李正芳,周本刚,冉洪流.运用古地震数据评价东昆仑断裂带东段未来百年的强震危险性.地球物理学报,2012,55(9):3051-3065,doi:10.6038/j.issn.0001-5733.2012.09.023.

Li Z F, Zhou B G, Ran H L. Strong earthquake risk assessment of eastern segment on the East Kunlun fault in the next 100 years based on paleo-earthquake data. *Chinese J. Geophys.* (in Chinese), 2012, 55(9):3051-3065, doi:10.6038/j.issn.0001-5733.2012.09.023.

运用古地震数据评价东昆仑断裂带东段 未来百年的强震危险性

李正芳,周本刚*,冉洪流

中国地震局地质研究所,活动构造与火山实验室,北京 100029

摘 要通过收集、整理和分析青藏高原东北部 22条断裂带上古地震定量数据,拟定了该区的地震复发概率密度 函数.根据此函数对区内东昆仑断裂带东段不同段落上未来 100 年内强震原地复发的条件概率进行了初步研究. 结果表明,该断裂带上自西向东的 3 个破裂段中,玛沁段和塔藏段未来 20、50、100 年的复发概率值介于 0.76%~ 7.36%之间,玛曲段未来 20、50 年的复发概率值介于 2.0%~5.26%,属于低概率事件;玛曲段未来 100 年的复发 概率值为 10.82%,属于中概率事件;整个段未来 100 年内至少发生一次 7 级以上强震的联合概率可达 21.87%,属 于中概率事件.考虑到概率模型的不确定性,进一步对各段进行了危险性的定性分类,综合评价认为玛沁段在未来 百年内发生大震的危险性较低,玛曲段和塔藏段未来百年发生大震的危险性较高.最后将本文拟合的概率密度函 数与传统通用函数计算的条件概率值进行比较,发现通用的复发概率函数随着自变量 *t/R* 的增大,因变量 *P* 的反 映不如本文拟合函数的敏感.

关键词 东昆仑断裂带东段,地震复发概率密度函数,强震危险性,复发概率 doi:10.6038/j.issn.0001-5733.2012.09.023 **中图分类号** P315 **收稿日期** 2011-09-29,2012-08-23 收修定稿

Strong earthquake risk assessment of eastern segment on the East Kunlun fault in the next 100 years based on paleo-earthquake data

LI Zheng-Fang, ZHOU Ben-Gang *, RAN Hong-Liu

Key Laboratory of Active Tectonics and Volcano, Institute of Geology, CEA, Beijing 100029, China

Abstract Based on the 22 data of paleo-earthquake in Northeastern Tibet Plateau, we established a probabilistic model of earthquake recurrence in the area, and studied the conditional probabilities for the recurrence of strong earthquakes in the eastern segments of East Kunlun fault zone in the next 100 years. The results show that two segments (Maqên and Tazang) of the fault zone have low probabilistic values between $0.76\% \sim 7.36\%$ in next $20 \sim 100$ years; The recurrence probabilities of Maqu segment in 20 and 50 years lie between $2.0\% \sim 5.26\%$, but the probability in 100 years is 10.82% which is relatively high. Based on the uncertainty of probabilistic model, we made a qualitative classification for different segment in terms of danger,

基金项目 地震行业科技专项"走滑活断层定量数据评定潜在震源区参数研究(200808018)"资助.

作者简介 李正芳,女,生于 1981年.中国地震局地质研究所在读博士研究生.主要研究方向:工程地震和地震危险性评价. E-mail:lizhengfang07@163.com

^{*} 通讯作者 周本刚,男,生于1964年,研究员,主要研究领域:地震构造、工程地震与地震区划. E-mail:zhoubg1964@263. net

and thought that Maqên segment has lower risk in next 100 years, Maqu and Tazang segment has higher risk in next 100 year. At last, through comparing probabilistic values computed by two different models, we found that dependent variable P is less sensitive with increasing of independent variable t/R in the general probability model of earthquake recurrence.

Keywords Eastern segment of East Kunlun fault, Probabilistic model of earthquake recurrence, Strong earthquake risk assessment, Recurrence probability

1 引 言

东昆仑断裂带是印度板块向欧亚板块俯冲过程 中在青藏高原内部沿东昆仑华力西期古构造缝合线 形成的以左旋走滑运动为主的一条大断裂带,西起 青海省可可西里湖北侧的布格达板峰以西,东终止 于四川境内的玛曲一带,长约 2000 km,总体走向北 西西^[1-2](图 1). 三叠纪时期,东昆仑地体和巴颜喀 拉一松甘地体之间的斜向碰撞致使昆南—阿尼玛卿 缝合带的西段发生大型走滑作用^[3],在 250~220 Ma 期间形成东昆仑左行走滑断裂,之后又经历晚侏罗 世(150~140 Ma)、早白垩世时(120~100 Ma)和新 第三纪(20 Ma)强烈韧性剪切作用的影响,地壳急 剧抬升剥蚀,印度-亚洲碰撞以来,东昆仑断裂带再 度被激化.新构造运动时期,断裂带活动较强,控制 了第四纪裂谷和断陷盆地的发育,且沿断裂的第四 纪盆地、断裂谷、断陷湖呈串珠状展布^[4].

东昆仑活动断裂带位于青藏高原中部隆起区的 北部边缘地区,主体处在走向近东西的莫霍面 64km等深线左右展布,东南端的玛多一玛曲一线 莫氏面等深度线向南偏转,而沿带地壳厚度逐渐变 小^[1].通过最新的地震折射剖面资料揭示该断裂带 以南的巴颜喀拉山区的地壳厚度为64 km,向北至 柴达木盆地南缘和都兰一带骤减至60 km,形成一 条北西西向的地壳厚度变异带,该断裂带自西向东 以阿尼玛卿山为界的莫霍地形和地壳流动机制都发 生了明显的变化^[5-6],因此,本文在断裂带的几何结 构特征的基础上,进一步结合地球物理资料,以阿尼 玛卿山为分段标志,将东昆仑断裂带分为东西两段.

自从 1900 年以来,在该断裂带上阿尼玛卿山以 西发生了 5 次 7 级以上的地震,分别为 1997 年玛尼 M_s 7.9 级地震、2001 年昆仑山 M_s 8.1 级地震、1902 年秀沟 M_s 7.0 级地震、1963 年阿拉克湖 M_s 7.1 级 地震、1937 年 M_s 7.5 级托索湖地震(图 1).从图 1 中可以看到,相比东昆仑断裂带的西段,东昆仑断裂 带的东段历史上无大地震($M_s \ge 7$)记载,属于该断 裂带上典型的地震空区.另外 2008 年发生的汶川地 震增加了对东昆仑断裂带东段库仑应力的积累^[7], 使该段的潜在地震危险性增高,因此,东昆仑断裂带 东段作为整条断裂带人口最多的地震空区,对其进 行地震危险性分析和大震预测显得尤为迫切.

