www.cagsbulletin.com www.地球学报.com

黑龙江翠宏山铅锌多金属矿区花岗岩锆石 SHRIMP U-Pb 测年及其地质意义

邵军,李秀荣,杨宏智

沈阳地质矿产研究所, 辽宁沈阳 110034

摘 要:翠宏山铅锌多金属矿床产在花岗岩体与下寒武统西林群铅山组变质岩系的接触带内,是一矽卡岩型铅锌多金属矿床。岩浆活动强烈,具有脉动活动特点,形成的岩石类型主要有二长花岗岩、碱长花岗岩,总结岩石地球化学特征,认为二者分别具有"I"型花岗岩和"A"型花岗岩特征,花岗岩的形成与造山后伸展作用 有关。采用锆石 U-Pb 方法确定了岩浆岩的形成年龄,获得二长花岗岩年龄为 192.8±2.5 Ma、199.0±3.1 Ma。 研究认为,铅锌多金属成矿与岩浆活动关系密切,成矿作用发生在印支晚期-燕山早期。 关键词:花岗岩;造山后伸展作用;成矿年龄;印支晚期-燕山早期;翠宏山铅锌多金属矿床 中图分类号: P578.941; P597.1 文献标志码:A doi: 10.3975/cagsb.2011.02.04

Zircon SHRIMP U-Pb Dating of Granite in the Cuihongshan Polymetallic Deposit and Its Geological Implications

SHAO Jun, LI Xiu-rong, YANG Hong-zhi

Shenyang Institute of Geology and Mineral Resources, Shenyang, Liaoning 110034

Abstract: The Cuihongshan Pb-Zn polymetallic deposit has been regarded as a skarn type ore deposit that occurs in the contact zone between the granite and the metamorphic rocks of the Qianshan Formation of the Lower Cambrian Xilin Group. This study has revealed that the granitic rocks are composed mainly of monzogranites, alkali-feldspar granites with the characteristics of both "I" type granite and "A" type granite. The granite was generated in the post-orogeny extensional system. Besides, the magmatism of these rocks had a very close relationship with the Pb-Zn polymetallic mineralization. Zircon SHRIMP U-Pb dating shows that the formation ages of two monzonitic granite samples in the Cuihongshan ore deposit are 192.8±2.5Ma and 199.0±3.1Ma, respectively. It is thus suggested that the mineralization age of the Cuihongshan Pb-Zn polymetallic deposit is Late Indosinian-Early Yanshanian.

Key words: granite; post-orogeny extensional system; mineralization age; Late Indosinian-Early Yanshanian; Pb-Zn polymetallic deposit

翠宏山铅锌多金属矿床是小兴安岭铅锌多金属 成矿带的最重要矿床之一,矿床中钨、钼、锌为大 型,铅、铁为中型,铜为小型,同时伴随具有工业利 用价值的银、锡、硒等元素。翠宏山矿床在 1984 年 由黑龙江省地质矿产局第三地质队完成勘探工作, 提交了勘探报告;在后续投入了部分勘探工作后, 于 2004 年进行了矿山建设,目前已进行矿山生产。 对该矿床前人在矿床地质特征、矿化蚀变作用、成 矿时代等方面有相关报道(黑龙江省地质矿产局地 质三队,1984;黑龙江省地质矿产局,1994;韩振新 等,2003;谭成印等,2010)。本次研究在前人研究基 础上,对翠宏山矿床进行了野外调查,选择与成矿

本文由国土资源大调查项目(编号: 200310200052)资助。

收稿日期: 2011-01-31; 改回日期: 2011-03-15。责任编辑: 闫立娟。

第一作者简介: 邵军, 男, 1963 年生。博士, 研究员。从事矿产勘查及矿产地质研究工作, 通讯地址: 110034, 辽宁省沈阳市黄河北大街 1 号。联系电话: 024-62606157。E-mail: sysjun1963@126.com。

作用密切相关的二长花岗岩、碱长花岗岩进行了精确同位素定年和系统地球化学研究,从成矿环境、 成矿机理及其成矿时代等方面进行了探讨,对深化 小兴安岭成矿带矽卡岩型铅锌多金属矿成矿的认识 具有重要意义。

1 矿区地质特征

翠宏山铅锌多金属矿床位于伊春—张广才岭陆 缘构造带北段,区域构造为一系列被区域性的北西 向断裂截切的北东向复式褶皱(韩振新等,2003;谭 成印等,2010)。褶皱核部出露下寒武统西林群铅山 组的镁质碳酸盐岩和碎屑岩,多呈残留体状分布; 褶皱两翼则零星分布有上三叠统凤山屯组中酸性火 山-沉积岩。

