吴奇,洪明华,杜爱民等.2007年3月3日长时间持续 Pc5 ULF 波的多点联合观测分析.地球物理学报,2012,55(11):3568-3575,doi:10.6038/j.issn.0001-5733.2012.11.006.

Wu Q, Hong M H, Du A M, et al. Multi-point joint observations of long-time continual Pc5 ULF waves on 3 March 2007. *Chinese J. Geophys.* (in Chinese), 2012, 55(11):3568-3575, doi:10.6038/j.issn.0001-5733.2012.11.006.

2007 年 3 月 3 日长时间持续 Pc5 ULF 波的 多点联合观测分析

吴 奇^{1,2},洪明华¹,杜爱民^{1*},曹 馨¹,

赵旭东1,张 莹1,徐文耀1,张铁龙3

1 中国科学院地质与地球物理研究所,北京 100029

2 中国科学院研究生院,北京 100019

3 Space Research Institute, Austrian Academy of Sciences, Graz, Austria

摘 要 2007年3月3日位于磁层昏侧 THEMIS的5颗卫星、同步轨道晨侧和午前的 GOES3颗卫星和地面地磁 台站同时观测到了持续近4h的 Pc5 ULF 波.我们用交叉小波相关分析计算脉动的传播速度,用 MVA 分析求解 脉动的传播方向,然后结合两者的计算结果获得了 Pc5 相速度矢量信息.THEMIS 卫星观测到 Pc5 具有压缩特性, 且向阳传播,速度约在 6~20 km/s 左右,相比于磁层中阿尔芬速度(1000 km/s)较低.这些 Pc5 ULF 波动可能产生 于磁尾或磁层内部不稳定性.GOES 3颗卫星观测到不同情况的 Pc5 ULF 波,极向模占主要成分,且具有波包结构,具有阿尔芬驻波特性,可能产生于 K-H(Kelvin-Helmholtz)不稳定性.地面台站观测到 ULF 波扰动幅度随纬度 升高而增强,Pc5 脉动在地理纬度 60°附近达到最大值, Dumont durville 台站观测到的脉动与 THEMIS 观测到波 形有很好的相似性.

关键词 Pc5 ULF 波,剪切 Alfven 波,压缩波,磁层
 doi:10.6038/j.issn.0001-5733.2012.11.006
 中图分类号 P353
 收稿日期 2012-02-10,2012-10-10 收修定稿

Multi-point joint observations of long-time continual Pc5 ULF waves on 3 March 2007

WU Qi^{1,2}, HONG Ming-Hua¹, DU Ai-Min^{1*}, CAO Xin¹, ZHAO Xu-Dong¹, ZHANG Ying¹, XU Wen-Yao¹, ZHANG Tie-Long³

1 Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2 Graduate University of Chinese Academy of Science, Beijing 100019, China

 $\ensuremath{\mathfrak{S}}$ Space Research Institute , Austrian Academy of Sciences , Graz , Austria

Abstract On 3 March 3 2007, five THEMIS satellites on the dusk side of the magnetic layer, three geosynchronous GOES satellites on the downside and morning and ground geomagnetic stations all observed Pc5 ULF waves for almost four hours. We use cross wavelet correlation analysis to calculate the pulse's propagation speed and MVA to determine the propagation direction. Then we combine the speed and the direction to obtain the information of the Pc5 phase velocity vectors. THEMIS satellite observed that Pc5 waves were of compression, propagating sunward at a speed about $6\sim 20$ km/s. Compared to the magnetic layer Alfven speed (1000 km/s), this velocity is relatively low. They may come from the magnetotail or innermagnetosphere

基金项目 国家自然科学基金重大项目(41031066,40890163)、国家自然科学基金(41174122)、海洋公益性行业科研专项(20100517)资助. 作者简介 吴奇,男,1986年生,硕士研究生,2009年毕业于兰州大学,主要从事 ULF 波的研究.

^{*} 通讯作者 杜爱民, E-mail: amdu@mail. iggcas. ac. cn

instability. Three GOES satellites observed different Pc5 ULF pulsations dominated by the poloidal mode and have the wave packet structure which means that Pc5 waves have the Alfven wave feature, likely originated from K-H instability. The ULF disturbance amplitude observed by ground stations strengthened with increasing latitudes. Pc5 waves reached the highest level at 60 degree latitude. There is good similarity in waveforms between the pulses observed by the Dumont Durville station and the waves observed by THEMIS.

