张翠平,张先龙,吴雪平,等. 2013. SO₂对 MnO_x/PG 催化剂低温脱硝的影响机理研究[J]. 环境科学学报,33(10):2686-2693 Zhang C P, Zhang X L, Wu X P, *et al.* 2013. The mechanism of SO₂ influence on the denitration of MnO_x/PG catalysts at low temperature[J]. Acta Scientiae Circumstantiae,33(10):2686-2693

SO_2 对 MnO_x / PG 催化剂低温脱硝的影响机理研究

张翠平,张先龙*,吴雪平,张连凤,张恒建,杨保俊

合肥工业大学化学工程学院,合肥 230009 收稿日期:2012-12-19 修回日期:2013-01-20 录用日期:2013-01-20

摘要:采用等体积浸渍法制备了锰氧化物负载凹凸棒石(MnO_x/PG)低温 SCR 催化剂,通过 SO₂暂态响应、程序升温表面反应(TPSR)等实验技术研究了烟气中 SO₂对催化剂 SCR 脱硝活性的影响行为.采用程序升温脱附(TPD)、BET 比表面及孔径分布测定、XPS 等表征技术对催化剂硫 中毒的机理及化学本质进行了深入分析.结果表明,低温下烟气中 SO₂对 MnO_x/PG 催化剂的 SCR 脱硝活性存在显著的抑制作用,催化剂中毒 主要由烟气中 SO₂的催化氧化引起.一方面 SO₂氧化为 SO₃后与 NH₃及 H₂O 竞争反应形成复杂的硫酸铵盐堵塞催化剂孔道,另一方面与活性 组分 MnO₂结合形成 MnSO₄使得部分活性组分形态发生变迁.其中硫酸铵盐的形成可通过适当的热处理得以去除,而 MnSO₄则不可恢复,但催 化剂 SCR 活性却显著增加,表明 MnSO₄的形成不是催化剂失活的主要因素.吸附态的硫可显著增加催化剂表面酸性,因此对 SCR 活性有促进 作用.催化剂失活主要机理为:由气相 SO₂的连续氧化并与 NH₃相结合形成硫酸铵盐,并且在低温下难以分解,以致堵塞催化剂活性中心. 关键词:MnO₄/PG 催化剂;硫酸铵盐;MnSO₄;热处理

文章编号:0253-2468(2013)10-2686-08 中图分类号:X701 文献标识码:A

The mechanism of SO₂ influence on the denitration of MnO_x/PG catalysts at low temperature

ZHANG Cuiping, ZHANG Xianlong^{*}, WU Xueping, ZHANG Lianfeng, ZHANG Hengjian, YANG Baojun School of Chemical Engineering, Hefei University of Technology, Hefei 230009 Received 19 December 2012; received in revised form 20 January 2013; accepted 20 January 2013

Abstract: MnO_x/PG , as low temperature SCR catalysts, were prepared by means of pore volume impregnation. Influences of SO₂ on the MnO_x catalysts at low temperature were investigated by transient response of SO₂ and temperature programmed surface reaction (TPSR). Catalysts were characterized by TPD, BET surface area and XPS, and the mechanism of SO₂ deactivation was discussed. The results indicated that SO₂ in the flue gas obviously inhibited the catalyst's activities for SCR at low temperature. Catalytic oxidation of SO₂ to SO₃ was mainly responsible for the poisoning of the MnO_x/PG catalysts. On one hand, SO₂ was oxidized to SO₃ and then reacted with NH₃ and H₂O to form complicated ammonium sulfates, which were then deposited on the surface of catalysts and blocked the pore; On the other hand, MnSO₄ was formed due to the combination of SO₃ and MnO₂, which partly changed the morphology of active species. The ammonium sulfates can be removed by appropriate heat treatment, while MnSO₄ cannot be recovered in the SCR. SCR activity of the MnO_x/PG catalysts was enhanced obviously after heat treatment for the poisoned catalysts, which indicated that the formation of MnSO₄ was not the key factor for the deactivation of catalysts. The adsorbed sulfur can enhance the surface acidity of catalysts significantly and thus improve the catalyst's activity. The main mechanism of the deactivation for MnO_x/PG catalysts was that SO₂ in the flue gas was oxidized continuously and formed ammonium sulfate with NH₃. The ammonium sulfates were difficult to decompose in low temperature, which resulted in the blocking of active sites. **Keywords**; MnO_y/PG catalysts; ammonium sulfates; MnSO₄; heat treatment

1 引言(Introduction)

氮氧化物是引起酸雨、光化学烟雾等环境问题的主要空气污染物之一,也是目前大气环境保护的重点和难点(Qi et al., 2003).各国对 NO_x 的排放

都有严格的限制,且标准越来越高.我国自2004年 开始对 NO_x 收取排污费,从此烟气脱硝在我国大规 模开展(刘炜等,2006).SCR 技术是目前最应用广 泛的脱硝技术,具有脱硝率高、选择性好、装置结构 简单、没有副产品等优点.其中催化剂是 SCR 技术

基金项目:国家自然科学基金(No. 40902020,51002042);高等学校博士学科点专项科研新教师基金(No. 20090111120019);中央高校基本科研业务费专项资金(No. 2011HGQL1003)