区域内侵入岩大面积出露, 与变质岩系呈侵入

接触关系,主要岩性为正长花岗岩、二长花岗岩、 碱长花岗岩,其中二长花岗岩、碱长花岗岩侵入活 动与多金属成矿作用有内在的成因联系(邵军等, 2006)。

铅锌多金属矿体产在北北西向的二长花岗岩、 碱长花岗岩与铅山组地层侵入接触带内(图 1),翠宏 山矿段南北延伸近 2200 m,北部宽 400 余米,向南 变窄至 50 m;翠岗矿段北西向长 1000 m,两端宽 400 m,中间为 200 m;翠南矿段南西向,长 1000 m, 宽 50~300 m;全区共圈定 106 个钨钼、铅锌多金属 矿体。矿体呈透镜状、囊状、脉状,矿石中矿物成 分复杂,主要金属矿物有磁铁矿、辉钼矿、白钨矿、 闪锌矿、方铅矿、黄铜矿、锡石、毒砂、黄铁矿、 磁黄铁矿等;主要非金属矿物有:透辉石、石榴石、 金云母、硅镁石、黑柱石、符山石、阳起石、绿帘

图 1 翠宏山矿区地质简图 Fig. 1 Geological sketch map of the Cuihongshan ore district

石、透闪石、蛇纹石、萤石、石英、绿泥石、长石、 方解石及白云石等。

围岩蚀变作用主要有矽卡岩化作用和热液蚀变 作用, 矽卡岩化作用表现为透辉石化、透闪石化、 石榴石化、金云母化和角岩化; 热液蚀变表现为透 闪石化、阳起石化、绿帘石化、硅化、绢云母化及 碳酸盐化等; 其中脉状热液蚀变作用叠加在矽卡岩 化作用之上。

翠宏山铅锌多金属矿的成矿作用与二长花岗 岩、碱长花岗岩岩体侵入期后热液活动有内在的成 因联系,矿床的成因类型为矽卡岩型(黑龙江省地质 矿产局地质三队,1984;韩振新等,2003;邵军等, 2006)。

2 花岗岩特征及其成矿作用

2.1 花岗岩地质特征

翠宏山矿区内出露的侵入岩为二长花岗岩、碱 长花岗岩,在钻孔中见二长花岗岩的黑云母含量随 深度增加而逐渐降低,另在矿区南部地表及钻孔中 见有闪长玢岩、辉绿玢岩脉。二长花岗岩体呈岩株 状产出,分布在矿区东部和西部,碱长花岗岩体呈 岩株状分布在矿区的南部和北部,其中的碱长花岗 岩与二长花岗岩呈断裂或侵入接触关系(图1),二者 均受近南北向、东西向两组断裂控制。在岩体与变 质岩系接触部位,花岗岩发生砂卡岩化和热液蚀变, 砂卡岩化形成砂卡岩化碎裂花岗岩、透辉石石榴石 砂卡岩,热液蚀变为黄铁绢英岩化、绢云母化、绿 泥石化等。从区域上看,碱长花岗岩与二长花岗岩 正长花岗岩在空间上密切伴生,构成复合岩体,在 侵位时间上前者略晚于后者(肖庆辉等,2002)。

2.2 花岗岩地球化学特征

2.2.1 主量元素

翠宏山铅锌多金属矿床矿区二长花岗岩、碱长花岗岩岩石化学特征见表 1。岩石 SiO₂含量在 71.4

%~77.1%之间, 平均为 74.04%, Na_2O+K_2O 在 7.15 %~10.36%之间, 而且 $K_2O>Na_2O$; Al_2O_3 变化范围多 在 11.6%~14.52%之间, 随着 SiO₂的增高, Al_2O_3 呈 降低趋势。A/NKC 多数小于 1.11, 变化范围多在 1.10~0.73 之间; 在 R_1 - R_2 的图解中(图 2), 二长花岗 岩样品投点在同碰撞花岗岩与造山期后花岗岩范围 之间, 而碱长花岗岩样品投点位于地幔分异产物的 花岗岩范围内, 反映区内花岗岩形成于同碰撞期向 后造山构造体制转换过渡的伸展大地构造环境背景 之下; 碱长花岗岩与二长花岗岩相比岩浆分异演化 更为强烈。

2.2.2 稀土元素

翠宏山矿区碱长花岗岩、二长花岗岩稀土元素 分析结果见表 2, 球粒陨石标准化配分曲线见图 3。 可以看出, 两类型花岗岩岩石具有明显的铕亏损, 稀土配分曲线表现为向右倾斜的"V"字型,表明岩 浆分异程度均较为强烈; 同时曲线的显著"V"字型 特征,显示出"A"型花岗岩的普遍特征(landenberger et al., 1996); 二长花岗岩与碱长花岗岩相比,轻重 稀土比值明显下降, 重稀土亏损显著, δEu 值降低, 这与斜长石分离结晶有关(肖庆辉等, 2002)。 2.2.3 形成环境探讨