Keywords Pc5 ULF waves, Shear Alfven wave, Compressional wave, Magnetosphere

1 引 言

地磁脉动是磁层中传播的超低频磁流体力学 波,又称为 ULF 波. Pc5 ULF 波是指频率在 1~ 10 mHz之间连续型的地磁扰动,它是磁层内部常见 的波动现象^[1].

磁层中的 Pc5 ULF 波动由太阳风源或者磁层 内部的不稳定性激发.太阳风源主要是指由于太阳 风剪切磁层和太阳风动压变化对磁层顶的作用.前 者引起 K-H(Kelvin-Helmholtz)不稳定性,在磁层 两翼会产生表面波[2-3].后者也可激发向日侧磁层的 Pc5 ULF 波动. 这些面波通过磁力线共振或者空腔 共振被放大,波动的性质随着磁层内部介质性质而 发生变化,并将太阳风中的部分能量输运到磁层内 部.太阳风中的非线性波动也可直接穿透进入磁层 内部[4],模拟结果[5]给出同样结论.磁尾磁重联形成 的闭合磁力线携带能量粒子回弹、径向漂移不稳定 性等是 Pc5 ULF 波的内源^[6]. Pc5 ULF 波的分布具 有区域性特征,不同区域出现的 Pc5 的周期、幅度、 相速度矢量方向等均有可能不同,而不同性质的波 的激发机制也有可能不同. ULF 波的研究对磁层能 量粒子的加速以及太阳风向磁层的能量传输过程有 着很重要的作用^[7],Pc5 ULF 波的研究与磁层内部 性质的诊断和粒子的加速相关.

Dungey^[8]最早提出 ULF 波是 MHD 波动,可 以通过磁力线共振机制放大.他将 MHD 波分为环 向模和极向模.在局地场向坐标系^[9]中,环向模对应 于剪切 Alfven 波,等离子体速度和磁场的扰动均在 方位角方向而电场扰动在径向;极向模对应于快模 波,磁场和等离子体速度扰动沿径向,电场扰动位于 方位角方向.另外,磁层顶、等离子层顶和电离层作 为反射边界形成空腔,外部扰动作用于空腔可能激 发空腔共振^[10],产生的单频压缩波遇到本征频率与 其一致的磁力线发生耦合,产生磁力线共振,空腔模 型可以很好地解释大L范围内的单频脉动现象.

以往卫星观测做过很多脉动区域性分布和脉动 激发机制的研究. Sanny 等[11] 研究了同步轨道上 ULF 波的全球性分布. 在地磁活动较强的情况下压 缩 Pc5 ULF 波功率谱的最大值出现在下午,上午出 现次高峰.地磁活动较弱时,极大值出现在午前.子 夜附近一直存在极大值.另外太阳风速度和动压对 ULF 波功率都有较大贡献,而太阳风速度的影响仅 限于白天,动压则影响所有地方时.Liu 等[12]统计分 析 4~9 R_E 范围内 THEMIS 观测的 Pc4、5 ULF 波 的分布情况指出:Pc5 脉动更多的出现在 7~9 RE 范围内,磁层顶两侧区域主要以环向模为主,环向模 可能源于 K-H 不稳定性;正午 Pc5 脉动与以极向模 为主,这里太阳风动压可能起主要作用.动压较弱 时,K-H 不稳定性起重要作用. Takahashi 等^[13] 统 计分析同步轨道 Pc5 脉动功率对太阳风参数的响应 发现太阳风动压在所有太阳风参数中影响最大. Claudepierre 等^[14]认为晨昏两侧的地磁脉动主要源 于 K-H 不稳定性而不是动压的波动. Vaivads 等^[15] 发现这种波动主要出现在晨昏侧. Takahashi 等^[6] 观测到正午出现的压缩波,发现昏侧压缩波的传播 方向为西向即向阳传播,东向传播有时会在晨侧出 现,其相速度大小在几 km/s 到一百多 km/s. Constantinescu 等^[17]统计分析黄昏侧 Pc5 压缩波也 发现其相速度很低,垂直磁场向阳传播. Sarris 等^[18] 观测到波的频率随 L 壳层而改变. 最近研究发现, ULF 波能对辐射带能量粒子调制作用. 而 VLF 电 磁波能驱动辐射带的高能粒子随机加速与投掷角扩 散^[19-22],两者结合有望对辐射带动力学过程得到更 全面深入的了解.