Supported by the National Natural Science Foundation of China (No. 40902020,51002042), the Special Research Foundation of Doctor Program (No. 20090111120019) and the Fundamental Research Funds for the Central Universities (No. 2011HGQL1003)

作者简介: 张翠平(1987—), 女, E-mail: lanqier5221@126.com; * 通讯作者(责任作者), E-mail: zhangxianlong@yahoo.com.cn

Biography: ZHANG Cuiping (1987—), female, E-mail: lanqier5221@126.com; * Corresponding author, E-mail: zhangxianlong@yahoo.com.cn

的核心,催化剂的组成、结构、寿命等直接影响 SCR 系统的脱硝活性,目前已经研究出多种适合我国大 部分电厂锅炉 SCR 脱硝的低温高活性催化剂,其中 锰基催化剂低温 SCR 脱硝活性更优,如 Mn/TiO, (Donovan *et al.*, 2004)、Mn/γ-Al₂O₃(王辉等, 2001) MnO₂-RP/SP/CP (Li et al., 2011) Mn-Ce-Co/TiO,(于国峰等,2012)等.本课题组前期对 MnO_/PG 催化剂的研究发现.250 ℃时 MnO_/PG 催化剂脱硝率可达 95% 以上(李金虎等, 2010; Zhang et al., 2012). 然而, 烟气中的 SO₂对脱硝催 化剂有很强的毒害作用,低温段尤为严重,即便是 脱硫后仍会有少量 SO,残存;而且在低温情况下,尾 气中低浓度 SO₂(约 100 mg·m⁻³)更易吸附于催化 剂表面,造成催化剂中毒(黄海凤等,2011;Kijlstra et al., 1998). 硫中毒现象一直是低温催化剂实际 应用中所面临的瓶颈问题,欲突破瓶颈,开发出具 有高实用性、高活性、高抗硫性的低温催化剂必须 究其根源,因此研究 SO,对催化剂脱硝活性的影响 及其机理具有重要的学术价值和现实意义,是烟气 净化领域未来发展的重要理论基础.

沈伯雄等对 MnO_x-CeO_x/ACF 催化剂的研究发 现,在 SO₂存在的催化剂中毒主要归因于硫酸铵盐 沉积和金属硫酸盐形成两方面的原因(Shen *et al.*, 2010); Kijlstra 等(1998)研究发现, SO₂对 MnO_x/ Al₂O₃催化剂的毒害并非由于 Al₂(SO₄)₃的形成或 硫酸铵盐的沉积,而是因为表面 MnSO₄的形成使活 性组分减少所致; Chang 等(2012)研究了 SO₂对 MnO_x-CeO₂催化剂的 SCR 低温脱硝活性影响,发现 在 SO₂存在时,活性组分 MnO_x 优先被硫酸化,转化 为 MnSO₄,然后 CeO₂被进一步硫酸化,导致活性组 分减少,从而降低了脱硝活性.为深入剖析 SO₂对 MnO_x/PG 催化剂的低温活性影响机理,本文针对低 温 SCR 脱硝工艺,运用 SO₂暂态响应、TPRS、BET、 XPS 等方法对新鲜 MnO_x/PG 及不同条件处理后的 催化剂进行活性评价和表征测试,考察其失活机理.

2 实验部分(Experiment)

2.1 实验材料

载体凹凸棒石来自安徽省明光市官山凹凸棒 石粘土矿,纯度 > 90%.所用试剂为 50% 的 Mn(NO₃)₂溶液,由国药集团化学试剂有限公司提 供,纯度为 AR.实验所用气体均由南京特种气体有 限公司提供.

2.2 催化剂的制备

取适量的纯凹凸棒石,研磨,筛选出 20~40 目的颗粒,在空气氛围中于 300 ℃环境下煅烧 2 h 制得催化剂载体.采用等体积浸渍法制备催化剂,量取一定量 50%的硝酸锰溶液,加入适量去离子水,以1:1.2 的料液比(1 g凹凸棒石载体需 1.2 mL 溶液浸渍,既保证溶液完全吸收,又保证了凹凸棒石 液浸渍,既保证溶液完全吸收,又保证了凹凸棒石 本身结构不被破坏)加入制备好的凹凸棒石颗粒混 合均匀;室温下浸渍 24 h 后,在 50 ℃、110 ℃下分 别干燥 5 h、10 h,然后在空气氛围下 300 ℃煅烧 3 h,即制得负载一定质量分数的凹凸棒石负载锰氧 化物(MnO_x/PG)催化剂,其中 x 表示 Mn 的原子质 量分数.

2.3 催化剂活性评价

催化剂的脱硝活性评价在常压固定床反应器 中进行,反应器采用内径为15 mm、高为80 mm的 竖式石英管,由管式电炉加热.活性评价装置由模 拟烟气、固定床反应器和分析检测三大部分构成, 反应流程如图1所示.催化剂用量为2g,模拟烟气 由NO、NH₃、O₂、Ar、SO₂混合而成,原料气组成为 0.06% NO、0.06% NH₃、0.04% SO₂(如需要时)、 3% O₂、Ar 作平衡气,气体总流量为350 mL·min⁻¹, 空速为6000 h⁻¹.采用烟气分析仪 testo350-XL 及 testo300XL-I 分别测量反应器进出口气体的 NO、 NO₂及 SO₂浓度.