对于中长期地震的预测,定量的方法是把地震 发生的可能性表现为概率,假定地震发生的时间大 致服从于某一个复发模型 $f(\tau)$,利用此复发模型可 估算未来某一预测时段内大地震复发的概率值.根 据国内外发表的文献^[8-14], f(τ)有多种分布类型, 如 正态分布、对数正态分布、威布尔分布等,闻学泽^[12] 把已有的分布函数应用于鲜水河断裂带上,预测了 鲜水河断裂带未来 30 年内的地震复发的条件概率; 刘静等[13]利用汾渭地震带上的活断层资料,评价了 汾渭地震带中长期强震危险性;张培震[14]利用地震 矩计算了地震的平均复发周期,归纳和总结了活动 大陆内部地震复发的通用概率分布. 但受种种构造 条件的制约,不是每一条活动断裂上都可获取评价 所需的定量数据,因此,利用研究程度较高的活动断 裂定量数据建立一种地震危险性概率评价的方法尤 为重要. 青藏高原东北部,强震发生的频次相对较密 集,断裂带上的古地震研究程度较高,本文通过收集 和处理该区的古地震资料,建立了样本参数,拟定了 该区地震复发概率密度函数,将其应用于东昆仑断 裂带东段的发震概率研究中.

2 青藏高原东北部古地震定量数据分析及地震复发概率模型建立

本文累计选用了 22 条青藏高原东北部活动断 裂带上不同段的古地震数据资料(表 1),数据的选 取主要采取三个原则:(1) 收集、整理和对比分析了 活动断裂带上同一段上不同探槽剖面揭露的古地震事 件,去除重复事件;(2) 去除距今时间太远的古地震事 件;(3) 计算出每段古地震的复发间隔(T),求出其古 地震复发间隔的平均值(T_{ave}),对各段古地震数据 进行归一化处理(T/T_{ave}),减少数据的离散程度. 表 1 青藏高原东北部 22 条活动断裂带的古地震数据资料

编号	断裂名称	分段情况	古地震事件年龄(a)	复发间隔(T)	平均复发间隔 (T _{ave})	归一化 (T/T _{ave})	资料来调
			E1:12500±500				
			E2:7500±500	5000		1.2749	
		鸳凤段	E3:5000	2500		0.6374	
			734	4266	3922	1 0877	
F.	而寿龄业榜解刻		F1 0010-1310	1200	0022	1.0017	- Г15-16]
1.1	四宋时北缘明衣	漳县段	E1:3310 1310	5000	5000	1 0000	L10 10_
			E2:4250-6930	2000	2000	1.0000	-
			E1:12450				
		锅麻滩段	$E2.5480 \pm 60$	6970		1.1264	
			1936.2(74)	5406	6188	0.8736	
			E1:8330-9370				
			E2:6800-7530	800		0.4975	
		硝口蔡祥 断星岛(左岛)	E3:5690-6100	700		0.4353	
		则层权(示权)	E4:590-1260	4430		2.7550	
			E5:公元 1920(90)	500	1608	0.3109	
			E1.8330-9370				-
			$F_{2.6810} - 7530$	800		0 7547	
F ₂ 海原断裂带	~ 匠水列井		$E_{2} = 640 - 6100$	710		0.6608	F17 10
	<i>西原图</i> 交币	步原剧裂带 南、西华山 断层段	E5:3040-0100	710		0.0098	
			E4:4440-5030	610		0.5755	
			E5:2630-6710	1810		1.7075	
			E6:590-1260	1370	1060	1.2925	
			E1:8530-9370				
		哈思山一马厂山 断层段(西段)	E2:6150-6350	2180		1.1315	
			E3:3590-4140	2010		1.0433	
			E4:2000	1590	1927	0.8253	
			E1:>4320±300				
F_3	佛洞庙一	中西段(Q₂)	E2:2100±100	1820		1.0344	[19]
	红厓于断裂		401	1699	1760	0.9656	
			F1.>10500+600				
			$E1 > 10000 \pm 000$	1400		0 6422	
F_4	榆木山北缘断裂	西段	E2:7200-8300	1400		0.0432	[20]
			E3:3700-3900	3300		1.5161	
			180 秋	1830	2177	0.8407	
F	检术山左势叛列	トポエ	$E1:10500\pm600$	1000		0 5672	[91]
1.2	制小山示琢砌衣	上龙工	$E2:8800 \pm 600$ $E3:3800 \pm 600$	4800	3350	1.4328	[21]
			E1:7700±600				
F_6	皇城一双塔断裂	上寺段	E2:3400±300	4300		1.1292	[22]
			83	3317	3808	0.8711	
			$E1:9520 \pm 90$ $F2:0380 \pm 150$	140		0 0593	
F ₇	昌马將刻		$E3:5470\pm60$	3910		1.6564	[93-94]
▲ γ	日一切衣		$E4:3230\pm55$	2240		0.9490	L23-24
			78	3152	2361	1.3353	

			续表	1			
编号	断裂名称	分段情况	古地震事件年龄(a)	复发间隔(T)	平均复发间隔 (T _{ave})	归一化 (T/T _{ave})	资料来源
			E1:2200				
F_8	肃南断层段	中段	E2:1680	520		0.6933	[25]
			E3:700	980	750	1.3067	
			E1:5926				
			E2:4050±160	1876		1.3754	
F_9	冷龙岭断裂	西段	E3:2900±270	1150		0.8431	[26]
			E4:1560±360	1340		0.9824	
			470	1090	1364	0.7991	
			E1:7700±50				
			E2:6180±150	1520		1.5833	
			E3:5200±100	980		1.0208	
			E4:4250±150	950		0.9896	
		老虎山段	E5:3050±150	1200		1.2500	
			E6:2000±300	1050		1.0938	
	老虎山一		E7:800±100	1200		1.2500	F - - - - 7
F ₁₀ 毛丰	毛毛山断裂		122	678		0.7063	<u></u> 27-28 <u></u>
			20	102	960	0.1063	
			E1:9000±300				
			E2:6600±500	2400		1.3333	
		毛毛山段	E3:5000±300	1600		0.8889	
			E4:3700±300	1300		0.7222	
			E5:1800±300	1900	1800	1.0556	
			E1:27700±2200				
			E2:21300±2400	6400		1.3904	
			E3:16800±1400	4500		0.9776	
F_{11}	天桥沟— 黄兰川断裂	天桥沟	E4:13700±2000	3100		0.6735	[29]
	A THURK		E5:10300±1700	3400		0.7386	
			E6:7590±100	2710		0.5887	
			83	7507	4603	1.6309	
			$E_{1,13150}\pm 800$				
		大泉水一 孤山子段(西段)	$E_{3}:6535\pm200$	4584		1.1293	
			E ₅ :3000	3535	4059	0.8709	
F_{12}	中卫一同心断裂		$E_1:13150\pm800$				[30]
		西梁头一	E_2 :8566±500	4584		1.0703	
		双井子段(中段)	$E_{4.5450}\pm200$	3116		0.7275	
			301	5149	4283	1.2022	
			E1:32700±1450				
F_{13}	巴音郭勒河北缘断	쬤	E2:15540±1320	17160		1.1652	[31]
			E3:3245±330	12295	14727	0.8349	

