al., 1993; Bhupathiraju et al., 1999; Rodriguez et al., 1992), 并可在 450/630nm 下被激发,从而被荧光显微镜、 流式细胞仪等检测并计数 (Proctor et al., 2001; Kaprelyants et al., 1993; Yu et al., 1994). 由于生 成CTF的含量与活性菌浓度、CTC浓度、孵育时间 等有关(Bartosch et al., 2003),因此,可以还原CTC 并产生红色荧光的细胞即为具有代谢活性的细胞. CTC 染料与好氧、厌氧及兼性细菌均可反应,因此 在检测实际环境中的活性细胞时具有更大的利用 价值(Proctor et al., 2001; Bartosch et al., 2003; Bhupathiraju et al., 1999). 利用流式细胞仪快速计 数 CTC 染色细胞,可实现快速准确定量检测.目前, 将 CTC 与流式细胞仪结合应用到检测环境水体中 细菌总数的报道较少.

鉴于此,本研究以大肠杆菌为研究对象,首先优化了 CTC 染色条件及流式细胞仪分析参数,建立基于 CTC 染色的活性细菌流式细胞仪分析方法 (CTC-FCM 法);然后,比较 CTC-FCM 方法与平板计数法检测活性细菌的能力;最后利用优化的 CTC-FCM 方法检测实际饮用水及再生水中细菌总数,并与平板计数法检测结果做比较.

2 材料与方法(Materials and methods)

2.1 主要试剂与仪器

本研究中使用的标准菌株购自中国普通微生物 菌种保藏中心(CGMCC):大肠杆菌(Escherichia coli, CGMCC 1.2385). 饮用水样取自清华大学环境节能 楼,再生水水样取自高碑店再生水厂进水和出水.

实验室培养大肠杆菌采用 CGMCC 推荐的营养 肉汤培养基. 主要配方为:牛肉膏 5 g,蛋白胨 10 g, 氯化钠 5 g,去离子水 1000 mL. 加热溶解后,调节 pH $7.2 \sim 7.4$, $121 \circ$ C 灭菌 20 min.

细菌总数测量采用营养琼脂培养基(生活饮用水标准检验方法微生物指标,GB/T 5750.12—2006):蛋白胨 10 g,牛肉膏 3 g,氯化钠 5 g,琼脂 20 g,蒸馏水 1000 mL,将上述成分混合后,加热溶解,调整 pH 为 $7.4 \sim 7.6$, $121 \circ \mathbb{C}$ 灭菌 20 min,待其温度降至 $50 \circ \mathbb{C}$ 时,倒人直径为 9 cm 的无菌平皿中.

CTC 染料购自 Molecular Probes 公司;流式细胞 仪购自美国 Beckman Coulter 公司;高速离心机购自 德国 Eppendorf 公司;Thermomixer Comfort 购自德国 Eppendorf 公司.

2.2 实验方法

2.2.1 CTC-FCM 方法的检测原理及流程 CTC-FCM 方法以细胞的代谢活性作为活性细菌的评判标准. CTC 可渗透细菌细胞膜,与具有代谢活性大肠杆菌内的电子传递链反应,在细胞内形成红色荧光沉淀,可被流式细胞仪检测.

流式细胞仪可记录样品中单个颗粒的侧向散射光 (side light scatter, SS)、绿荧光 (green fluorescence, FL1, (530 ± 15) nm)、橙荧光 (orange fluorescence, FL2, (585 ± 21) nm)和红荧光 (red fluorescence, FL3, >650 nm).本研究以 FL3 为检测器时,活性大肠杆菌和 CTC 反应产生的红色荧光物质被激发,从而实现活性细菌计数. CTC-FCM 方法的检测流程如图 1 所示.流式细胞仪参数设置为: FL1 为 4. 11, FL2 为 6.29,FL3 为 5.47,每次测量体积为 50 μ L.

图 1 CTC-FCM 法检测活性菌流程

Fig. 1 Process of CTC-FCM assay for selective detection of viable bacteria

2.2.2 CTC-FCM 方法的最佳浓度及孵育时间的优化方法 接种 100 μ L 大肠杆菌菌液于 100 μ L 营养肉汤培养基,于 37 $^{\circ}$ C、150 $r \cdot min^{-1}$ 下培养 16 h. 取 100 μ L 菌液,用无菌 PBS 稀释至 1 mL,然后在12000 $r \cdot min^{-1}$ 、4 $^{\circ}$ C下离心 5 min,去除上清液并冲悬于 100 mL PBS 缓冲液中,得到活菌浓度约为 10 $^{\circ}$ CFU·mL $^{-1}$ 的菌悬液.