2.4 催化剂的表征

2.4.1 暂态响应实验 暂态响应实验是在活性评 价装置上进行.200 ℃下,在 SCR 反应过程中,首先 在无 SO₂状态下使催化剂脱硝活性达到稳定状态, 然后通入体积分数为0.04%的 SO₂,同时改变 Ar 流 量以保持气体总流量不变,检测其脱硝率;待脱硝 率稳定后,将 SO₂切断,以等流量载气 Ar 替换;催化 性,探究反应机理.

剂脱硝率再次达到稳定后,切断所有气体,在Ar保 护气氛下升温至300℃,对催化剂进行热处理后,降 温至反应温度,恢复SCR反应条件,检测热处理后 催化剂脱硝活性;活性稳定后再次通入0.04%的 SO₂,测催化剂脱硝率,以研究催化剂对SO₂的敏感

2.4.2 比表面积及孔分布测定 采用比表面积测 定仪测量样品的比表面积和孔容、孔径.样品经50 ℃预处理2h,在77K下进行氮吸附.在等温条件 下,通过测定不同压力下催化剂对气体的吸附量, 获得等温吸附线;采用BET方程算出催化剂的比表 面积,孔容和孔径分别用BJH和压汞法计算得到, 并绘制出相应的孔径分布图.

2.4.3 XPS X 射线光电子能谱(X-ray photoelectron spectroscopy, XPS) 表征在合肥工业大学采用美国 Thermo ESCALAB 250 光电子能谱仪完成. 单色 Al Kα, 功率 1500 W, 500 μm 束斑, 能量分析器固定透 射能为 20 eV, 用以分析 SO₂ 毒化后催化剂表面的 Mn 和 S 元素组分含量及价态.

2.4.4 TPSR 程序升温表面反应(Temperature programmed surface reaction, TPSR)是在石英反应管 和管式电炉中常压下进行的.取2g催化剂样品于 直径为15 mm 的石英管中,50℃下通人过饱和 NH₃ 后,切断 NH₃,通入 0.06% NO、3% O₂, Ar 为平衡 气,气体总流量为350 mL·min⁻¹,以5℃·min⁻¹的速 率从100℃升温至350℃,检测升温过程中出口 NO 及 NO₂的浓度.依照 SCR 主要反应方程式(1)可知, NH₃与 NO 的理论比为1:1,以 NO 的消耗量确定催化 剂表面具有 SCR 活性的 NH₃吸附量,以此比较新鲜 MnO₄ 催化剂与热处理后催化剂对 NH₃的吸附量.

 $4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O \qquad (1)$

3 实验结果与讨论(Results and discussion)

3.1 SO₂的暂态响应

图 2 所示为 200 ℃时 PG 和 MnO₁₀/PG 催化剂 的 SO₂暂态响应及中毒后催化剂热处理后活性评价 曲线.从图中可以看出,在 SCR 条件下,PG 和 MnO₁₀/PG 催化剂活性稳定之后,新鲜催化剂在无 SO₂气氛中的 NO 转化率稳定在 87%,通入 SO₂后催 化剂活性急剧降低,在6h内 MnO₁₀/PG 催化剂的脱 硝率从 87%降至 25%,而 PG 脱硝活性从 45%降至 20%,并基本达到稳定状态,随后切断 SO₂,PG 及 MnO₁₀/PG 催化剂的脱硝活性并没有恢复.该结果 表明,凹凸棒石本身对 SCR 反应有一定的催化活性,并且也易于受到 SO₂的毒化影响;对于 MnO₁₀/PG 催化剂而言,这种毒化作用更为显著.结果同时表明,在低温条件下,SO₂对脱硝催化剂的毒化具有不可逆性,这与黄海凤等(2011)、张峰(2010)等对Mn-Fe-Ce/TiO₂催化剂的抗硫性研究结果一致.分析认为,一方面可能由于 SO₂本身能够与 NH₃发生竞争反应,消耗还原剂 NH₃;另一方面可能由于 SO₂部分被催化氧化为 SO₃并与 NH₃形成了热稳定性较好的硫酸铵盐,沉积在催化剂表面,覆盖了催化剂的活性中心,堵塞了催化剂孔道,导致催化剂活性降低(Wu et al., 2009; Xu et al., 2009).此外,部分MnO₂可能与 SO₂/SO₃反应,使得活性组分的性能和形态发生了改变.