对 Pc5 国际上进行过诸多研究,利用不同的卫 星,不同的地磁台站,对不同的磁层区域开展了多方 面的研究工作.然而由于卫星同一时间覆盖面较小, 研究具有局限性,因此,多角度、大范围的观测是必 要的.THEMIS 卫星是由五颗不同轨道的赤道卫星 组成,五颗卫星上均携带了测量磁场及其低频波的 FGM 和测量电场的仪器.这使得通过卫星获得局地 低频波矢量传播方向、波的偏振等物理性质成为可能. GOES 卫星位于同步轨道上,是研究磁层内部脉动的重要工具. 2007年3月3日位于子夜前约2200 UT 附近的5颗 THEMIS 卫星观测到持续时间近4h的Pc5 ULF 波,同时,GOES 位于子夜后、上午和午前的3颗卫星也观测到持续时间较长的 ULF 波,地面台站同样观测到 ULF 波. 以下我们将分析两组不同区域卫星观测到的 ULF 波的性质及其可能的关系,同时简单讨论地面和卫星观测的一致性. 由于THEMIS 发射初期没有观测到电场及粒子观测数据,本文将不就磁场与电场观测的区别与联系及粒子密度、温度变化与 ULF 波性质的联系进行分析.

2 数据分析和结果

图 1 给出了 2007 年 3 月 3 日 1100—1500 UT 期间THEMIS卫星(P1-5)、同步轨道卫星GOES10、

图 1 2007 年 3 月 3 日 1100~1500 UT 期间 THEMIS 和 GOES 卫星轨道示意图 Fig. 1 Orbits of THEMIS and GOES satellites during 1100~1500UT on march 03. 2007

GOES11、GOES12的 X-Y 平面轨道示意图. X、Y 分 别为GSM (Geocentric Solar Magnetosphheric System,

图 2 THEMIS 五颗卫星 GSM 坐标系下观测到的 ULF 波图像

Fig. 2 The ULF wave in the GSM coordinate system observed by five THEMIS satellites.

图 3 THEMIS 5 颗卫星观测到的 12:30—13:30UT 之间局地场向坐标系下 ULF 波图像 Fig. 3 Five THEMIS satellites observed ULF waves during 12:30—13:30UT in the local field-alined coordinate system

地心太阳磁层系)坐标系下的地球与日地连线和晨 昏方向的坐标轴. THEMIS 卫星处于发射初期轨道 调整期间,5颗卫星位于远地点附近 14~15 $R_{\rm E}$,在 近似位于赤道面的同一轨道上逆时针运行,依次为 P2(-8.56,11.84,-0.25)、P1(-8.13,12.00, -0.15)、P3(-7.93,12.02,-0.14)、P5 (-8.05,12.03,-0.11)、 P4 (-7.57,12.09, -0.07)Re. 同步轨道卫星 GOES_10(4.44,-4.76, 1.19)Re 位于午前,GOES_12(2.99,-5.52,1.26) Re 位于上午,GOES_11(-3.63,-5.22,0.42)Re 靠近黎明一侧.

2.1 THEMIS 卫星观测到昏侧 Pc5 脉动

图 2 给出了 2007 年 3 月 3 日 THEMIS 观测到 的磁场数据,绿色曲线代表 Bx 分量,蓝色曲线为 By,红色曲线为 Bz.5 颗卫星同时观测到了相似的 ULF 波,持续时间近 4 h,周期约在 4~7 min,振幅 约为 5~10 nT,Z 方向扰动较强. P3、P1、P5 观测到 的波形相似. 部分时段存在频散现象,波幅大约从 13:40 UT 开始衰减.