从区域上看, 翠宏山矿区花岗岩是伊春地区花 岗岩的组成部分, 具有相同的岩石学特征和相同的 形成时的大地构造背景。伊春地区各类花岗岩在空 间上紧密伴生, 二长花岗岩-正长花岗岩均为富钾的 钙碱性花岗岩, Al₂O₃/(Na₂0+K₂O+CaO)<1.1, 显示出 "Ⅰ"型花岗岩特征, 岩石(Rb/Sr)及 *δ*Eu 值反映其源 区为壳幔过渡区, 氧同位素 *δ*(¹⁸O)测定值在 5.5‰~ 10‰之间, 具壳幔混源的特点, 表明二长花岗岩形 成与下地壳的部分熔融或壳幔过渡区部分熔融作用 有关(刘宝山等, 2005); 尽管部分花岗岩表现出"S" 型特点, 可能与岩浆侵吞并熔融古老地壳岩石有关 (王涛, 2000); 碱长花岗岩的岩相学、岩石地球化学

Table 1 Major element analyses of granite from the Cuihongshan ore deposit												
样号	岩石名称	-			主元	素氧	化物	1 含	量(%)			
17 3		SiO_2	${\rm TiO}_2$	$Al_2O_3\\$	$\mathrm{Fe_2O_3}$	FeO	MnO	MgO	CaO	Na ₂ O	K_2O	P_2O_5
W11-1	碱长花岗岩	75.5	0.11	11.86	0.23	1.72	0.082	0.66	0.76	1.53	6.25	0.01
W11-2	碱长花岗岩	75.44	0.11	11.6	0.36	2.25	0.015	0.68	0.94	1.00	6.45	0.02
W13-1	二长花岗岩	74.22	0.13	12.74	0.61	2.40	0.13	0.70	0.78	3.97	4.19	0.04
W14-1	二长花岗岩	73.58	0.12	12.88	1.86	0.36	0.03	0.66	0.92	3.22	5.16	0.03
W14-12	二长花岗岩	74.62	0.07	12.54	0.73	1.90	0.041	0.68	0.74	3.18	5.03	0.04
W16-1	二长花岗岩	75.64	0.09	11.95	0.74	1.45	0.01	0.54	0.89	3.31	5.11	0.04

表 1 翠宏山矿床花岗岩主元素分析结果表

注: 样品由中国地质调查局沈阳地质调查中心实验室测试

表 2 翠宏山矿区花岗岩稀土元素分析结果 Table 2 REE analyses of granites from the Cuihongshan ore deposit

样号	岩石	元素含量(×10 ⁻⁶)								
	名称	La	Ce	Pr	Nd	Sm	Eu	Gd	Tb	
W11-1	碱长花岗岩	70.00	151.00	17.70	63.00	11.90	0.22	10.10	1.92	
W11-2	碱长花岗岩	62.76	142.00	20.10	72.40	15.10	0.29	14.73	2.80	
W13-1	二长花岗岩	20.00	68.00	4.30	15.00	2.90	0.37	2.80	0.59	
W14-1	二长花岗岩	29.33	48.11	9.80	36.9	8.90	0.32	8.80	1.64	
W14-12	二长花岗岩	35.00	49.00	10.30	41.00	10.50	0.29	9.50	1.83	
W16-1	二长花岗岩	13.00	55.00	3.70	13.00	2.40	0.23	2.01	0.38	
样号	岩石名称	Dy	Но	Er	Tm	Yb	Lu	Y	∑REE	
W11-1	碱长花岗岩	11.30	2.23	6.72	1.18	7.40	1.16	60.00	415.83	
W11-2	碱长花岗岩	17.02	3.70	11.38	1.81	11.70	1.87	60.10	437.76	
W13-1	二长花岗岩	3.90	0.81	2.65	0.52	3.70	0.65	25.00	151.19	
W14-1	二长花岗岩	9.64	2.00	5.90	0.92	6.10	1.00	41.39	210.48	
W14-12	二长花岗岩	9.90	1.92	5.24	0.86	5.30	0.84	58.00	239.48	
W16-1	二长花岗岩	2.30	0.47	1.49	0.28	1.90	0.32	22.15	118.63	

注: 样品由中国地质调查局沈阳地质调查中心实验室测试。

图 2 翠宏山矿区花岗岩 **R**₁-**R**₂ 图解(引自 Batchelor et al., 1985)

Fig. 2 R₁-R₂ discrimination diagrams showing tectonic setting of granites in the Cuihongshan ore deposit(after Batchlor et al., 1985)