图 2 200 ℃, PG 及 MnO₁₀/PG 催化剂的 SO₂的暂态响应及热 处理后性能评价实验

Fig. 2 $$\rm SO_2$ transient response and heated performance evaluation for pure PG and MnO_{10}/PG catalysts at 200 $^{\circ}C$

催化剂脱硝活性稳定以后,切断所有气体,在 Ar保护气下对毒化后的催化剂升温至 300 ℃进行 热处理 2h后,再降温至 200 ℃进行无 SO₂脱硝反 应.结果显示,毒化后的凹凸棒石经热处理后脱硝 活性恢复,其脱硝率与新鲜剂并无明显差异;而毒 化后的 MnO₁₀/PG 催化剂经热处理后活性恢复,NO 转化率达到 100%,显著高于新鲜催化剂的 NO 转化 率.但再次通入 SO₂后,发现热处理活性恢复后 2 种 催化剂脱硝活性仍然大幅度下降,表明热处理后尽 管脱硝活性恢复并略有提升,但对于气相中 SO₂的 毒化作用仍不具有抵抗性.分析认为,PG 毒化后仅 有硫酸铵盐生成,而 MnO₁₀/PG 毒化后,除硫酸铵盐 外还有 MnSO₄存在.相关文献表明,300 ℃下,仅 (NH₄)₂SO₄分解为 NH₄HSO₄,而在通常运行条件下 NH₄HSO₄的熔点为 147 ℃(Wu *et al.*, 2009; 曹忠 良等,1982),热处理过程中 NH₄HSO₄熔化并进一步 升华,在气流作用下排出,硫酸锰与活性组分重新 裸露出来;对比二者可以推测硫酸铵盐对 MnO₁₀/PG 催化剂失活起重要作用.热处理后催化剂中可能残 留部分[SO₄]²⁻,增加了催化剂表面酸性位,增强了 催化剂对 NH₃的吸附,从而使得热处理后的 MnO₁₀/ PG 催化剂脱硝活性得以提升.综上可知,MnSO₄的 存在对 MnO₁₀/PG 脱硝率的升高起着至关重要的作 用,吸附态的 SO₂对催化剂脱硝活性起促进作用,气 相 SO₂的存在则是催化剂中毒的根本原因.

3.2 O2、NH3对 SO2的氧化率影响

为了检验在 SCR 过程中气相 SO,的形态变迁以 及在催化剂上积存情况,本文对不同气氛下反应器 出口 SO,的逸出行为进行了研究. 图 3 所示为 200 ℃下,反应器入口 SO,体积分数为 0.04% 时, 0,、 NH,的存在对 SO,出口体积分数的影响. 由图可以 看出,不通入 O,、NH,时,SO,出口体积分数变化表 现为典型的吸附曲线,曲线平稳后 SO,脱除率约为 8% 左右,可能是由于被催化剂表面的晶格氧所氧化 或者是吸附作用所贡献.当 0,与 NH,单独存在时, 吸附曲线的末端 SO, 脱除率相差很小, 均在 20% 左 右;表明 0,或 NH,单独存在均对 SO,在催化剂上的 脱除具有一定的促进作用,由此证明催化剂上 SO, 的氧化以及 SO,与 NH,的结合都有所发生. 两者共 同存在时,SO,脱除率为28%,大量SO,被催化剂表 面的晶格氧及气态 O2氧化为 SO3,表明 SO2的氧化 以及 SO,与 NH,的反应形成了协同效应,大幅增加 了 SO,在催化剂表面的积存,一方面可能形成了硫 酸铵盐,另一方面也可能使得表面活性组分与 SO, 结合形成了金属硫酸盐.在 MnO₁₀/PG 催化剂上, SO,的氧化与姜伟平(2012)对 CuO/PG 脱硫剂上 SO,的氧化研究结果基本一致.由此可以说明,有 SO,存在时,部分SO,被氧化后与NH,或MnO,反应 生成硫酸铵盐及硫酸锰;部分 SO,则是直接与 NH, 或 MnO, 结合,生成亚硫酸铵盐或硫酸锰,然后进一 步氧化生成硫酸铵盐或硫酸锰,其可能的反应如下 (张文山等,2009):

$$= 0_2 反应 \quad SO_2 + O_2 \rightarrow SO_3$$
 (2)

$$SO_3 + H_2O \rightarrow H_2SO_4$$
 (3)

$$\mathrm{NH}_{3} + \mathrm{H}_{2}\mathrm{SO}_{4} \rightleftharpoons \mathrm{NH}_{4}\mathrm{HSO}_{4}/(\mathrm{NH}_{4})_{2}\mathrm{SO}_{4}$$

$$(4)$$

 $MnO_2 + H_2SO_4 \rightarrow MnSO_4$ (5)

与
$$NH_3$$
 反应 $SO_2 + H_2O \rightarrow H_2SO_3$ (6)
 $NH_3 + H_2SO_3 \rightleftharpoons NH_4HSO_3/(NH_4)_2SO_3$

$$MnO_2 + H_2SO_3 \rightarrow MnSO_4$$
 (8)

- **图 3 200 ℃时,O₂、NH₃对 SO₂氧化率影响(2 g MnO₁₀/PG,气体体积分数:SO₂:4×10⁻⁴, NH₃:6×10⁻⁴, O₂3%,GHSV =6000 h⁻¹)**
- Fig. 3 The influence of O_2 and NH_3 for the oxidation rate of SO_2 at 200 $^\circ\!\mathrm{C}$
- 3.3 不同条件处理下的 MnO₁₀/PG 催化剂的 BET 及孔径分布图