我们首先将 THEMIS 卫星观测的 GSM 坐标 系下的磁场数据转到局地场向坐标系(Mean Field-Aligned,MFA)下.利用 15 min 的滑动平均确定平 均磁场方向分量(Bc),径向分量(Bp)由 Bc单位矢 量与卫星矢径方向单位矢量叉乘得到,方位角分量 (Bt)由右手法则通过 Bc和 Bp得到^[9].然后,我们 对 Bc,Bt和 Bp进行数字带通滤波,带宽选为 Pc5 频段 1.7~6.7 mHz,滤波器选用 FFT 滤波.图 3 给 出了 THEMIS 5 颗卫星的 MFA 坐标系下的滤波 后的波形图.5 颗卫星的 Bc分量扰动皆占优,Bt 最 弱.扰动主要在背景磁场方向,Pc5 有很强的压缩波 成分.P2 观测到的 Pc5 的相位与 P1 的 Pc5 的位相 超前 90°左右, P4 观测的波形相位落后于 P1、P3、 P5 近 180°.

为了进一步判断 THEMIS 卫星观测到的 Pc5 波动的频谱特性,我们对 Pc5 进行了小波波谱分析. 我们采用 Morlet 小波分析方法(Torrence and Compo,1998;Du et al., 2005)^[23-24],它由高斯函数 调制的面波组成,

$$\varphi_0(\eta) = \pi^{-1/4} e^{i\omega\eta} e^{-\eta^2/2},$$
 (1)

式中, φ_0 , ω 和 η 分别为小波函数、波数和在无量纲时间的小波值.

图 4 给出了 P2、P3、P1、P5、P4 等 THEMIS 5 颗卫星观测到的 Pc5 脉动的小波功率谱图,横坐标 为时间,纵坐标为周期,色标给出谱强度.相邻较近 的 3 颗卫星 P3、P1 和 P5 的小波谱整体频谱特性相 似. P2 和 P4 与中间的 3 颗相邻较近的卫星观测到 的 Pc5 小波谱的共同特征为:(1)周期在 4~7min 之间;(2)压缩模最强、极向模次之、环向模最小.它 们的不同之处:(1)P3、P1 和 P5 的谱较为连续,而 P2 和 P4 在 1300 UT 附近开始增强并与 P3、P1、P5 有较高的相似度;(2)不同时间各卫星观测的 Pc5 的 频率略有差异,越靠近地球卫星观测到的 Pc5 脉动 的频率越低.

通过交叉小波相关分析我们得到了各卫星观测 到的 Pc5 的相位差($\Delta \phi$)、互谱最大值对应的周期 (T)、以及 Pc5 沿着卫星运动轨迹上的传播速度(v) (如表 3 所示).相位差结合卫星间距 D 求解波长 λ , 波长结合周期求解轨道方向相速度 V.公式如下:

$$\lambda = \frac{360}{\Delta d} * D, \tag{2}$$

$$V = \lambda/T.$$
 (3)

利用相位差和轨道方向传播速度分析并估计相 速度矢量的方向.如表1所示,5颗卫星观测到的 Pc5都是向日传播.

表 1 相关分析得到的相位差,轨道方向相速度

Table 1 P	Phase difference and	phase speed	along magnetic	field given	by wavelet	correlation	analysis
-----------	----------------------	-------------	----------------	-------------	------------	-------------	----------

组合	卫星直线距离	最强互谱值对应的周期		相位差			轨道方向传播速度				
	d	X	Y	Ζ	X	Y	Ζ	X	Y	Ζ	
P2P4	6582.473	363.765	333.574	363.765	-116.907	-156.793	-104.662	-55.722	-45.308	-62.242	
P2P1	3024.592	363.765	235.873	333.574	84.853	82.032	83.746	35.276	56.274	38.977	
P2P3	3308.685	363.765	235.873	333.574	79.92	74.49	79.08	40.971	67.792	45.154	
P2P5	3603.518	363.765	235.873	333.574	92.11	85.149	95.037	38.717	64.591	40.921	
P1P4	3601.751	280.501	333.574	396.689	114.87	119.088	172.697	40.241	32.64	18.927	
P3P4	3320.242	280.501	333.574	396.689	120.026	124.351	178.452	35.503	28.816	16.885	
P5P4	3042.781	280.501	333.574	396.689	107.993	109.685	162.774	36.161	29.939	16.964	
P1P3	285.071	280.501	235.873	305.889	-5.365	-7.584	-4.605	-68.194	-57.371	-72.851	
P1P5	593.284	280.501	235.873	305.889	2.724	2.932	2.209	279.546	308.826	316.119	
P3P5	327.918	280.501	235.873	305.889	8.124	10.533	6.873	51.806	47.515	56.151	