9期

3055	
------	--

	续表 1						
编号	断裂名称	分段情况	古地震事件年龄(a)	复发间隔(T)	平均复发间隔 (T _{ave})	归一化 (T/T _{ave})	资料来源
			E1:12500±100				
			E2:10000±150	2500		1.0101	
F_{14}	鄂拉山断裂		E3:6000±100	4000		1.6162	[32]
			E4:4100±300	1900		0.7677	
			E5:2600±400	1500	2475	0.6061	
			16865 ± 1018				
			12935 ± 774	3930		1.1158	
		亡宙地氏	9730 ± 592	3205		0.9100	
		件贫砌权	6955 ± 425	2775		0.7879	
			3100 ± 201	3855		1.0945	
			2001.11.14(9)	3846	3522	1.0920	
			E1:11000				
			E2:7000	4000		1.2001	
		东西大滩段	E3:2700	4300		1.2901	
			E4:1000	1700	3333	0.5101	
			E1:8000				
		秀沟一托索湖段	E2:6000	2000		1.0096	
			E3:1000	5000		2.5240	
			E4:637	363		0.1832	
			73	564	1981	0.2847	
			E1:10000				
F_{15}	东昆仑断裂带	托索湖— 下士武母	E2:6100-6700	3900		1.0400	[1,33-37,38-39]
		TXXXX	E3:2500	3600	3750	0.9600	
			9900 ± 200				
			7971-8050	1850		1.2107	
		玛沁段	7200 ± 800	771		0.5046	
			3342-3454	3746		2.4516	
			2000	1342		0.8783	
			977-1090	910	1528	0.5955	
			$\frac{15800 \pm 2500}{24100 \pm 2900}$				
			9000-10000	5800		2.9532	
			$7460 \pm 60 \sim 8690 \pm 40$	1540		0.7841	
		玛曲段	$4586 \!\pm\! 124 \!\sim\! 7460 \!\pm\! 60$	2874		1.4633	
		,山山大	$3736 \pm 57 \sim 4586 \pm 24$	850		0.4328	
			$1730 \pm 50 \sim 2530 \pm 40$	2006		1.0214	
			$1210 \pm 50 \sim 1730 \pm 50$	520		0.2648	
			$1055 \sim 1524$	155	1964	0 0789	

	44
55	T
00	<u>_</u>

续表 1							
编号	断裂名称	分段情况	古地震事件年龄(a)	复发间隔(T)	平均复发间隔 (T _{ave})	归一化 (T/T _{ave})	资料来源
			E1:3800				
		安迪尔河一	E2:2760-2900	1040		0.9020	
		车尔臣河段	E3:1077	1683		1.4597	
			E4:342	735	1153	0.6375	
		黄土泉一	E1:6366				
		乌尊硝尔段	E2:2270-3500	2866	2866	1.0000	
F	阿克人吃到世		E1:3900-4130				E to J
F ₁₆	阿小金町穀市		E2:1800-2170	2100		1.4094	[40]
		索尔库里— 阿克塞段	E3:920	880	1490	0.5906	
		TTE KA	E1:16400±100				
			E2:13500±180	2900	2900	1.0000	
			E1:18620-18780				
		肃北— 宽滩山段	E2:11330-12590	6030		1.2048	
		见作山农	E3:7080-7350	3980	5005	0.7952	
			E1:4000-4700				
F_{17}	玛多— 甘德断裂	甘德段 设 (Q3-4)	E2:3000-3230	1000		0.8333	[27,41]
			E3:1600	1400	1200	1.1667	
	托莱山断裂	硫磺沟— 裂 油葫芦段 (东段)	E1:13240-13960				
F_{18}			E2:>6080±450	6710		2.6733	[27]
			E3:3570-4390	1690	2510	0.6733	
			E1:12000-13000				
			E2:9520±90	2480		1.3333	
			E3:8020-8700	820		0.4409	
F_{19}	昌马— 俄博新裂	马— 昌马断层段 断裂 (Q4)	E4:>6670±80	1270		0.6828	[27]
	IN PT 41 AC		$E5:>5470\pm60$	1200		0.6452	
			E6:3230	2240		1.2043	
			78	3152	1860	1.6946	
			E1: 27000 7800				
			E2: 20000	7000		1.3333	
F_{20}	黄河— 灵武断裂	灵武段	E3:13000 600	7000		1.3333	[42]
	八武司衣		E4:10600 500	2400		0.4571	
			E5:6000	4600	5250	0.8762	
			E1:8200±600				
P		inter star	E2:5000±70	3200		1.2384	Fag. (67
F ₂₁	岁山东〕	龙断裂	E3:3300±12 0	1700		0.6579	[27,43]
			449	2851	2584	1.1033	
			E1:8400				
T	he V J J	* *** INT. 701	E2:5700	2700		0.9963	
F'22	贺兰山东	、鹿断裂	E3:2600	3100		1.1439	L44-45」
			271	2329	2710	0.8594	

通过上述原则最后用来做统计分析的 T/T_{ave}的数据共 119 个,利用 SPSS 统计软件生成了青藏 高原东北缘古地震复发间隔 T/T_{ave}的频率分布直 方图(图 2),从图上可以看到,虽然各段古地震的复 发间隔相差较大,但经过归一化处理后差别较小,出 现中间多两头少的分布形式,T/T_{ave}集中分布于1.0 附近的区间内;同时,认为这种频率分布可采用正态 分布、对数正态分布和威布尔来拟合,下文中将利用 QQ 概率图检验几种分布形式(图 3-8).

QQ概率图是根据变量分布的分位数对所指定的理论分布分位数绘制的图形,用来检验样本分布的一种统计图形,如被检验的数据符合所指定的分布,代表样本数据的点簇在一条直线上.主要包括两种图形:正态概率图和反趋势正态概率图,正态概率 图中的点由数据中的每一个观测量与其正态分布的期望值所组成,这些点落在斜线上的越多,说明数据的分布越接近正态.反趋势正态概率图纵轴表示的是差值,描述在正态概率图中各点偏离正态直线的偏差,如数据呈现出正态分布的特点,那么这些点应该随机的聚集在一条通过零点的水平直线的周围. 通过上述分析,结合图 3-8,可见正态分布的拟合效果最好、威布尔分布次之、对数正态分布稍差,因此,本文选用正态分布作为其概率密度函数.

即有 T/T_{ave} 应服从于 $N(0.9538, 0.3879^2)$ 的正态分布, 拟合的结果通过 95% 的置信区间的 χ^2 的检验, 说明在地震的原地复发的事件中约有 95% 的置信区间位于[$\mu - 2\sigma, \mu + 2\sigma$].