为进一步确定 SCR 脱硝过程中 SO,对 MnO10/ PG 催化剂的毒化作用是由于含硫化合物的形成并 堵塞表面所引起,对经不同反应路径后或不同条件 下处理后的 MnO₁₀/PG 催化剂(以 MnO₁₀-a 表示)进 行了 BET 比表面及孔径分布分析. 在 SCR 过程中, 200 ℃下 SO,毒化后的催化剂以 MnO10-b 表示;毒化 后的 MnO₁₀/PG 催化剂在 Ar 保护气下经 300 ℃热 处理活性恢复后的样品以 MnO₁₀-c 表示;为研究硫 酸铵盐对 MnO₁₀/PG 催化剂活性的单因素影响,用 等体积浸渍法将与毒化后催化剂中含量等同的硫 酸铵盐(总质量分数为0.6%,硫酸铵与硫酸氢铵质 量比为1:1)负载在新鲜 MnO₁₀/PG 催化剂上,室温 浸渍 24 h 后 50 ℃下烘干,以 MnO₁₀-d 表示;为单独 研究 MnSO₄对新鲜催化剂的影响,200 ℃下,将新鲜 催化剂在 SO₂(体积分数为 0.04%)、O₂(3%)、Ar (平衡气,总流量为350mL·min⁻¹)气氛下进行预硫 化处理,催化剂样品以 MnO₁₀-e 表示.

不同条件处理后的 MnO₁₀/PG 催化剂的比表面 积、孔容、孔径数据如表 1 所示.可以看出,200 ℃ 下,经 SO₂毒化后的 MnO₁₀/PG 催化剂比表面积降低 了约 20%,孔体积有所降低,孔径大幅提高,而催化 剂脱硝率降低约 65%,催化剂比表面积的降低与脱

(7)

2690

硝率降低不成正比由此可以推断,SCR 过程中生成 的硫酸铵盐及硫酸锰覆盖在催化剂表面,堵塞催化 剂孔道,且以活性组分周围小孔为主;毒化后的催 化剂经热处理后,比表面积、孔容均略大于毒化后 催化剂,但仍低于新鲜剂,孔径略有降低,表明热处 理过程中孔道中的沉积物部分分解,这也是热处理 后催化剂活性恢复的重要原因之一.负载硫酸铵盐 及硫化处理后的 MnO₁₀/PG 催化剂的比表面积和孔 容均低于新鲜 MnO₁₀/PG 催化剂且高于毒化后催化 剂,孔径大于新鲜剂但略小于毒化后催化剂;由此 表明,硫酸铵盐与 MnSO₄的共同存在是导致新鲜催 化剂比表面积、孔容下降和孔体积增大的原因,同 时也进一步验证了 SO₂对 MnO₁₀/PG 催化剂脱硝活 性影响因素的推断(时博文,2012;高彦杰,2009).

 ,这也是热处理
 为更加明确不同条件处理下 MnO₁₀/PG 催化剂

 .负载硫酸铵盐
 的孔径分布变化,对其进行孔径分布分析,结果如

 的比表面积和孔
 图 4 所示.对比图 4a、4b 可以看出,毒化后催化剂中

 富于毒化后催化
 2 ~ 5 nm 介孔体积明显低于新鲜剂,与表1中的

 表1
 不同条件处理后的 MnO₁₀/PG 催化剂

Table 1 BET of MnO ₁₀ catalysts treated by different conditions				
编号	处理	$S_{\rm BET} / ({\rm m}^2 \cdot {\rm g}^{-1})$	$V_{\rm p}/({\rm cm^{3} \cdot g^{-1}})$	$D_{\rm p}/{\rm nm}$
MnO ₁₀ -a	新鲜催化剂	109.069	0.492	17.102
MnO ₁₀ -b	200 ℃、SO2毒化	86.790	0.447	23.624
MnO ₁₀ -c	毒化后 Ar 保护气下 300 ℃热处理恢复	90.731	0.481	23.529
MnO_{10} -d	新鲜催化剂等体积浸渍法负载硫酸铵盐	94.807	0.460	23.462
MnO ₁₀ -e	新鲜催化剂在 SO_2 、 O_2 、Ar气氛下预硫化	93.446	0.451	23.615

数据分析结果一致;如图 4c 所示,热处理后 MnO₁₀/ PG 催化剂中 2~5 nm 及 20~50 nm 介孔体积均有 所增大;从图 4d、4e 所示的孔径分布图也可以看出, 介孔体积明显低于新鲜 MnO₁₀/PG 催化剂.综合不 同条件处理后的 MnO₁₀/PG 催化剂的比表面积、孔 容、孔径数据及其孔径分布图,基本可以断定:SO₂ 存在时,催化过程中有硫酸铵盐及 MnSO₄生成,附着 于催化剂表面,主要堵塞催化剂活性组分周围的 2 ~5 nm 介孔,降低其脱硝活性,介孔量决定 SCR 活性.