Fig. 4 The wavelet power spectrum of ULF waves in the field-alined coordinate system observed by five THEMIS satellites

由卫星的相位关系我们可知波在轨道上是向日 传播(由夜侧传向日侧).由 P2、P4 求得相速度约 30 km/s左右.P3、P1 相位差负值说明波由 P1 传向 P3.P1、P5 组合的相位差正值,说明波由 P1 传向 P5,由于 P3、P1、P5 近乎位于同一轨道,且 P1 位于 P3、P5 之间,由此我们可以判断 P1 处的波矢量为 由 P1 指向 P3、P5 的连线方向,近似垂直于轨道向 外.这也解释了 P1、P5 轨道相传播速度值异常,P2、 P4,P1、P5 计算的传播速度较大也因为相速度矢量 与轨道的夹角较大.P2 与 P3、P1、P5 三颗卫星的组 合并没有因为距离大而得到较大的轨道相速度矢

图 5 给出 GSM 坐标系下 XY 平面内 THEMIS 卫星轨道及相速度矢量情况,5 颗卫星轨道近似相 同,从左向右逆时针运行,12:30~13:30 UT 运行 区间不超过两个地球半径,蓝色为P2,蓝绿色为P3,

黄绿色为 P1,黄色为 P5,红色为 P4. P2 距离 P3、P1、 P5 约 0. 5*R*_E, P3、P1、P5 相距约 200~300 km,P4 距离 它们约为 0. 5 *R*_E.

最小变化分析(MVA)是通过求解每颗卫星观 测数据的三个特征向量,假设波为平面波,取最小变 化方向为相速度矢量方向.MVA结合相位差得出 的相速度矢量信息如图中箭头所示,箭头指示相速 度矢量方向,长度指代相速度矢量大小,图中可见5 颗卫星的相速度矢量都指向X正向(向阳传播), P2、P1、P3、P5观测到Y正方向传播(波向地球外部 传播),P4观测到Y负方向传播(地球内部传播). P2、P4的相速度在6~10 km/s,P3、P1、P5的相速 度在12~15 km/s.P3、P1、P5 处相速度矢量与轨道 的夹角较大,P2 处相速度矢量与轨道的夹角较 P1、 P3、P5 处小,这与利用相位差分析的结果相一致.

2.2 GOES 卫星观测

图 6 给出了 2007 年 3 月 3 日 12:30~13:30 UT 期间 GOES10、GOES10、GOES12 等卫星的在 X-Y 平面的轨道绿色线为 GOES_11,位于 4:00M LT 左右,红色为 GOES_12,运行时间区间在 9:00 MLT 附近,蓝色为 GOES_10,在 11:00 MLT 附 近. 三颗同步轨道卫星观测到的 Pc5 ULF 波持续了 4 个多小时,为了分析其观测与 THEMIS 卫星观测 到的 ULF 波可能的关系,我们选取 12:30~13:30 UT 范围内的数据分析 3 颗卫星同一时间内观测到磁场 扰动情况.

将数据转换到局地场向坐标系中滤波得出周期 在1~10 min 范围内的波形,然后进行小波变换.图 7分别给出 GOES_10、GOES_11、GOES_12 三颗卫 星的小波波谱图,叠加的白色曲线为 Pc5 在场向坐 标系下的滤波后的三个分量.GOES_10 中波动持续 时间最长且扰动幅度较大,最大振幅在 4~5 nT,且 p方向最强,t方向次之,c方向最弱,同时三分量都 给出振幅周期性的减弱和增强,结构类似于波包. GOES_11 观测的 p 分量和 t 分量在 13:00UT 以后 增强,在13:15UT 左右达到最大值,然后开始减 弱, c 分量一直较弱. GOES_12 距离 GOES_10 较 近,然而波形的扰动强度与前者相差较大,三个方向 扰动都较弱,在所取时间区间内,t方向由开始的最 强变到最弱,再到次强,p方向由开始的次强变为后 来的次强,再到最强,最后衰减到很弱的程度,c方 向也有这样的变化过程,同时三个波形都存在波包 似的结构,这与 GOES_10 有很强的相似性.