I -地幔分异产物; II -板块碰撞前的; III-碰撞后的抬升; IV-造山 晚期的; V -同碰撞期的; VI-非造山的; VII-造山期后的 I -mantle differentiation products; II -pre-collision; III-postcollision; IV-late orogeny; V -syn- collision; VI-non-orogeny; VII-post-orogenic period

与"A₂"型花岗岩的普遍特征完全一致,形成于造山 后构造垮塌环境;伊春地区花岗岩形成的动力学机 制是与古亚洲构造域的造山后伸展作用有直接关系 (肖庆辉等,2002;刘宝山等,2005)。

2.3 花岗岩成矿作用

翠宏山铅锌多金属矿床的矿体均产在二长花岗 岩、碱长花岗岩侵入体的内外接触带内,铅锌多金 属成矿体受二长花岗岩、碱长花岗岩与下寒武统铅

图 3 翠宏山矿区花岗岩稀土配分曲线

Fig. 3 Chondrite-normalized REE patterns of granites in the Cuihongshan ore deposit

山组变质岩系的接触带控制。矿体呈透镜体状、囊 状产在接触带内,其中钨钼矿体集中在内接触带, 而铁、铅锌多金属矿体产在外接触带。成矿作用早 期为氧化物成矿期,形成于矽卡岩化晚期的透闪石 绿帘石矽卡岩阶段,以白钨矿化、磁铁矿化为主伴 生锡石及黄铁矿化,晚期为多金属硫化物成矿期, 伴随有强烈的萤石化、硅化、绢云母及绿泥石化等 蚀变作用。

铅锌多金属矿具有脉状、网脉状矿化特征,且 明显叠加在矽卡岩型铁矿之上,说明在岩体侵入过 程中,先与围岩发生矽卡岩化形成铁矿化;在岩体 侵入活动后期,伴随岩浆期后的热液活动,含矿热 液沿矽卡岩化岩石中的构造裂隙侵入,发生了铅锌

多金属矿化而形成矿床。

翠宏山矿床成矿特征表明,铅锌多金属成矿与 区内二长花岗岩、碱长花岗岩的侵入活动有关,岩 体的内外接触带为控矿空间构造,铅锌多金属矿体 的形成与岩浆期后热液活动具有内在成因联系,矿 床成因类型为矽卡岩型(黑龙江省地质矿产局地质 三队,1984;韩振新等,2003;邵军等,2006)。

3 含矿花岗岩体 SHRIMP 年龄及多金属 成矿年龄推定

3.1 锆石分选、分析及测年

本次研究采集了新鲜、未蚀变的地表二长花岗 岩和深部二长花岗岩(钻孔中取样, 地表以下 280 m) 样品。将 15 kg 左右的样品破碎至 2 cm³ 大小的碎屑, 并放入直径为 20 cm 的不锈钢体中; 将不锈钢体放 入 XZW-100 型震动磨样机(1.1/10.75 kw)中研磨 3~5 分钟; 之后将样品取出, 过 0.4 mm 孔径钢筛; 此过 程重复进行、直至样品全部通过 0.4 mm 钢筛。用清 水清洗、淘洗富集重矿物,再采用磁选和电选技术 获得所需矿物集合体、经淘洗后获取锆石精矿。用 双目镜挑选完整、透明和干净(无包体)的锆石颗粒, 将所选锆石颗粒与标准样品固定在直径为 25 mm 的 环氧树脂靶上,研磨靶,使锆石颗粒中心部位裸露。 再将锆石靶镀金,同时进行阴极发光图像拍摄。锆 石铀、钍、铅同位素分析在北京离子探针测试中心 实验室的 SHRIMP- 上按照标准测定程序完成, 测 试原理和分析流程见石玉若等(2007)、宋彪等(2002) 文献。测试获得的数据采用 Squid 和 Isoplot(Ludwig, 2003)计算机软件处理, 衰变常数采用 Steiger 等 (1977)推荐值。

地表二长花岗岩中的锆石为柱状,未见熔蚀和 增生现象(图 4),具有震荡环带特征,属于岩浆结晶 形成。深部二长花岗岩中的锆石有浑圆状锆石和柱 状锆石,部分颗粒具有明显的内核,在CL图像中可 以看出内核颜色呈灰黑色,可能与这些锆石核部铀 含量较高有关(图4);尽管各锆石颗粒之间老核的几 何形态和体积大小存在一定的差异,但老核与新壳 结构明显,新壳的边界十分清晰,并且老核与新壳 均具有明显的韵律环带结构,暗示此类锆石是岩浆 成因的锆石。显微镜下观察发现,地表二长花岗岩 和深部二长花岗岩中的锆石均系原生锆石,无后期 蚀变再生现象,锆石颗粒形态的差异可能与样品采 集的部位不同有关,故对所测试的数据采用同一方 法进行了处理。