可得 T/Tave 服从正态分布的概率密度函数为

$$f(T/T_{\rm ave}) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(T/T_{\rm ave} - \mu)^2}{2\sigma^2}}.$$
 (1)

可导出青藏高原东北缘的概率分布函数:

$$F(t) = \Phi\left[\frac{t/R - 0.9538}{0.3879}\right],$$
 (2)

利用上述的概率分布函数计算地震复发的条件 概率应该满足:

$$P = \frac{F(t + \Delta t) - F(t)}{1 - F(t)},$$
 (3)

式(3)中t为离逝时间、 Δt 为预测未来发震概率的 时间增量,我们只需要给定t、R和 Δt 三个基本参数,就可以计算地震复发的条件概率.

对于地震复发的条件概率模型,张培震[14] 曾利

用大陆内部 46 个古地震的复发间隔数据进行了整 理和分析,用对数正态分布拟合累计频率,得出适用 于活动大陆内部所有活动断裂的通用分布关系式:

$$f(T/T_{\text{ave}}) = \frac{T_{\text{ave}}}{T_{\sigma} \sqrt{2\pi}} \exp\left[\frac{-1}{2\sigma^2} \left(\ln \frac{T}{T_{\text{ave}}} - \mu\right)^2\right], (4)$$

由最大 似 然 法 估 计 出 均 值 $\mu = -0.1206, \sigma = 0.5054, 相对应的概率分布函数为$

$$F(t) = \Phi \left[\frac{\ln(t/R) + 0.1206}{0.5054} \right], \tag{5}$$

下文中我们将采取上述两种分布模型分别对东 昆仑断裂带东段的地震危险性进行研究,进一步对 比、分析和讨论结果,相互验证结果的可行度.

图 2 青藏高原东北缘古地震复发间隔 T/T_{ave} 直方图及正态分布拟合曲线

Fig. 3 Normal Q-Q probability plots

反趋势威布尔分布 Q-Q 概率图 图 8 Fig. 8 Detrended Weibull Q-Q probability plots

数据观测值(T/Tave)

2.0

2.5

3.0

1.0

0.0

东昆仑活动断裂带东段的几何分段 3

3.1 东昆仑断裂带东段的几何分段

东昆仑断裂带东段地处甘川青三省交汇区,为 柴达木块体和巴颜喀拉块体的边界断裂的东部.在 空间展布上,西起阿尼玛卿山北麓,经过东倾沟北 侧、大武滩、肯定那、西贡周、唐地、在克生托洛穿过 黄河,经玛曲后延入若尔盖盆地,从罗叉北出沼泽地 与塔藏断裂相交,全长约 330 km,总体走向北西 295°,倾向以南西为主^[1].通过寻找走滑断层分段边 界的构造标志[46],自西向东可划分为三个一级段: 分别为玛沁段、玛曲段和塔藏段(图 9),各段落与西 段的断裂划分边界标志为:玛积雪山隆起(挤压双弯

图 9 东昆仑活动断裂带东段几何分段示意图 Fig. 9 Geometric segmentation in eastern segment of the East Kunlun fault

曲)、断裂交汇分解区(玛沁断裂在西科河附近与阿 万仓断裂交汇)、左阶拉分盆地(玛曲断裂通过若尔 盖盆地与塔藏断裂的左阶排列).结合三段全新世以 来的滑动速率(表 2),可判断该三段全新世以来均 保持着各自的活动幅度,滑动速率自西向东呈递减 的趋势,与整个东昆仑断裂带自西向东活动减弱的 大趋势保持一致.

3.2 东昆仑断裂带东段不同段落最大震级估计

1994 年美国学者 Wells 等^[47] 基于大量的样品 数,建立了走滑地震地表破裂长度与矩震级的经验 关系式,简称 WC 经验关系: M_w =5.16+1.12LgL, 剩余标准差为 0.28. 在应用 WC 等经验关系时,会 遇到矩震级 M_w 与面波震级 M_s 之间的转换问题, Wells 在 1994 年的工作中认为,当 M_s 在 5.7~8.0 级之间,两者之间不存在系统的差异,即 $M_w \approx M_s$. 但由于我国采用的震级测定方法和所用的台站资料 与美国存在一定的差异,即我国大陆的 M_s 与 M_w 并不相同.2009年冉洪流^[48]根据中国大陆1973一

表 2 东昆仑断裂带东段的分段标志和 全新世以来的滑动速率

Table 2 Criteria of segment and holocene slip velocity

in the eastern segment of the East Kunlun fault

分段名称	段落长度 (km)	段落划分边界 标志(与西段)	全新世以来的 滑动速(mm/a)	备注
			9	[1]
玛沁段	130	玛积雪山隆起	7	[33]
			9.3 ± 2	[34]
	140		5.4	[1]
		此列六汇八仞反	4.03~6.29	[35]
均田权		则爱父仁万胜区	3	[36]
			4.9 ± 1	[33]
塔藏段	60	左阶拉分盆地	2.7~2.8	个人通讯 (何玉林)
5744			1	[37]

2008年的地震数据,得到了这两种震级的转换关系式: *M*_s=1.412+0.845*M*_w, 剩余标准差为 0.11, 本

文利用了上述的统计关系式,结合断层的长度,求得 该段可能发生的最大震级(表 3):

表 3 东昆仑断裂带东段各段落最大震级估算值 Table 3 Estimated value for the largest magnitudes in eastern segment of the East Kunlun active fault

名称	玛沁段	玛曲段	塔藏段
断层长度	130	140	60
$M_{ m W}$	7.5	7.6	7.2
$M_{ m S}$	7.7	7.8	7.5

4 东昆仑断裂带东段不同段落最后地 震离逝时间和平均复发间隔讨论

在进行地震危险性评价时,需要全面了解该区 的古地震平均复发间隔和最后一次地震的离逝时 间.针对东昆仑断裂带东段的古地震定量研究开始 于 20 世纪 90 年代,并陆续取得了一些研究成果,但 成果之间的差异较大,本文将通过对比前人的研究 成果,获得较为合理的古地震复发间隔和地震的离 逝时间,为计算该段的复发概率提供较为准确的 素材.

4.1 玛沁段

从该段地表保存的地震鼓包、断层陡坎等构造 地貌,反映出该段全新世以来有过多次活动,前人通 过开挖探槽和利用天然露头的方法,得出了该段不 同期次的古地震事件(图 10).图中不同研究者得到 的古地震发生期次和年代有所不同,李陈侠[34]在格 曲河东侧Ⅱ级阶地断层剖面的下盘(Tc3),获得了 埋藏古地表最新的年龄为 358~430 Cal a BP,其采 样的位置是古植物层,但查阅近400多年的历史文 献资料,却没有发现有相关地震的记载,因此该年龄 仍需要进一步的考证.从图 10 中发现古地震年龄为 977~1090 Cal a BP 时,研究者的结论基本保持一 致[33-34],且与历史文献中"格萨尔王传"中一段地震 记载的时间相符,推测该年龄相对可靠,可作为该段 地震发生的最后离逝时间.最后对比分析主要的研 究成果,玛沁段的古地震事件主要可划定为6次事 件:第一次为 977~1090 Cal a BP;第二次为 2000± 300 Cal a BP; 第三次为 3342~3454 Cal a BP; 第四 次为 6600±700 a; 第五次为 7971~8050 Cal a BP; 第六次为10000±200 a. 求得古地震的平均复发周 期约为1765 a.