如图 7 所示, GOES_10、GOES11、GOES12 观 测的脉动的振幅在 p 方向最强, t 方向次之, c 方向 最弱.周期为 130 s 左右.图中 GOES_11 计算得到 的传播方向与磁场方向相同,主要扰动方向在 y 偏 x 方向,垂直磁场方向,是环形模和极形模的耦合, GOES_10 观测到 x 正方向, y 正方向传播的波. GOES_12 观测到 x 正向 y 负向传播的波.

2.3 地面台站观测情况

为了比较地面与 THEMIS 卫星组观测到的 ULF 波的一致性,我们选取靠近 120°E 附近的 7 个 台站进行分析,取 H 分量给出小波功率谱如图 8 所示: 白色线为磁场扰动滤波后的图像,带通为 2~10 min, 填充图为小波功率谱,从上到下为纬度的由高到底 排列,(a)、(b)、(c)、(d)、(e)、(f)、(g)中最大值对应 的周期为7.6、5.8、7.6、8.3、7.6、5.8、7.6 min,功率

spectrum observed by ground stations

谱最大值分别为 1.92、14.5、0.97、3.16、1.59、 0.25、0.45,可以看出扰动随纬度升高而增强的趋势,在纬度 66°附近达到最大,然后开始衰减.取纬 度相差不大的(c)、(d)、(e)三者对比可以发现,同一 纬度上越靠近 140°E,磁场的扰动越强烈.Dumont d'Urville 台站在经度和纬度上与 THEMIS 卫星相 似,观测到波形和最强功率谱对应的周期与 THEMIS 也有很强的一致性,13:00UT 之前和 13:15UT之后出现的频散也符合的很好,Scott Base(a)和 MCQuarie Island(d)由于纬度接近 Dumont d'Urville 台站,观测到的波形也有一定的 相似性,由此我们可以判断卫星观测与地面观测在 区域和波形上具有很好地一致性,两者都可以很好 地用来研究脉动的性质.

3 讨论与结论

在对 THEMIS 5 颗卫星观测数据的分析中我 们发现由于卫星轨道近似位于赤道面内,ULF 波的 周期在 235~400 s,振幅在 5~10 nT,使用 MVA 方法^[18]得到 5 颗卫星观测到 Pc5 ULF 波的向阳传 播,其相速度值约在 6~20 km/s 左右,与 Alfven 速 度相比速度较低,相速度矢量与轨道方向夹角较大, 在 P2 处与轨道夹角较小,中间 3 颗卫星近似垂直轨 道方向向外,而 P4 处向阳传播且指向地球内部,从 交叉小波相关求解的结果与相速度矢量分析得到的 结果相似,这证明了 MVA 分析的可靠性,结果与 Takahashi^[16]、Constantinescu^[17]等的观测到黄昏侧 压缩波以较低的相速度向阳传播的结论相一致.

Pc5 脉动的产生主要来源包括 K-H 不稳定性 (主要与太阳风速度相关)、太阳风动压对磁层顶的 撞击作用、镜像漂移不稳定性、磁尾磁重联产生的闭 合磁力线携带粒子流对磁层的撞击作用等^[10]. K-H 不稳定性,太阳风动压的作用产生的 Pc5 脉动一般 为尾向传播,且速度较高,而 THEMIS 卫星观测到向 阳传播且相速度较小的 Pc5 ULF 波,产生于前两者 的可能性较小.

镜像漂移波多为黄昏侧西向传播(向阳传播), 且相速度较低,THEMIS 卫星观测到的情况较符 合,另外,磁尾磁重联产生的闭合磁力线携带能量粒 子地向运动,作用于内部闭合磁力线区域将产生太 阳风动压类似的效果,即空腔振动,这种振动也是 Pc5 脉动的一个来源.我们结合 GOES_11 卫星的观 测情况分析.磁力线回弹将撞击磁尾内部闭合磁力 线产生空腔共振,产生的 ULF 波将向磁层内部和 子夜两侧传播,GOES_11 与 THEMIS 卫星组近似 对称地位于子夜两侧,然而并没有观测到相似的波 形,GOES_11 卫星观测到波形的时间与 THEMIS 卫星组观测到波形的时间不同步,不可能是磁力线 共振产生的二次谐波,因此二者不同源,由此可知 THEMIS 卫星观测到波形不是来源于磁尾.