3.4 XPS

前文所述, SO₂氧化后形成 SO₃可能会与催化剂 活性组分 MnO₂发生反应, 或者说 MnO₂可能部分的 参与了 SO₂的氧化, 从而形成了不可恢复的 MnSO₄. 因此, 对毒化后 MnO₁₀/PG 催化剂进行了 XPS 分析, 其 Mn 2p 和 S 2p 的 XPS 谱图如图 5 所示. 在图 5a 的 S 2p 谱图中, S 2p 的单峰在 168. 18 eV, 等量 S⁴⁺ 和 S⁶⁺ 同时存在时的结合能为 167. 5 eV (Roman *et al.*, 1997), 毒化后 MnO₁₀/PG 催化剂的 S 2p 谱 图中单峰结合能偏移至 168. 18 eV (偏移量为 +0.68 eV),结合能越高, 表明该元素价态越高. 因 此, 毒化后的 MnO₁₀/PG 催化剂中的 S⁶⁺和 S⁴⁺同时 存在, 且 S⁶⁺含量高于 S⁴⁺含量, 以 S⁶⁺ 为主(Shen *et al.*, 2010), 由此可知毒化后的催化剂中的 S 主 要以[SO₄]²⁻的形式存在.

图 5b 的 Mn 2p 谱图中, Mn 2p3/2两个 XPS 峰对 应的结合能分别为 640.28 与 642.3 eV, Li 等 (2007)研究发现, MnO₂的结合能为 642.3 eV, 这说 明 MnO₁₀/PG 催化剂中 MnO₂ 主要以 MnO₂的形式存 在,这与之前时博文(2012)的研究结果一致. Mn⁰的 结合能为 639.0 eV(Min et al., 2007), Mn³⁺的结合 能为 641.0 eV(Shen et al., 2010),640.28 eV 介于 两者之间,因此推断其为 Mn²⁺对应的结合能.从谱 图中可以看出, Mn²⁺的单峰明显高于 MnO₂峰位, 表 明毒化后 MnO10/PG 催化剂中 Mn2+的含量高于 Mn4+,且由 XPS 元素含量分析(未在文中列出)可 知, Mn²⁺含量约为 Mn⁴⁺含量的两倍,即约 75% 质量 分数的活性组分 MnO,被硫酸化.由此证明,SO,的 催化氧化伴随了大部分活性组分 MnO2 被还原为 Mn²⁺的过程,意味着毒化过程中的 MnO₁₀/PG 催化 剂上 MnSO, 的形成是确定的. 结合 2.1 节可知, 催化 剂在含有 SO2气氛中 SCR 脱硝失活后,表面形成的 硫酸铵盐可通过适当的热处理得以分解,而 MnSO₄

则不可恢复,但部分 MnSO₄的形成并不对催化剂的 SCR 活性形成显著的不利影响,相反,部分残留的 [SO₄]²⁻则有利于催化剂的 SCR 活性.

图 5 毒化后的 MnO₁₀/PG 催化剂的 Mn 2p 和 S 2p XPS 谱图 Fig. 5 XPS spectra of Mn 2p and S 2p for poisoned MnO₁₀/ PG catalysts

3.5 负载硫酸铵盐与硫化后的 MnO₁₀/PG 催化剂 SCR 活性评价

为深入研究硫酸铵盐与 $MnSO_4$ 对 MnO_{10}/PG 催 化剂脱硝活性的影响,分别对负载硫酸铵盐及硫化 后 MnO_{10}/PG 催化剂进行活性评价,结果如图 6 所 示. 低温段,较之新鲜 MnO_{10}/PG 催化剂,两者脱硝 活性均有大幅降低;150 ℃时, MnO_{10}/PG 催化剂载 铵后脱硝活性由 78.9% 降至 59%,硫酸化后降至 42.3%;200 ℃时,前者脱硝率由 98.3% 降至 84.8%,后者降至 68.5%,但均高于毒化后催化剂 脱硝率.由此进一步验证了 SO_2 使 MnO_{10}/PG 催化剂 低温脱硝活性降低是硫酸铵盐与 $MnSO_4$ 共同作用的 结果. 而 250 ℃时新鲜催化剂与载铵后和硫酸化后 MnO_{10}/PG 催化剂脱硝率几乎相等,高于 250 ℃时, 两者脱硝率甚至远大于新鲜剂.由此表明:硫酸铵 盐与 $MnSO_4$ 对 MnO_{10}/PG 催化剂的失活都起着至关 重要的作用,且温度越高毒化作用越不明显,高于 250 ℃时甚至对催化剂脱硝活性起促进作用.可以 推断,负载硫酸铵盐后的 MnO_{10}/PG 催化剂随着温 度升高,硫酸铵盐逐渐分解为硫酸氢铵,达到熔点 后硫酸氢铵熔化进而升华,在反应器及催化剂表面 形成的酸性氛围促进了 NH_3 的吸附,且 NO 能与 $NH_4HSO_4反应生成 N_2,从而促进了催化剂的脱硝活$ $性.而 <math>MnO_{10}/PG$ 催化剂在预硫化过程中一部分 $MnO_2转化为 MnSO_4,活性组分减少,且 MnSO_4极易$ 吸水,造成催化剂脱硝率降低;但 250 ℃以上的高温 $使硫酸锰失水(粟海锋等,2008),且 MnSO_4可能对$ $NO 与 <math>NH_3$ 的反应具有一定的催化活性,从而提高 了催化剂脱硝率.