SHRIMP 铀-钍-铅同位素测试数据显示,所测 锆石 Th/U 比值在 0.13~1.28 之间,说明无论是地表 的还是深部的二长花岗岩中的锆石具有岩浆锆石特 点,均为原生的岩浆锆石。SHRIMP 铀-铅年龄测定 获得地表二长花岗岩锆石年龄为 192.8 ± 2.5 Ma,深 部二长花岗岩年龄为 199.0 ± 3.1 Ma(图 5),基本代 表了二长花岗岩岩体的形成年龄。具体测试数据见 表 3。

3.2 成矿年龄推定

前人同位素测年结果表明,碎裂二长花岗岩黑 云母 K-Ar 法测得年龄为 198 Ma(黑龙江省地质矿产 局地质三队, 1984);碱长花岗岩体的黑云母 K-Ar 等 时线年龄分别为 203.0 Ma 和 196.3 Ma,铷-锶等时线 年龄为 190±40 Ma,⁸⁷Sr/⁸⁶Sr=0.7089,相关系数 0.98(黑龙江地质矿产局, 1993)。本次研究获得的地 表二长花岗岩锆石年龄为 192.8±2.5 Ma,深部二长 花岗岩年龄为 199.0±3.1 Ma。矿床研究表明,碱长花 岗岩、二长岗岩岩体的侵入作用及其伴随的热液活 动与铅锌多金属矿成矿密切相关,通过碱长花岗 岩、二长岗岩之中锆石 U-Pb 测年获得的年龄更能准

图 4 翠宏山矿床地表二长花岗岩(W13)、深部二长花岗岩(W14-12)锆石阴极发光照片 Fig. 4 CL images of zircon crystals from diorite-monzonitic granite collected at surface (w13) and in the depth (W14-12) of the Cuihongshan polymetallic deposit

图 5 翠宏山矿床赋矿地表二长花岗岩(W13)、深部二长花岗岩(W14-12)锆石 U-Pb 年龄谐和图 Fig. 5 Zircon U-Pb concordia diagram of ore-bearing monzonitic granite collected at surface (w13) and in the depth (W14-12) of the Cuihongshan polymetallic deposit

表 3	翠泛	ミ山矿	└区花隊	対岩类 SI	HRIMP	锆石 U-	Pb	分	析结果	
	• •				0	•.			a "	