GOES卫星观测到脉动为极向模占主要成分, 且具有波包结构,具有极向阿尔芬驻波特性,这与 Takahashi、Liu等^[12-13]的观测并不一致,可能产生 于 K-H 不稳定性.脉动产生的区域性特征具有更深 层次的原因,有待于长期观测给出个合理的解释.

地面观测到的脉动(66°N, 140°E)与 THEMIS 在附近波形有很好的相似性,扰动幅度随纬度升高 而增强,Pc5 脉动在地理纬度 60°N 附近达到最大 值,地面观测与卫星观测具有很好的相关性.频率的 微小差异可能来自于磁层等离子体密度的时空 变化.

通过以上分析我们发现 THEMIS 卫星观测到 黄昏侧是具有压缩特性的 Pc5 脉动,向阳传播,相速 度在 6~20 km/s,最大特征值对应特征向量近似在 Z方向,可能与镜像漂移不稳定性有关.而晨侧 GOES 3 颗卫星观测到不同情况的 Pc5 脉动,极向 模占主要成分,具有极向阿尔芬驻波特性,可能产生 于 K-H 不稳定性.地面观测到的脉动(66°N, 140°E)与 THEMIS 在附近波形有很好的相似性,扰动幅度随 纬度升高而增强,Pc5 脉动在地理纬度 60°N 附近达 到最大值,地面观测与卫星观测具有很好的相关性.

致谢 THEMIS 计划由美国 NASA 基金 (NAS5-02099)支持.我们在此感谢J.W.Bonnell 和F.S.Mozer 提供 EFI 数据; D.Larson 和 R. P.Lin 提供 SST 数据; C.W.Carlson 和 J.P. McFadden 提供 ESA 数据; K.H.Glassmeier, U. Auster 和 W. Baumjohann 提供 FGM 数据. NASA 戈达德空间飞行中心提供了 GOES 卫星数 据.感谢王源、罗浩、区家明给予的帮助和指导.

参考文献(References)

- [1] McPherron R L. Magnetic Pulsations: Their sources and relation to Solar Wind and Geomagnetic Activity. Institute of Geophysics and Planetary Physics. Surveys in Geophysics, 2005, 26(5): 545-592, doi: 10.1007/s10712-005-1758-7.
- Pu Z Y, Kivelson M G. Kelvin-Helmholtz instability at the magnetopause: Energy flux into the magnetospause. J. Geophys. Res., 1983, 88 (A2): 853, doi: 10.1029/

JA088iA02p00853.