4.2 玛曲段

玛曲断裂的地震活动性相比玛沁断裂明显较弱,对于该段古地震资料前人也有较详细的研究(图 11),西科河附近有两个探槽^[1],玛曲县城附近有四 个探槽^[1,35-36],本文将对比前人的研究成果,得到地 震的离逝时间和地震的平均复发间隔.何文贵^[35]等 通过对比玛曲县城附近的三个古地震剖面,利用毛 凤英等提出古地震事件的逐次限定法,给出了该段 古地震发生较为准确的事件,全新世以来的有4次, 认为第一次和第二次的古地震时间较为可靠,但由

Fig. 11 Occurrence time of paleoearthquake in Magu segment

于探槽的数量少,古地震的记录仍存在不完整性. Lin 等^[36]通过对玛曲段三个天然露头和两个探槽 剖面的分层和采样,共识别出5次古地震事件,其中 有一个探槽剖面的位置和何文贵[35]研究的位置一 致,研究得到的古地震的年龄结果相差不大.本文通 过对比前人的研究成果,进一步结合露头和探槽剖 面的采样位置和测年方法,给出了7次较为可靠的古 地震事件:第一次为 1210±40 a;第二次为 1730± 50 a~2530 ± 40 a; 第三次为 3736 ± 57; 第四次为 4850±40 a; 第五次为: 6100~6700 a; 第六次为 8590±70 a; 第七次为 9000~10000 a. 可得最新一 次古地震的离逝事件为 1210±40 a,古地震的平均 复发周期约 1465 a.

4.3 塔藏段

从断层形迹分布的连续性看,塔藏断裂属于东 昆仑断裂玛曲以东段的阿西一塔藏断裂的一条分支 断裂,倾角 50°~75°,西起拉来坝南,向东经过塔藏、 九寨沟口、彭丰、马家、务角以东消失,总长度在 50 km 以上,控制了塔藏沟的发育,在坡麓地带形成断层残 山或边坡脊地貌,新活动迹象明显.其中一条冲沟 (若尔盖的阿西乡罗叉村东约7km)形成的Ⅱ级洪 积台地侧缘(顶部 TL 年龄值为 54000±4100 a)被 左旋位错了150 m,I级洪积台地侧缘(顶部TL年 龄值为 7300±500 a)被左旋位错了 20 m,据此估计 的断层平均滑动速率为 2.7~2.8 mm/a(个人通 讯). Kirby^[37]在若尔盖盆地东北方向,沿着塔藏断

裂西侧开挖了探槽,得到的两次古地震年龄,分别为 $4689 \pm 151\,$ a B. P, $9132 \pm 131a\,$ B. P^[37]; Nathan Harkins^[49]对大致相同位置的古地震剖面进行采 样,测得的古地震年龄为:4752±137 a B. P、9173± 111 a B. P, 两者年龄结果相差不大. 结合何玉林(个 人通讯)提供的该段的年龄值,可给出该段的古地震 发生期次,分别为:4689±151 a B. P、7300±500a、 9132±131 a B. P. 古地震事件的平均复发间隔约为 2220 a 左右.

据历史文献记载,公元638年(唐贞观十二年)、 1630年(明崇祯十二年)在四川松潘(位于塔藏段落 东南向约50 km)发生地震,"河涨水赤,山崩城倒, 坏人庐舍,压死兵民". 如果塔藏段在此期间发生过 $M_{*}7.5$ 以上的强震,应该有相应的历史记载,由此可 推测塔藏段的最后地震离逝事件应该在公元 638 年 之前,即最后地震的离逝时间应该介于1373~4689 ±151 a 左右.

东昆仑断裂带东段不同段落未来百 5 年强震复发概率

5.1 各段危险程度的定性分类

基于本文所求的地震平均复发间隔长的特点, 对东昆仑断裂带东段的三个段落的地震危险程度做 出一个定性的分类.我们通常用 E = t/R 描述断层 上地震发生时间紧迫性[50],却在一定程度上忽略了

9期

R 对地震时间紧迫性的贡献.即使 E 值相同,R 值 不同的两个段落,地震危险程度是不同的,一般来 说,R 值越小的,危险程度就越高.因此,可以给定两 个参量来划分危险性程度:①:E<0.5 且 R>2500 年为 C 类,表明该段千年内无危险;②0.5<E<0.8 且 R<2500 年为 B 类,表明该段近几百年有较小的 危险;③0.8<E<1 且 R<2500 年为 A 类,表明该 段近百年内危险性较大.E 取 0.5、0.8 和 1 为临界 值,是根据地震复发 T/Taxe的分布特征来定的,R 取

2500 年是由于三段的重复间隔小于 2500 年,随着 预测时间的增加,危险度的增加也会较快.按照此原 则划分:玛沁段和塔藏段属于 B类,玛曲段属于 A类.

5.2 各段未来一百年内发生强震(Ms≥7)的概率值

根据文中拟合的概率分布函数(2)和适用于中国 大陆内部所有活动断裂的概率分布函数(5),结合东 昆仑活动断裂带上各段的最后地震离逝时间和平均 复发间隔,分别计算该断裂带各段落自 2011 年起, 未来 20、50 和 100 年期间,地震复发的条件概率(表 4).

表 4 东昆仑活动断裂带东段未来 20 年、50 年和 100 年强震复发条件概率

Table 4 Strong earthquake recurrence conditional probability in different rupture segmentation

of the Eastern Kunlun active fault for the next 20 years, 50 years and 100 years

	最后一次地震的	古地震亚均		概素分布函数		(M≥7)条件概率 P(%)			
分段名称	离逝时间	复发间隔	危险性定性分类	关系式	$2011 \sim 2031$ ($\Delta t = 20$)	$2011 \sim 2061$ ($\Delta t = 50$)) $2011 \sim 2111 \\ (\Delta t = 100)$ 4. 33 \sim 5. 26 5. 19 \sim 5. 33 10. 82 5. 76 4. 15 4. 19		
म्न थे.	077-1000-	1765-	D	(2)	0.81~1.00	2.09~2.55	4.33~5.26		
玛沁 977—1090a	17058	D	(5)	1.11~1.09	2.65~2.72	$4. 33 \sim 5. 26$ 5. 19 \sim 5. 33 10. 82 5. 76			
77.44	1010	1405		(2)	2.13	5.35	10.82		
巧田	1210a	14098	А	(5)	1.19	2.94	5.76		
				(2)	0.79	2.02	4.15		
塔藏 1373	2220a	В	(5)	0.85	2.12	4.19			

1984年 Wallace 等^[51]在研究地震危险性的概 率分析时提出:复发概率在 0~10%之间的,属于低 概率事件;11%~49%之间的属于中概率事件;50% ~100%之间的属于高概率事件.从表 4 中计算的复 发概率的数据中发现,玛曲段在未来 100 年的复发 概率属于中概率事件,其余均属于低概率事件.