Table 3 SHRIMP U-Pb isotopic analyses of zircons from granites in the Cuihongshan ore deposit									
测占	²⁰⁶ Pb _c	U	Th	²³² Th	^{206*} Pb	^{207*} Pb/ ^{206*} Pb	207*Pb/235U	^{206*} Pb/ ²³⁸ U	206Pb/238U
	/10 ⁻²	/10 ⁻⁶	/10 ⁻⁶	/ ²³⁸ U	/10 ⁻⁶	±1o(%)	$\pm 1\sigma(\%)$	±1o(%)	Age(Ma)
地表二长	关花岗岩(W	13)							
1	0.00	232	137	0.61	6.3	0.0485±0. <mark>04</mark> 1	0.21±0.043	$0.0318 {\pm} 0.012$	201.6±2.7
2	0.19	222	100	0.46	5.8	0.0528±0.038	0.22±0.043	$0.0302{\pm}0.018$	191.2±3.6
3	2.30	147	80	0.56	3.9	0.0615 ± 0.241	0. <mark>25</mark> ±0.242	0.0299 ± 0.018	188.2 ± 4.0
4	0.89	231	175	0.78	5.8	0.0489±0.047	0.19±0.048	0.0289 ± 0.011	184.7±2.4
5	0.18	541	311	0.59	14.0	0.0498 ± 0.028	0.21 ± 0.029	0.0301 ± 0.008	190.9±1.7
6	1.35	158	69	0.45	4.5	0.0413±0.08	$0.19{\pm}0.081$	0.0325 ± 0.013	209.3±2.8
7	0.54	396	356	0.93	10.8	0.0522 ± 0.041	0.23 ± 0.042	$0.0315{\pm}0.009$	209.8±2.3
8	0.70	334	242	0.75	8.6	0.0455±0.064	$0.19{\pm}0.064$	$0.0296{\pm}0.009$	191.9±1.9
9	0.33	162	77	0.49	4.4	0.0502 ± 0.058	0.22 ± 0.06	0.0315±0.016	200.2±3.4
10	0.00	166	106	0 <mark>.6</mark> 6	4.2	0.0505 ± 0.043	$0.20{\pm}0.045$	0.0291 ± 0.014	185.7±2.8
11	0.63	171	98	0.59	4.3	0.0499 ± 0.068	0.20 ± 0.09	0.0291±0.058	184.3±11.8
12	0.66	211	89	0.43	5.1	0.0486 ± 0.066	$0.19{\pm}0.07$	0.0281 ± 0.023	179.2±4.3
13	0.49	249	188	0.78	6.4	0.0486 ± 0.052	0.20±0.053	0.0297 ± 0.01	190.1±2.1
14	0.00	738	305	0.43	18.8	0.0523 ± 0.022	0.21±0.023	0.0297 ± 0.007	188.2±1.4
15	0.47	197	123	0.64	5.1	$0.0537 {\pm} 0.049$	0.22±0.051	0.0297±0.013	187.8±2.7
16	0.42	269	136	0.52	7.4	0.0519 ± 0.044	0.23±0.046	0.0318 ± 0.012	201.9±2.5
17	1.04	184	121	0.68	4.9	0.0452±0.089	0.19±0.09	0.0308±0.013	195.7±2.9
深部二步	关花岗岩(W	14-12)							
1	0.00	452	128	0.29	12.4	0.0515±0.02	0.23±0.021	0.0320 ± 0.006	203.1±1.4
2	0.08	2418	2123	0.91	71.9	0.0494±0.019	0.24±0.019	0.0346 ± 0.003	218.9±0.8
3	0.10	482	438	0.94	13.1	0.0512±0.025	0.22±0.026	0.0317 ± 0.008	201.2±1.8
4	0.04	1333	1583	1.23	35.6	0.0515±0.021	0.22±0.021	0.0311±0.005	195.2±2.0
5	0.07	649	803	1.28	17.1	0.0500±0.021	0.21±0.022	0.0306 ± 0.006	194.4±1.6
6	0.00	159	96	0.62	4.4	0.0523±0.036	0.23±0.038	0.0320±0.012	203.4±2.7
7	0.50	175	86	0.51	4.6	0.0453±0.046	0.19 ± 0.047	0.0305 ± 0.012	193.7±2.6
8	0.42	1078	187	0.18	30.9	0.0492±0.023	0.23 ± 0.024	0.0332 ± 0.005	210.7±1.1
9	0.16	647	415	0.66	17.5	0.0508 ± 0.03	0.22 ± 0.031	0.0314 ± 0.007	199.0 ± 1.6
10	0.00	980	536	0.56	25.9	0.0500+0.021	0.22 = 0.031 0.21 ± 0.022	0.0308+0.006	195.5+1.4
11	0.00	120	54	0.47	3.1	0.0563+0.056	0.23+0.059	0.0302 ± 0.019	191 1+4 0
12	0.00	208	27	0.13	5 3	0.0524+0.049	0.23 ± 0.057	0.0302 ± 0.015 0.0294+0.015	186 8+2 9
12	0.00	200	20	0.15	2.5	0.0324 ± 0.049 0.0452 ±0.124	0.21 ± 0.032 0.10±0.136	0.0294 ± 0.013	100.0-2.9
13	0.00	054	37	0.42	2.2	0.0452 ± 0.154 0.0501 ±0.022	0.19 ± 0.130 0.22 \pm 0.32	0.0304 ± 0.022	194.2 ± 4.0 203 8 \pm 4.9
14	0.07	754	347 1160	0.30	42.2	0.0501 ± 0.023	0.22 ± 0.032	0.0320 ± 0.023	203.0 ± 4.0
15	0.15	1003	1108	0.75	42.2	$0.0308\pm0,021$	0.21±0.022	0.0306±0.005	193.2±1.2

注: ²⁰⁶Pb。表示普通铅 ²⁰⁶Pb 在总 Pb 中的百分比含量, ^{206*}Pb 表示放射成因 ²⁰⁶Pb 含量。

确代表铅锌多金属的成矿年龄,因此,推定翠宏山 矿床的成矿年龄在 192.8~199.0 Ma 之间,成矿时代 为印支晚期-燕山早期。

4 讨论与结论

关于翠宏山铅锌多金属矿床的成矿时代,黑龙 江省地矿局地质三队(1984)在进行矿床勘探时作了 测定,翠宏山岩体(碱长花岗岩)全岩铷-锶等时线年 龄为 324±15 百万年,⁸⁷Sr/⁸⁶Sr 值为 0.7201。根据此 年龄,韩振新等认为翠宏山矿床的成矿时代为加里 东中期,认为成矿与加里东中期第三侵入次二长花 岗岩有关。