- 【3】 杜爱民,陈耿雄,徐文耀等. 地磁脉动 Pc5 在 2000 年 7 月 15~
 16 日磁暴期间的特征. 地球物理学报, 2003, 46(3) 322-327.
 Du A M, Chen G X, Xu W Y, et al. Characteristics of Pc5
 ULF wave during the magnetic storm on July 15~16, 2000.
 Chinese Journal of Geophysics (in Chinese), 2003, 46(3): 322-327.
- [4] Du A M, Xu W Y, Sun W. Experimental evidence of direct penetration of upstream ULF waves from the solar wind into the magnetosphere during the strong magnetic storm of November 9, 2004. *Planetary and Space Science*, 2010, 58 (7-8): 1040-1044.
- [5] Lu Q M, Hu Q, Zank G P. The interaction of Alfvén waves with perpendicular shocks. *ApJ*, 2009, 706(1): 687-692, doi:10.1088/0004-637X/706/1/687.
- [6] Dunlop I S, Menk F W, Hansen H J, et al. A multistation study of long period geomagnetic pulsations at cusp and boundary layer latitudes. J. Atmos. Terr. Phys., 1994, 56 (5): 667-679.
- [7] 朱岗崑,杜爱民,洪明华. 关于地磁场超低频脉动 (ULF) 的 研究. 地球物理学进展, 2009, 24(5): 1550-1553.
 Zhu G K, Du A M, Hong M H. On the studies of geomagnetic ULF waves. *Progress in Geophysics* (in Chinese), 2009, 24(5): 1550-1553.
- [8] Dungey J W. Electrodynamics of the Outer Atmosphere. // Proceedings of the Ionosphere Conference. London: The Physical Society of London, 1955: 229-236.
- [9] Zong Q G, Zhou X Z, Li X, et al. Ultralow frequency modulation of energetic particles in the dayside magnetosphere. *Geophys. Res. Lett.*, 2007, 34(12); L12105, doi: 10.1029/ 2007GL029915.
- [10] Kivelson M G, Etcheto J, Trotignon J G. Global compressional oscillations of the terrestrial magnetosphere: The evidence and a model. J. Geophys. Res., 1984, 89 (A11): 9851-9856.
- [11] Sanny J, Judnick D, Moldwin M B, et al. Global profiles of compressional ultralow frequency wave power at geosynchronous orbit and their response to the solar wind. J. Geophys. Res., 2007, 112: A05224, doi: 10.1029/2006JA012046.
- [12] Liu W, Sarris T E, Li X, et al. Electric and magnetic field observations of Pc4 and Pc5 pulsations in the inner magnetosphere: A statistical study. J. Geophys. Res., 2009, 114: A12206, doi: 10.1029/2009JA014243.

- [13] Takahashi K, Ukhorskiy A Y. Solar wind control of Pc5 pulsation power at geosynchronous orbit. J. Geophys. Res., 2007, 112: A11205, doi: 10.1029/2007JA012483.
- [14] Claudepierre S G, Hudson M K, Lotko W, et al. Solar wind driving of magnetospheric ULF waves: Field line resonances driven by dynamic pressure fluctuations. J. Geophys. Res., 2010, 115: A11202, doi: 10.1029/2010JA015399.
- [15] Vaivads A, Baumjohann W, Georgescu E, et al. Correlation studies of compressional Pc5 pulsations in space and Ps6 pulsations on the ground. J. Geophys. Res., 2001, 106 (A12): 29797-29806.
- [16] Takahashi K, Higbie P R, Baker D N. Azimuthal Propagation and Frequency Characteristic of Compressional Pc 5 Waves Observed at Geostationary Orbit. J. Geophys. Res., 1985, 90(A2): 1473-1485.
- [17] Constantinescu O D, Glassmeier K H, Plaschke H, et al. THEMIS observations of duskside compressional Pc5 waves. J. Geophys. Res., 2009, 114: A00C25, doi: 10.1029/ 2008JA013519.
- [18] Sarris T E, Liu W, Li X, et al. Characterization of ULF pulsations by THEMIS. *Geophys. Res. Lett.*, 2009, 36: L04104, doi: 10.1029/2008GL036732.
- [19] Xiao F L, Su Z P, Zheng H N, et al. Modeling of outer radiation belt electrons by multidimensional diffusion process. J. Geophys. Res., 2009, 114: A03201, doi: 10.1029/ 2008JA013580.
- [20] Xiao F L, Zong Q G, Chen L X. Pitch-angle distribution evolution of energetic electrons in the inner radiation belt and slot region during the 2003 Halloween storm. J. Geophys. Res., 2009, 114: A01215, doi: 10.1029/2008JA013068.
- [21] Xiao F L, Su Z P, Zheng H N, et al. Three-dimensional simulations of outer radiation belt electron dynamics including cross-diffusion terms. J. Geophys. Res., 2010, 115: A05216, doi: 10.1029/2009JA014541.
- [22] Xiao F L, Zhang S, Su Z P, et al. Rapid acceleration of radiation belt energetic electrons by Z-mode waves. *Geophys. Res. Lett.*, 2012, 39: L03103, doi: 10.1029/2011GL050625.
- [23] Torrence, Christopher, Gilbert P Compo. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 1998,79: 61-78.
- [24] Du A M, Sun W, Xu W Y, Gao X. The frequency variation of Pc5 ULF waves during a magnetic storm. *Earth Planets Space*, 2005, 57:619-625.

(本文编辑 胡素芳)