5.3 东昆仑断裂带东段未来至少发生一次 M_s≥7 级地震的概率

根据上述表4中各个断层段的复发概率(本文 拟合函数)计算了东昆仑活动断裂带东段未来至少 发生一次以上大地震的联合概率:

 $P = 1 - (1 - P1) * (1 - P2) * (1 - P3) \cdots$

P1、P2、P3…为东昆仑活动断裂带东段不同段落发 生地震的概率.

表5中显示东昆仑断裂带东段未来20年发生 强震的概率属于低概率事件、未来50年、100年间 的发震概率属于中概率事件、表5中的概率可能仅 代表此活动断裂带的最小概率值,因为古地震数据 可能不是很充分,如缺乏某活动期次事件,就会高估 复发间隔和离逝时间的值. 表 5 东昆仑断裂带东段未来 20 年、50 年和 100 年 至少发生一次大地震的概率(以 2011 年起算)

Table 5 Probability of the occurrence of strong earthquake for at least one in the eastern segment of the East Kunlun active fault in the next 20 years, 50 years and

100 years (beginning form 2011 years)

未来时段/a	20	50	100
概率值	4.53%	11.21%	21.87%

6 结论和讨论

通过收集和整理青藏高原东北部的古地震资料,建立了该区的复发概率模型,并将其应用于东昆 仑活动断裂带东段中长期强震的预测,取得的认识 和存在的问题如下:

(1)由强震复发概率模型计算的东昆仑断裂带 东段的复发概率值,只有玛曲段在未来100年的复 发概率值为10.82%,属于中概率事件,其余两段计 算的复发概率值都小于10%,属于低概率事件.考 虑模型的不确定性,概率事件只能反映地震发生危 险性的高低,对各段的危险性进行定性分类,综合认 为玛沁段近百年内的危险程度稍低;玛曲段近百年 内的危险性较高,值得重点防御;塔藏段由于古地震 研究的程度较低,文中计算发震概率采用的离逝时 间为最小值,相应计算的发震概率稍低,结合该段的 构造特征,认为该段在未来百年内强震发生的危险 性仍较高.

(2)由强震复发概率模型计算的条件概率 P 对 预测时段 Δt 的敏感程度与复发周期 R 的长短有密 切的关系,一般来讲,R 越大,概率值 P 随着预测时 段 Δt 的增长相应的增加越慢,当 R 很大而 Δt 很 小,预测效果较差,这也是复发模型在预测地震的局 限性.东昆仑断裂带东段的不同段落的复发间隔都 在千年左右,计算所得的条件概率值整体较小,但在 一定程度上仍反映出该三段在未来百年内的发震 水平.

(3)利用青藏高原东北部 22 条断裂带的古地震 定量数据,将其进行归一化处理,建立的强震复发概 率模型,仍包含了很大的不确定性,如测年方法的误 差、采样位置的合适度、古地震数据的遗漏等,这些 误差是无法用定量的方法作出估计的.但将本文拟 合的模型与目前通用的发震模型计算的概率值进行 比较,发现通用模型的自变量 t/R 越接近1的时候, 计算的复发概率值 P 增长的幅度不如本文拟合模 型敏感.因此,对于古地震数据研究程度较高的断裂 带,利用本文拟合的模型评价其未来大震的危险性 可能更为准确,尤其是对平均复发间隔小,离逝时间 长的段;而目前通用的复发模型针对那些古地震研 究程度较低的断裂带,复发间隔较长的段落,可能更 适用.

致 谢 感谢匿名审稿人和编辑部为作者提供了好 的意见和建议,使本文得以改进和完善.

参考文献(References)

- 青海省地震局,中国地震局地壳应力研究所. 东昆仑活动断裂带. 北京:地震出版社,1999:1-186.
 Seismological Bureau of Qinghai Province. Institute of Crustal Deformarion, China Seismological Bureau. East Kunlun Active Fault Zone. Beijing: Seismological Press (in Chinese), 1999: 1-186.
- [2] Van der Woerd J, Tapponnier P, Ryerson F J, et al. Uniform postglacial slip-rate along the central 600km of the Kunlun fault, from ²⁶A1, ¹⁰Be, and ¹⁴C dating of riser offsets, and climatic origin of the regional morphology. *Geophysical Journal International*, 2002, 148: 356-388.
- [3] 许志琴,杨经绥,李海兵等.青藏高原与大陆动力学一地体

拼合、碰撞造山及高原隆升的深部驱动力.中国地质,2006, 33(2):221-238.

Xu Z Q, Yang J S, Li H B, et al. The Qinghai-Tibet plateau and continental dynamics: A review on terrain tectonics, collisional orogenesis, and processes and mechanisms for the rise of the plateau. *Geology in China* (in Chinese), 2006, 33 (2): 221-238.

- [4] 许志琴,杨经绥,李海兵等.印度一亚洲碰撞大地构造.地质学报,2011,85(1):1-33.
 Xu Z Q, Yang J S, Li H B, et al. On the Tectonics of the India—Asia Collision. Acta Geologica Sinica (in Chinese), 2011,85(1):1-33.
- [5] Zhang Z J, Klemperer S, Bai Z M, et al. Crustal structure of the Paleozoic Kunlun orogeny from an active-source seismic profile between Moba and Guide in East Tibet, China. Gondwana Research, 2011, 19(4): 994-1007.
- [6] Karplus M S, Zhao W, Klemperer S L. Injection of Tibetan crust beneath the south Qaidam Basin: Evidence from INDEPTH IV wide-angle seismic data. *Journal of Geophysical Research-Solid Earth*, 2011, 116: B07301, doi: 10.1029/ 2010JB007911.
- Parsons T, Chen J, Kirby E. Stress changes from the 2008 Wenchuan earthquake and increased hazard in the Sichuan basin. Nature, 2008, 454(7203): 509-510.
- [8] Nishenko S P. Seismic potential for large and great interplate earthquakes along the Chilean and southern Peruvian margins of South America: A quantitative reappraisal. J. Geophys. Res., 1985, 90(B5): 3589-3615.
- [9] Nishenko S P, Buland R. A generic recurrence interval distribution for earthquake forecasting. Bull. Seism. Soc. Amer., 1987, 77(4): 1382-1399.
- [10] Nishenko S P, Singh S K. Conditional probabilities for the recurrence of large and great interplate earthquakes along the Mexican Subduction zone. Bull. Seism. Soc. Amer., 1987, 77(6): 2094-2114.
- [11] Sykes L R, Nishenko S P. Probabilities of occurrence of large plate rupturing earthquakes for the San Andreas, San Jacinto, and Imperial faults, California, 1983-2003. J. Geophys. Res., 1984, 89(B7): 5905-5927.
- [12] 闻学泽. 鲜水河断裂带未来三十年内地震复发的条件概率. 中国地震, 1990, 6(4): 8-14.
 Wen X Z. Conditional probabilities for the recurrence of earthquakes on the Xianshuihe fault zone within the coming three decades. *Earthquake Research in China* (in Chinese), 1990, 6(4): 8-14.
- [13] 刘静,汪良谋.运用活断层资料评价沿渭地震带中长期强震 危险性.地震学报,1996,18(4):427-435.
 Liu J, Wang L M. Evaluate the middle-and longterm seismic risk in the Fen-Wei seismic belt by using the active fault data. *Acta Seismologica Sinica* (in Chinese), 1996, 18(4):427-435.
- [14] 张培震,毛凤英.活动断裂定量研究与中长期强地震危险性 概率评价. //活动断裂研究(5).北京:地震出版社,1996: 12-31.