本文认为此成矿时代的结论依据不充分。其一, 小兴安岭地区印支-燕山期岩浆侵入-火山喷发活动 强烈,构成了小兴安岭岩浆岩带;尽管翠宏山地区 可能存在有加里东期岩浆活动,但经历了印支-燕山 期强烈的岩浆活动后,加里东期形成的岩浆岩体绝 大部分已被后期的岩浆岩吞噬、改造,即使存在也 多呈残留体状赋存在印支-燕山期岩浆内。其二,如 果加里东期侵入岩形成时伴随有铅锌多金属矿化, 那么经历印支-燕山期岩强烈的岩浆活动改造后,所 形成的矿(化)体亦应受到强烈的改造。从翠宏山矿床 的勘探成果分析,钨钼矿体、铁铅锌多金属矿体均 没有明显的被强烈改造的现象,且矿体赋存在印支-燕山期岩浆岩体与下寒武统铅山组变质岩系接触带 内,说明成矿作用形成于印支-燕山期。

翠宏山铅锌多金属矿床与成矿有关的二长花岗 岩和碱长花岗岩在空间上紧密共生,是同源岩浆的 不同演化阶段的产物。二长花岗岩具有"I"型花岗岩 特征,碱长花岗岩具有"A₂"型花岗岩特征。花岗岩的 形成与古亚洲构造域的造山后伸展作用有关。

翠宏山铅锌多金属矿床的成矿作用与二长花岗 岩、碱长花岗岩体侵入有关,矿床成因类型为矽卡 岩型。根据以往同位素测年结果及本次研究获得的 花岗岩形成年龄,推定矿床的成矿时间在 192.8~ 199.0 Ma 之间,成矿时代为印支晚期-燕山早期。

参考文献:

- 韩振新,徐衍强,郑庆道.2003.黑龙江省重要金属和非金属矿 产的矿床成矿系列及其演化[M].哈尔滨:黑龙江人民出版 社.
- 黑龙江省地质矿产局. 1993. 黑龙江省区域地质志[M]. 北京: 地 质出版社.
- 黑龙江省地质矿产局. 1994. 黑龙江省区域矿产总结[R]. 哈尔滨: 黑龙江省地质矿产局.

- 黑龙江省地质矿产局地质三队. 1984. 黑龙江省逊克县翠宏山铁 多金属矿床普查-初勘地质报告[R]. 哈尔滨: 黑龙江省地质 矿产局地质三队.
- 刘宝山,马永强,吕军,张金莲,张大鹏,郝永红.2005.伊春地 区上游新村晚三叠世二长花岗岩体成因及就位机制[J].地 质与资源,14(3):170-175.
- 邵军,赵山,贾斌,杨宏智,彭明生,马启波.2006."黑龙江小兴 安岭—张广才岭成矿带铅锌多金属成矿规律"研究报告[R]. 沈阳:沈阳地质矿产研究所.
- 石玉若,刘敦一,张旗,简平,张福勤,苗来城,张履桥.2007. 内蒙古中部苏尼特左旗地区三叠纪 A 型花岗岩锆石 SHRIMP 铀-铅年龄及其区域构造意义[J].地质通报,26(2): 183-189.
- 宋彪,张玉海,万渝生,简平.2002. 锆石 SHRIMP 样品靶制作、 年龄测定及有关现象讨论[J]. 地质论评,48(增刊):26-30.
- 谭成印,杜杨松,赵寒冬,张文辉.2010.小兴安岭有色、贵金属 成矿带确立的证据及其地质意义[J].地质与资源,19(增刊 1):46-55.
- 王涛. 2000. 花岗岩研究与大陆动力学[J]. 地学前缘, 7(增刊 2): 137-146.
- 肖庆辉,邓晋福,马大铨,洪大卫,莫宣学,卢新祥,李志昌,汪 雄武,马昌前,吴福元,罗照华,王涛.2002.花岗岩研究思 维与方法[M].北京:地质出版社.

References:

- BATCHELOR R A, BOWDEN P. 1985. Petrogenetic interpretation of granitoid rock series using multicationic parameters[J]. Chem. Geol., 48: 43-55.
- Bureau of Geology and Mineral Resources of Heilongjiang Province. 1993. The regional geology of Heilongjiang Province[M]. Beijing: Geological Publishing House.
- Bureau of Geology and Mineral Resources of Heilongjiang Province. 1994. The regional mineral resource of Heilongjiang Province[R]. Haerbin: Bureau of Geology and Mineral Resources of Heilongjiang Province(in Chinese).
- HAN Zheng-xin, XU Yan-qiang, ZHENG Qing-dao. 2003. The metallogenic series of the metal and non-metal mineral resources in Heilongjiang province[M]. Haerbin: people's Publishing House(in Chinese).
- LANDENBERGER B, COLLINS W J. 1996. Derivation of A-type granites from a dehydrated charnockitic lower crust: evidence from the Chaelundi complex, Eastern Australia[J]. Journal of Petrology, 37(1): 145-170.
- LUDWIG K R. 2003. User's manual for isoplot 3.0, a geochronological toolkit for Microsoft Excel[M]. Berkely: Berkely Geochronological Center Special Publication, 4: 25-32.
- LIU Bao-shan, MA Yong-qiang, LÜ Jun, ZHANG Jin-lian, ZHANG Da-peng, HAO Yong-hong. 2005. Genelis and emplacement mechanism of the late Triassic adamellite series in Yichun area, Heilongjiang Province[J]. Journal of Precious Metallic Geol-

ogy, 14(3): 170-179(in Chinese with English abstract).