用无菌水将 CTC 染料配置成浓度为 10 mmol·L⁻¹ 的 CTC 储备溶液. 在 96 孔酶标板中加入 100 μL 悬浮菌液和不同体积的 CTC 储备液, CTC 溶液最终浓度分别使用 1、2、5 mmol·L⁻¹, 并用 0.85% 的 NaCl 溶液补足 200 μL. 将上述方法配制出的混合体系在 37 ℃培养箱内分别避光(黑暗) 孵育 0.1、0.5、1、2、3、4、6、10、24 h 后,利用流式细胞仪计数具有呼吸代谢活性的(发红色荧光物质)细菌总数,确定利用 CTC 染色的最佳浓度和孵育时间.

2.2.3 细菌热灭活处理方法 取 1 mL 浓度约为 10⁵ CFU·mL⁻¹的菌液(2.2.2 节中制备)于 1.5 mL 离心管中,在 Thermomixer Comfort 加热仪上于 70 ℃、300 r·min⁻¹下加热 10 min,制备热灭活细菌.

活菌和死菌混合溶液配制: 灭活的大肠杆菌液与具有活性的大肠杆菌液以不同特定比例混合(表1). 将混合菌液 10 μ L 与 20 μ L CTC 储备液(终浓度为 2 μ CTC 计划(表述度为 2 μ CTC 计划(表述度为

表 1 活性与热灭活大肠杆菌液配比

Table 1 The proportion of viable and thermal-inactivated E. coli

混合菌液体系	活性细菌 液比例	活性细菌 液体积/μL	热灭活细菌 液体积/μL
A	0%	0	100
В	20%	20	80
C	50%	50	50
D	80%	80	20
E	100%	100	0

2.2.4 应用 CTC-流式细胞仪对实际水样进行分析 实际水样取自清华自来水和高碑店再生水厂进 水和出水. 总菌落数测量方法: 根据国家标准 GB/T5750.2—2006《生活饮用水检验方法——微生物 指标》, 菌落总数的测定采用平皿计数法, 在营养琼脂培养基上有氧条件下 37 ℃培养 48 h. 自来水中细菌浓度较低,需经过浓缩,取 10 mL 自来水于 15 mL

无菌离心管中,12000 r·min⁻¹下离心 10 min;去除上清液,用 1 mL 无菌 PBS 将菌液重悬浮.

CTC-流式细胞仪总菌落数测量方法:取 200 μ L 样品加入 96 孔板中,加入 4 μ L 50 mmol·L⁻¹的 CTC,在 2.2.2 节优化得到的条件下孵育.采用流式细胞仪进行计数.取 200 μ L 样品加入 96 孔板中,不加 CTC 作为阴性.

3 结果与讨论(Results and discussion)

3.1 CTC-FCM 方法检测条件优化

本研究考察了不同 CTC 浓度和孵育时间对 CTC-FCM 方法灵敏度的影响,结果如图 2 所示. 当孵育时间相同,CTC 浓度为 1 mmol·L⁻¹与 5 mmol·L⁻¹时检测到的细胞数量远小于 CTC 浓度为 2 mmol·L⁻¹时的细菌数量. Bartosch 等(2003)在以荧光显微镜研究自然石头中的微生物时也发现,并不是 CTC 的浓度越高可检出的活性微生物就越多. 这是由于当 CTC 浓度过小时,不能与全部的具有活性的细菌细胞结合,而当 CTC 浓度过高时,其对细菌细胞产生一定的毒性. 当 CTC 最低浓度为 2 mmol·L⁻¹时,CTC-FCM 的检测结果与培养法的检测结果—致性较好,说明 2 mmol·L⁻¹浓度的 CTC 能够和 10⁵ CFU·mL⁻¹浓度的细菌充分发生反应,且对细菌产生的毒性作用最小. 由此确定 CTC 最佳使用浓度为 2 mmol·L⁻¹.

当 CTC 浓度相同时,随着孵育时间的增加,可由流式细胞仪检测出的细胞数量先增加后减少,当孵育时间为 3 h 时,检测到的细菌数达到最大值. 这是由于细菌与 CTC 进行接触时,需要一定的时间适应环境的改变,之后进行呼吸代谢. 当细胞与 CTC 反应时间过长时,CTC 会对细菌产生一定的毒害作用,使细菌代谢活性下降. Proctor 等(2001)在研究

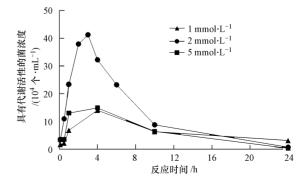
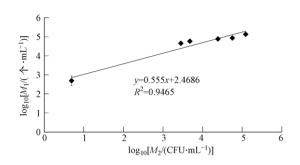


图 2 不同 CTC 浓度及孵育时间下的计数结果


Fig. 2 Results of different CTC concentrations and incubation times

深海中的细菌时也发现了这样的现象. 由此确定 CTC 与细菌反应的最佳的孵育时间为 3 h.