Zhang P Z, Mao F Y. Active faulting and fault specific

probabilistic seismic hazard assessment. // The active fault in China(5). Beijing: Seismological Press (in Chinese), 1996: 12-31.

[15] 滕瑞增,金瑶全,李西侯等.西秦岭北缘断裂带新活动特征. 西北地震学报,1994,16(2):85-90.

> Teng R Z, Jin Y Q, Li X H, et al. Recent activity characteristis of the faultzoneat Northern nedge of Wester Qinling Mt. Northwestern Seismological Journal (in Chinese), 1994, 16(2): 85-90.

[16] 曹娟娟,刘百篪,闻学泽.西秦岭北缘断裂带特征地震平均 复发间隔的确定和地震危险性评价.地震研究,2003,26 (4):372-381.

Cao J J, Liu B Z, Wen X Z. Determination of the average recurrence intervals of characteristic earthquakes and estimate of earthquake rick on northern Xiqinling faults. *Earthquake Research* (in Chinese), 2003, 26(4): 372-381.

[17] 国家地震局地质研究所,宁夏地震局.海原活动断裂带.北 京:地震出版社,1990.

Institute of Geology, State Seismological Bureau, Seismological Bureau of Ningxia Hui Autonomous Region. Research on the Active Haiyuan Fault Zone (in Chinese). Beijing: Seismological Press, 1990.

- [18] 张培震,闵伟,邓起东等.海原活动断裂带的古地震与强震复发规律.中国科学(D辑),2003,33(8):705-713.
 Zhang P Z, Min W, Deng Q D, et al. Paleoearthquake and strong earthquake recurrence interval in Haiyuan active fault. *Science in China (Series D)* (in Chinese),2003,33(8):705-713.
- [19] 郑文俊.河西走廊及其邻区活动构造图像及构造变形模式. 北京:中国地震局地质研究,2009.
 Zhen W J. Geometric Pattern and Active Tectonics of the Hexi Corridor and its Adjacent Regions (in Chinese).
 Beijing: Institute of Geology, China Earthquake Administration, 2009.
- [20] 陈柏林,王春宇,宫红良等.关于河西走廊盆地榆木山北缘 断裂晚第四纪活动特征的新认识.地质通报,2007,26(8): 976-983.

Chen B L, Wang C Y, Gong H L, et al. A new understanding of the characteristics of Late Quaternary activity of the northern Yumushan marginal fault in the Hexi corridor, northwestern China. *Geological Bulletin of China* (in Chinese), 2007, 26(8): 976-983.

- [21] 邹谨敞,貌顺民,陈志泰. 榆木山东麓断裂带晚第四纪活动 特征的初步研究. 高原地震,1993,5(2):31-35.
 Zhou J S, Mao S M, Chen Z T. Preliminary study on the late quaternary active feature of The Yumushan eastern marginal fault zone. *Earthquake Research in Plateau* (in Chinese), 1993,5(2):31-35.
- [22] 王永成,刘百篪. 祁连山中东段断裂的地震危险性分析. 西 北地震学报,2001,23(4):330-338.
 Wang Y C, Liu B C. Analysis on seismic risk for faults in the mid-eastern Qilianshan Area. Northwestern Seismological Journal (in Chinese), 2001, 23(4): 330-338.
- [23] 康来迅. 昌马断裂带古地震的探讨. 地震学刊, 1986, (4): 16-21.

Kang L X. Study of Paleo-earthquakes in Changma fault zone. *Journal of Seismology* (in Chinese), 1986, (4): 16-21.

- [24] 郭敬信,侯珍清,侯康明. 昌马一祁连断裂带中段全新世活动特征与古地震,西北地震学报,1990,12(3):38-43.
 Guo J X, Hou Z Q, Hou K M. Active character and palaeoearthquake on median section of Changma-Qilian fault zone in holocene. Northwestern Seismological Journal (in Chinese), 1990, 12(3):38-43.
- [25] 刘百篪,曹娟娟,袁道阳等.青藏高原北部活动地块内部的 活断层定量资料.地震地质,2008,30(1):161-175.
 Liu B C, Cao J J, Yuan D Y, et al. Quantitative data of active faults within the active tectonic block in North Qinghai-Xizang Plateau. Seismology and Geology (in Chinese), 2008, 30(1):161-175.
- [26] 何文贵,刘百篪,袁道阳. 冷龙岭断裂带古地震研究. // 中 国地震局地质研究所编. 活动断裂研究 (8),北京:地震出 版社,2000:64-74.
 Hen W G, Liu B J, Yuan D Y. Preliminary research on the paleoearthquakes along the LengLongLing active fault zone.
 // Institute of Geology, China Seismological Bureau(ed).
 Research on Active Fault(8) (in Chinese). Beijing: Seismological
- [27] 国家地震局地质研究所,国家地震局兰州地震研究所.祁连山一河西走廊活动断裂系.北京:地震出版社,1993. Institute of Geology, State Seismological Burean, Lanzhou Institute of Seismology, State Seismological Bureau. The Qilian Moutain-Hexi Corridou Active Fault System (in Chinese). Beijing: Seismological Press, 1993.

Press, 2006: 64-74.

- [28] 刘小风,刘百篪,吕太乙等.老虎山活断层研究.华南地震, 1994,14(4):9-16.
 Liu X F, Liu B Z, Lü T Y, et al. The research on the Laohushan active fault. South China Journal of Seismology (in Chinese), 1994, 14(4): 9-16.
- [29] 郑文俊,袁道阳,何文贵. 祁连山东段天桥沟一黄羊川断裂 古地震活动习性研究. 地震地质, 2004, 26(4): 645-657. Zen W J, Yuan D Y, He W G. Characteristics of palaeoearthquake activity along the active Tianqiaogou Huangyangchuan fault on the Eastern section of the Qilanshan mountains. *Seismology and Geology* (in Chinese), 2004, 26(4): 645-657.
- [30] 闵伟,张培震,邓起东.中卫一同心断裂带全新世古地震研究.地震地质,2001,23(3):357-366.
 Min W, Zhang P Z, Deng Q D. Study of holocene paleoearthquakes on Zhongwei-Tongxin fault zone. *Seismology and Geology* (in Chinese), 2001, 23(3): 357-366.
- [31] 刘小龙,袁道阳.青海德令哈巴音郭勒河断裂带的新活动特征.西北地震学报,2004,26(4):303-308.
 Liu X L, Yuan D Y. Study on the new active features of bsy in Guole River active fault, Delingha, Qinghai Province. Northwestern Seismological Journal (in Chinese), 2004, 26 (4): 303-308.
- [32] 袁道阳,张培震,刘小龙等.青海鄂拉山断裂带晚第四纪构 造活动及其所反映的青藏高原东北缘的变形机制.地学前缘 (中国地质大学,北京),2004,11(4):393-402.