3.6 新鲜 MnO₁₀/PG 与热处理后 MnO₁₀/PG 催化剂的程序升温表面反应(TPSR)

图 7 所示为新鲜 MnO_{10}/PG 与热处理活性恢复 后 MnO_{10}/PG 催化剂的 TPSR 曲线. 图中 MnO_{10} -a 曲 线分别表示 100~350 ℃时,新鲜 MnO_{10}/PG 催化剂 在 O_2 、NO 与 Ar (平衡气,气体总流量为 350 mL·min⁻¹)气氛下的脱硝率变化; MnO_{10} -a + NH₃与 MnO_{10} -c + NH₃曲线分别表示新鲜催化剂与热处理 后 MnO_{10}/PG 催化剂在 50 ℃下吸附 NH₃至饱和,随 后切断 NH₃,在相同温度、相同气氛下的脱硝率曲 线. 图 8 所示为 TPSR 过程中相应的出口 NO₂体积 分数曲线. 可以看出,50~350 ℃时在没有吸附 NH₃ 的情况下,新鲜 MnO_{10}/PG 催化剂脱硝率仅为 20% 左右,且从 280 ℃开始才有 NO₂生成,随着温度升 高,NO₂出口体积分数逐渐增大,即有大量 NO 被氧 化为 NO₂; 而吸附 NH₃后,新鲜 MnO_{10}/PG 催化剂脱 硝率大幅上升,100 ℃ 时从 5% 升至 40% 以上,

图 7 新鲜 MnO₁₀/PG 与热处理后 MnO₁₀/PG 的氨的吸脱附曲线

Fig. 7 NH₃ adsorption and desorption curve for fresh and heated MnO₁₀/PG Reaction conditions: heating rate(5 °C·min⁻¹, $V_{\rm N0} = 6 \times 10^{-4}$, 3% O₂, Ar as balance, total flue rate: 350 mL·min⁻¹, GHSV: 6000 h⁻¹)

图 8 新鲜 MnO₁₀ 与热处理后 MnO₁₀ 的氨的脱附过程中 NO₂ 出 口体积分数

Fig. 8 $$\rm NO_2$ volume fraction of fresh and heated ${\rm MnO_{10}}$ in the process of $\rm NH_3$ desorption

230~270℃时脱硝率达100%,表明新鲜 MnO₁₀/PG 催化剂对 NH₃的吸附活化能力较强,这与此前时博 文(2012)、刘清雅(2007)等对 NH₃的吸脱附研究结 果一致,270℃以后开始逐渐下降.与此同时,随着 温度升高,开始有少量的 NO₂生成,意味着吸附的 NH₃已逐渐消耗;而热处理后 MnO₁₀/PG 催化剂在 210℃脱硝率达100%,且直至反应结束仍无下降趋 势,且 TPSR 过程中无 NO₂生成.由此可知:无 NH₃ 时,新鲜催化剂脱除 NO 仅为催化剂本身对 NO 的 吸附与氧化;吸附 NH₃后,NH₃与 NO₂的反应使得 NO₂的出口体积分数显著降低.在 TPSR 过程中,热 处理后 MnO₁₀/PG 催化剂脱硝率整体水平高于新鲜 剂,同时无出口 NO₂产生,表明经适当热处理后的催 化剂对 NH₃的吸附活化能力大大增强,从而提高了 热处理后 MnO₁₀/PG 催化剂的脱硝活性.

4 结论(Conclusions)

1)低温段,SO₂对 MnO₁₀/PG 催化剂脱硝活性 起明显抑制作用.SCR 过程中,部分 SO₂被氧化为 SO₃;NH₃及 MnO₂一方面与 SO₃反应生成硫酸铵盐 及 MnSO₄;另一方面可直接与 SO₂反应,生成的亚硫 酸铵盐,催化剂表面的晶格氧及其气相 O₂进一步将 其氧化为硫酸铵盐,硫酸铵盐与 MnSO₄附着在催化 剂表面,主要堵塞催化剂的介孔,降低其脱硝率,其 中硫酸铵盐对催化剂失活起决定性作用.

2) 300 ℃热处理对 MnO₁₀/PG 催化剂活性恢复 效果显著,其热处理后脱硝活性甚至高于新鲜剂. 主要有两方面的原因: 一是因为热处理过程中 (NH₄)₂SO₄分解为 NH₄HSO₄,NH₄HSO₄在高温下进 一步熔化升华脱离催化剂表面,使得比表面积部分 恢复,且催化剂表面的活性组分 MnO₂重新裸露出 来,参与 SCR 反应; 二是热处理后催化剂中残留的 [SO₄]²⁻增加了催化剂的表面酸性,增强了催化剂 对 NH₃的吸附活化能力,从而提高了 MnO₁₀/PG 催 化剂活性.

责任作者简介:张先龙(1978—),男,毕业于中国科学院研究生院,合肥工业大学化工学院副教授,硕士生导师,主要从事环保、催化领域的研究. E-mail: zhangxianlong@ yahoo. com. cn.