从本节可以确定 CTC 的最佳使用浓度为 2 $\text{mmol} \cdot \text{L}^{-1}$,最佳孵育条件为 37 $^{\circ}$ C、3 h.

3.2 利用 CTC-FCM 法选择性检测活性菌

将配制的活菌和灭活菌混合液,加入终浓度为2 mmol·L⁻¹ CTC,在37 ℃下避光孵育3 h,利用流式细胞仪计数.同时,利用营养肉汤培养基测定混合菌液中活性大肠杆菌浓度,结果如图3 所示.

图 3 培养法与 CTC-FCM 法检测热灭活大肠杆菌结果比较 (*M*₁: CTC-FCM 计数结果,*M*₂:平板计数结果)

Fig. 3 Comparison of culture-based and CTC-FCM assay on detection of thermal-inactivated *E. coli*

结果表明,CTC-FCM 方法与平板培养计数法的结果具有良好的线性关系($R^2 = 0.9465$)(图 3);CTC-FCM 方法得到的结果比培养法略高,这主要是由于在高温条件下细菌可能进入 VBNC 状态,即无法培养但具有活性,处于这种状态的细菌也可以与CTC 染料发生反应. 因此,该方法可以较好的表征活性细菌. 此外,CTC-FCM 方法可以在 3 h 内得到结果,较培养法的 48 h 所需时间短,且操作简单、灵敏度高、准确性好,可以用于准确快速检测样品中的活性细菌.

3.3 利用 CTC-FCM 法检测实际环境样品中的活 性菌

本研究分别利用 CTC-FCM 法和平板计数法检测实际水样中的细菌总数,结果如表 2 所示. 由表 2 可得,CTC-FCM 的检测结果约为平板计数法检测结果的 2 倍. 将 2 种方法检测的结果线性拟合,其线性方程为 y = 1.0323x, R² = 0.8121. 本实验结果证明,许多失去培养性的细菌仍然具有呼吸代谢活性,即VBNC 状态病原菌的存在. 因此,传统的平板培养法可能低估了水中活性细菌的数量,CTC-FCM 方法是检测水中活性细菌总数的快速有效方法. 没有加CTC 染料的样品无法检测到荧光信号,说明实际样品中没有能够将 CTC 染料还原的物质,样品中的底

物基质对检测结果不形成干扰,可以用于实际样品中活性菌总数的检测. 此外,CTC-FCM 法的检测限为 10^3 个· mL⁻¹,对经过浓缩后的自来水样同样适用,可以用于饮用水中细菌总数的检测.

表 2 CTC-FCM 法和培养法检测实际水样中的活性细菌浓度

Table 2 Detection of viable bacteria by CTC-FCM and culture – based assay in environmental samples

水样	CTC-FCM 法 /(个mL ⁻¹)	培养法 /(CFU·mL ⁻¹)
高碑店再生水厂进水1	2377	1200
高碑店再生水厂进水 2	7945	3450
高碑店再生水厂出水1	526	415
高碑店再生水厂出水 2	406	350
清华自来水	49	15

4 结论(Conclusions)

- 1)应用 CTC-FCM 法检测水中具有呼吸代谢活性的病原菌数量时,CTC 的最佳使用浓度为 2 $\,\mathrm{mmol} \cdot \mathrm{L}^{-1}$,最佳孵育条件为 37 $\,\mathrm{CT}$ 遊光孵育 3 $\,\mathrm{h}$.
- 2) CTC-FCM 法可有效分辨具有活性的灭活菌, 其分析结果与平板计数法具有很好的线性关系 ($R^2 = 0.9465$),检测时间由 48 h 缩短至 3 h.
- 3)应用 CTC-FCM 法检测环境水样,其检测结果约为平板计数法的 2 倍,主要原因是许多失去培养性的细菌仍然具有呼吸代谢活性.与常规基于可培养性的方法相比,该方法检测范围广,更能有效评价水环境中活性菌总数.