Yuan D Y, Zhang P Z, Liu X L, et al. The tectonic activity and deformation features during the late Quaternary of ElashanMountain active fault zone in Qinghai Province and its implication for the deformation of the northeastern margins of the Qinghai-Tibet Platea. *Earth Science Frontiers* (*China University of Geosciences*, *Beijing*) (in Chinese), 2004, 11 (4): 393-402.

- [33] 李春峰, 贺群禄, 赵国光. 东昆仑活动断裂带东段古地震活动特征. 地震学报, 2005, 27(1): 60-67.
 Li C F, He Q L, Zhao G G. Paleo-earthquake studies on the eastern section of the kunlun fault. Acta Seismologica Sinica (in Chinese), 2005, 27(1): 60-67.
- [34] 李陈侠. 东昆仑断裂带东段(玛沁一玛曲)晚第四纪长期滑动习性研究. 北京:中国地震局地质研究所,2009.
 Li C X. The long-term Faulting Behavior of the Eastern segment (Maqin-Maqu) of the East kunlun fault since the Late Quaternary. Beijing: Institute of Geology, China Earthquake Administration (in Chinese), 2009.
- [35] 何文贵,熊振,袁道阳等.东昆仑断裂带东段玛曲断裂古地 震初步研究.中国地震,2006,22(2):126-134.
 Hen W G, Xiong Z, Yuan D Y, et al. Palaeo-earthquake study on the Maqu fault of east Kunlun active fault. *Earthquake Research in China* (in Chinese), 2006, 22(2): 126-134.
- [36] Lin A M, Guo J M. Nonuniform Slip Rate and Millennial Recurrence Interval of Large Earthquakes along the Eastern Segment of the Kunlun Fault, Northern Tibet. Bulletin of the Seismological Society of America, 2008, 98(6): 2866-2878.
- [37] Kirby E, Harkins N, Wang E Q, et al. Slip rate gradients along the eastern kunlun fault. *Tectonics*, 2007, 26(C2): 1-16.
- [38] 胡道功,吴中海,吴珍汉等. 东昆仑断裂带库赛湖段晚第四 纪古地震研究. 第四纪研究, 2007, 27(1): 27-34.
 Hu D G, Wu Z H, Wu Z H, et al. Late quaternary paleoseismic history on the Kusai lake segment of East Kunlun fault zone in northern Tibet. *Quaternary Sciences* (in Chinese), 2007, 27(1): 27-34.
- [39] 胡道功,叶培盛,吴珍汉等.东昆仑断裂带西大滩段全新世古地震研究.第四纪研究,2006,26(6):1012-1020.
 Hu D G, Ye P S, Wu Z H, et al. Research on Holocene paleoearthquakes on the Xidatan segment of the East Kunlun fault zone in Northern Tibet. *Quaternary Sciences* (in Chinese), 2006, 26(6): 1012-1020.
- [40] 国家地震局"阿尔金活动断裂带"课题组.阿尔金活动断裂带.北京:地震出版社,1992.
 Task Group of Altun Active Fault Zone. State Seismological Bureau. Altun Active Fault Zone. Beijing, Seismological Press (in Chinese), 1992.
- [41] 熊仁伟,任金卫,张军龙等.玛多一甘德断裂甘德段晚第四 纪活动特征.地震,2010,30(4):65-73.

Xiong R W, Ren J W, Zhang J L, et al. Late quaternary active characteristics of the Gande Segment in the Maduo-Gande Fault Zone. *Earthquake* (in Chinese), 2010, 30(4): 65-73.

- [42] 柴炽章,廖玉华,张文孝等. 灵武断裂晚第四纪古地震及其 破裂特征. 地震地质, 2001, 23(1): 15-23.
 Chai Z Z, Liao Y H, Zhang W J, et al. Late quaternary paleoearthquakes and their rupture features along the Lingwu fault. Seismology and Geology (in Chinese), 2001, 23(1): 15-23.
- [43] 闵伟,柴炽章,王萍等.罗山东麓断裂全新世古地震研究. 高原地震,1993,5(4):97-102.
 Min W, Chai Z Z, Wang P, et al. The study on the paleoearthquakes on the eastern piedmont fault of the luoshan mountains in Holocene. *Earthquake Research in Plateau* (in Chinese), 1993, 5(4): 97-102.
- [44] 国家地震局"鄂尔多斯周缘活动断裂系"课题组.鄂尔多斯周 缘活动断裂系.北京:地震出版社,1988. The Research Group on Active Fault System around Ordos Massif, State Seismological Bureau. Active Fault System around Ordos Massif. Beijing: Seismological Press (in Chinese), 1988.
- [45] 杜鹏,柴炽章,廖玉华等.贺兰山东麓断裂南段套门沟一榆 树沟段全新世活动与古地震.地震地质,2009,31(2):256-264.

Du P, Chai Z Z, Liao Y H, et al. Study on holocene acticity of the south segment of the eastern Piedmont fault of Helan mountains between Taomengou and Yushugou. *Seismology and Geology* (in Chinese), 2009, 31(2): 256-264.

 [46] 丁国瑜,田勤俭,孔凡臣等. 活断层分段. 北京: 地震出版 社,1993.
 Ding G Y, Tian Q J, Kong F C, et al. Segmentation of active

fault (in Chinese). Beijing: Seismological Press, 1993.

- [47] Wells D L, Coppersmith K J. New empirical relationships among magnitude, rupture length, rupture area, and surface displacement. Bull. Seism. Soc. Am., 1994, 84: 947-1002.
- [48] 冉洪流. 潜在震源区震级上限不确定性研究. 地震学报, 2009, 31(4): 396-402.
 Ran H L. Research on uncertainty of upper limit earthquake magnitude in potential seismic source zone. Acta Seimologica Sinica (in Chinese), 2009, 31(4): 396-402.
- [49] Harkins N, Kirby E, Shi X, et al. Millennial slip rates along the eastern Kunlun fault: Implications for the dynamics of intracontinental deformation in Asia. *Lithosphere*, 2010, 2 (4): 247-266.
- [50] Matsuda T. Estimation of future destructive earthquakes from active faults on land in Japan. J. Phys. Earth, 1977, 25(S1): 795-855.
- [51] Wallace R E, Davis J F, Mcnally K C. Terms for expressing earthquake potential, prediction, and probability. *Bull. Seism. Soc. Am.*, 1984, 74(5): 1819-1925.