- SHAO Jun, ZHAO Shan, JIA Bin, YANG Hong-zhi, PENG Ming-sheng, MA Qi-bo. 2006. The Metallogenic regularity for the Pb-Zn polymetallic deposit of the Xiaoxing'anling-Zhangguangcailing Metallogenic Belt[R]. Shenyang: Shenyang Institute of Geology and Mineral Resources(in Chinese).
- SHI Yu-ruo, LIU Dun-yi, ZHANG Qi, JIAN Ping, ZHANG Fu-qin, MIAO Lai-cheng, ZHANG Lü-qiao. 2007. SHRIMP U-Pb zircon dating of Triassic A-type granites in Sonid Zuoqi, Central Inner Mongolia, China and its tectonic implication[J]. Geological Bulletin of China, 26(2): 183-189(in Chinese with English abstract).
- SONG Biao, ZHANG Yu-hai, WAN Yu-sheng, JIAN Ping. 2002. Mount making and procedure of the SHRIMP dating[J]. Geological Review, 48(Supp):26-30(in Chinese with English abstract).
- TAN Cheng-yin, DU Yang-song, ZHAO Han-dong, ZHANG Wen-hui. 2010. Evidence and geologic implication of the Xiaoxinganling nonferrous and precious metals metallogenic

 ϕ

belt[J]. Geology And Resources, 19(S1): 46-55(in Chinese with English abstract).

- The Third Geological Team of Bureau of Geology and Mineral Resources of Heilongjiang Province. 1984. The prospecting and primary exploration for the Fe polymetallic deposit of the Cuihongshan in Xunke county of Heilongjiang Province[R]. Haerbin: The Third Geological Team of Bureau of Geology and Mineral Resources of Heilongjiang Province(in Chinese).
- STEIGER R H, JAGER E. 1997. Subcommission on geochronology; Convention or the use of decay constants in geo and cosmochronology[J]. Ear. plan. Sci. lett., 36: 359-362.
- WANG Tao. 2000. Studies on granites and continental dynamics[J]. Earth Science Frontiers, 7(S2): 137-146(in Chinese with English abstract).
- XIAO Qing-hui, DENG Jin-fu, MA Da-quan, HONG Da-wei, MO Xuan-xue, LU Xin-xiang, LI Zhi-chang, WANG Xiong-wu, MA Chang-qian, WU Fu-yuan, LUO Zhao-hua, WANG Tao.
 2002. The ways of investigation on granitoids[M]. Beijing: Geological Publishing House(in Chinese).

 ϕ

<mark>అళుళ</mark>ుళుళుళుళ

973 项目"华北地块北缘造山带重大地质事件与成矿背景" 课题成果丰富

中国地质科学院地质力学研究所承担的 973 项目"华北地块北缘造山带重大地质事件与成矿背景"课题通过科技部组织的结题验收,获得专家组高度评价,成果报告被评为优秀。该课题以理清华北陆块北缘造山带重要地质事件序列与成矿事件序列、查明金属巨量堆积与大陆边缘演化阶段的耦合关系为目标,取得了 一系列新的成果。

在近 5 年的研究过程中,赵越研究员团队共发表论文 47 篇(其中 SCI 36 篇,中文核心 11 篇),培养博士 研究生 7 人,硕士研究生 6 人,建立了一支水平较高的研究队伍,锻炼和培养了年轻人才,为未来开展相关 研究工作打下了坚实基础。

课题组取得主要进展有: 1.确定了华北克拉通北缘中元古代中期岩浆活动的形成与哥伦比亚超大陆裂 解有关,为认识白云鄂博超大型稀土矿床的成因及构造背景提供了重要依据; 2.识别出华北地台北缘晚古生 代—三叠纪期间钼(铜)的成矿事件,该期成矿作用在时空分布及成因上与同时期岩浆活动密切相关。这一认 识将对区域矿产资源的潜力评估和勘查方向起到重要的指导作用; 3.确认了白乃庙岛弧岩带内存在早古生 代岛弧背景的斑岩型铜钼成矿作用(445 Ma),早古生代岛弧背景的斑岩型铜钼成矿作用的发现对于拓展华 北北缘铜钼成矿作用的类型及规模具有重要意义; 4.确认华北地块北缘晚石炭世 - 早二叠世期间为安第斯 型活动大陆边缘,内蒙古隆起并非长期发育的古隆起。

本刊编辑部 采编