参考文献(References):

- 曹忠良,王珍云. 1982. 无机化学反应方程式手册[M]. 长沙:湖南 科学技术出版社. 315-317
- Chang H Z, Li J H, Chen X Y, *et al.* 2012. Effect of Sn on MnO_x -CeO₂ catalyst for SCR of NO_x by ammonia: Enhancement of activity and remarkable resistance to SO_2 [J]. Catalysis Communications, 27: 54-57
- Donovan A P, Balu S U, Panagiotis G S. 2004. TiO₂-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH₃: İ. Evaluation and characterization of first row transition metals [J]. Journal of Catalysts, 221;421-431
- 高彦杰. 2009. 低温选择性催化还原脱硝催化剂的制备及性能研究 [D]. 南京:南京理工大学. 40-46
- 黄海凤,俞河,张峰,等. 2011. 低温 NH₃ 选择性催化还原脱硝催化 剂 Mn₁Fe_xCe_{1-x}/TiO₂抗硫再生性能研究[J]. 中国电机工程学

报,31(35):29-30

- 姜伟平. 2012. 改性凹凸棒石干法烟气脱硫性能的研究[D]. 合肥: 合肥工业大学. 35-45
- Kijlstra W S, Biervliet M, Eduard K Poels, *et al.* 1998. Deactivation by SO_2 of $MnO_x/Al_2 O_3$ catalysts used for the selective catalytic reduction of NO with NH₃ at low temperatures [J]. Appl Catal B, 16:327-336
- Li J H, Chang H Z, Ma L, *et al.* 2011. Low-temperature selective catalytic reduction of NO_x with NH_3 over metal oxide and zeolite catalysts—A review [J]. Catalysis Today, 175(1): 147-156
- 李金虎,张先龙,陈天虎,等. 2010. 凹凸棒石负载锰氧化物低温选 择性催化还原催化剂的表征及对氨的吸脱附[J]. 催化学报,31 (4):454-459
- Li J H, Chen J J, Rui K, *et al.* 2007. Effects of precursors on the surface of Mn species and the activies for NO reduction over MnO_x/TiO₂ catalysts [J]. Catalysis Communication, 8:1896-1900
- 刘清雅,刘振宇,李成岳. 2007. NH, 在选择性催化还原过程中的吸附与活化[J]. 催化学报, 27(7):636-646
- 刘炜,童志权,罗婕. 2006. Ce-Mn/TiO2催化剂选择性催化还原 NO 的低温活性及抗毒化性能[J]. 环境科学学报,26(8): 1240-1245
- Min K, Eun D P, Ji M K, et al. 2007. Manganese oxide catalysts for NO_x reduction with NH₃ at low temperatures [J]. Appl Catal A, 327: 261-269
- Qi G S, Yang R T. 2003. Low-temperature selective catalytic reduction of NO with NH₃ over iron and manganese oxides supported on titania [J]. Applied Catalysis (B: Environmental),44(3):217-225
- Roman E, Segovia J L D, Martin-Gago J A, et al. 1997. Study of the interaction of SO₂ with TiO₂ (110) surface [J]. Vacuum, 48: 597-600
- Shen B X, Liu T. 2010. Deactivation of MnO_x-CeO_x/ACF Catalysts for Low-Temperature NH₃-SCR in the Presence of SO₂[J]. Acta Phys Chim Sin,26(11):3009-3015
- 时博文. 2012. 凹凸棒石负载过渡金属氧化物低温 SCR 脱硝催化剂 的制备与表征[D]. 合肥:合肥工业大学. 40-52
- 粟海锋,高家利,文衍宣,等. 2008. MnSO₄ · H₂O 热解制备四氧化 三锰反应动力学[J]. 化工学报,59(2):359-365
- 王辉,赵秀阁,肖文德,等. 2001. NO 在负载型金属氧化物催化剂上 的氧化反应机理[J]. 华东理工大学学报, 27(1):6-10
- Wu Z B, Jin R B, Wang H Q, et al. 2009. Effect of ceria doping on SO₂ resistance of Mn/TiO₂ for selective catalytic reduction of NO with NH₃ at low temperature [J]. Catal Commun, 10(6):935-939
- Xu W Q, He H, Yu Y B. 2009. Deactivation of a Ce/TiO₂ catalyst by SO₂ in the selective catalytic reduction of NO by NH₃[J]. J Phys Chem C,113(11):4426-4432
- 于国峰,韦彦斐,金瑞奔,等. 2012. Mn-Ce-Co/TiO₂催化剂低温脱硝 活性研究[J].环境科学学报,32(7):1743-1749
- 张峰. 2010. SCR 脱硝催化剂的抗硫再生性能和整体化制备研究 [D]. 杭州:浙江工业大学
- 张文山,石朝军,杨先贵,等. 2009. SO₂还原 MnO₂ 矿制取硫酸锰的 研究[J]. 中国锰业,27(4):7-8,24
- Zhang X L, Shi B W, Wu X P, et al. 2012. A novel MnO_x supported palygorskite SCR catalyst for lower temperature NO removal from flue gases [J]. Advanced Materials Research, 356:975-978