参考文献(References):

Bartosch S, Mansch R, Knotzsch K, et al. 2003. CTC staining and counting of actively respiring bacteria in natural stone using confocal laser scanning microscopy [J]. Journal of Microbiological Methods, 52(1): 75-84

Berry D, Xi C, Raskin L. 2009. Effect of growth conditions on inactivation of *Escherichia coli* with monochloramine [J]. Environmental Science & Technology, 43(3): 884-889

Bhupathiraju V K, Hernandez M, Krauter P, et al. 1999. A new direct microscopy based method for evaluating in-situ bioremediation [J]. Journal of Hazardous Materials, 67(3): 299-312

Bhupathiraju V K, Hernandez M, Landfear D, et al. 1999. Application of a tetrazolium dye as an indicator of viability in anaerobic bacteria [J]. Journal of Microbiological Methods, 37(3); 231-243

Cotruvo J A, Dufour A, Rees G, et al. 2004. Waterborne Zoonoses: Identification, causes and control [R]. World Health Organization

Fera M T, Maugeri T L, Gugliandolo C, et al. 2008. Induction and resuscitation of viable nonculturable Arcobacter butzleri cells [J].

- Applied and Environmental Microbiology, 74(10): 3266-3268
- Fischer-Le Saux M, Hervio-Heath D, Loace S, et al. 2002. Detection of cytotoxin-hemolysin mRNA in nonculturable populations of environmental and clinical Vibrio vulnificus strains in artificial seawater [J]. Applied and Environmental Microbiology, 68 (11): 5641-5646
- Gruden C L, Fevig S, Abu-Dalo M, et al. 2003. 5-cyano-2,3-ditolyl tetrazolium chloride (CTC) reduction in a mesophilic anaerobic digester: Measuring redox behavior, differentiating abiotic reduction, and comparing FISH response as an activity indicator [J]. Journal of Microbiological Methods, 52(1): 59-68
- Hammes F, Berney M, Wang Y, et al. 2008. Flow-cytometric total bacterial cell counts as a descriptive microbiological parameter for drinking water treatment processes [J]. Water Research, 42(1/2): 269-277
- Jjemba P K, Weinrich L A, Cheng W, et al. 2010. Regrowth of potential opportunistic pathogens and algae in reclaimed-water distribution systems [J]. Applied and Environmental Microbiology, 76 (13): 4169-4178
- Kaprelyants A S, Kell D B. 1993. The use of 5-cyano-2, 3-ditolyl tetrazolium chloride and flow-cytometry for the visualization of respiratory activity in individual cells of micrococcus-luteus [J]. Journal of Microbiological Methods, 17(2): 115-122
- Lemarchand K, Masson L, Brousseau R. 2004. Molecular biology and DNA microarray technology for microbial quality monitoring of water [J]. Critical Reviews in Microbiology, 30(3): 145-172
- Liu Y, Wang C, Tyrrell G, et al. 2010. Production of Shiga-like toxins in viable but nonculturable Escherichia coli O157: H7 [J]. Water Research, 44(3): 711-718
- Lleo M D, Pierobon S, Tafi M C, et al. 2000. mRNA detection by reverse transcription-PCR for monitoring viability over time in an Enterococcus faecalis viable but nonculturable population maintained in a laboratory microcosm [J]. Applied and Environmental

- Microbiology, 66(10): 4564-4567
- Proctor L M, Souza A C. 2001. Method for enumeration of 5-cyano-2,3-ditoyl tetrazolium chloride (CTC)-active cells and cell-specific CTC activity of benthic bacteria in riverine, estuarine and coastal sediments [J]. Journal of Microbiological Methods, 43 (3): 213-222.
- Rodriguez G G, Phipps D, Ishiguro K, et al. 1992. Use of a fluorescent redox probe for direct visualization of actively respiring bacteria [J]. Applied and Environmental Microbiology, 58(6): 1801-1808
- Roszak D B, Grimes D J, Colwell R R. 1984. Viable but nonrecoverable stage of *Salmonella enteritidis* in aquatic systems [J]. Canadian Journal of Microbiology, 30(3): 334-338
- Schaule G, Flemming H C, Ridgway H F. 1993. Use of 5-cyano-2,3-ditolyl tetrazolium chloride for quantifying planktonic and sessile respiring bacteria in drinking-water [J]. Applied and Environmental Microbiology, 59(11): 3850-3857
- Staley J T, Konopka A. 1985. Measurement of insitu activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats [J]. Annual Review of Microbiology, 39: 321-346
- Strous M, Heijnen J J, Kuenen J G, et al. 1998. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J]. Applied Microbiology and Biotechnology, 50(5): 589-596
- Yu F P, McFeters G A. 1994. Rapid in-situ assessment of physiological activities in bacterial biofilms using fluorescent-probes [J]. Journal of Microbiological Methods, 20(1): 1-10
- Zhang W, DiGiano F A. 2002. Comparison of bacterialregrowth in distribution systems using freechlorine and chloramine: a statistical study of causative factors [J]. Water Research, 36(6): 1469-1482
- 赵新华,吴卿. 2003. 利用 CTC 技术测定水环境中的细菌活性 [J]. 中国给水排水,19(8):97-99