文章编号:1000-7032(2013)10-1283-05

NaYF₄:Yb³⁺,Er³⁺纳米粒子的上转换发光的温度特性

赵承周1,2, 孔祥贵1*, 宋曙光1, 曾庆辉1

(1. 发光学及应用国家重点实验室 中国科学院长春光学精密机械与物理研究所, 吉林 长春 130033;

2. 中国科学院大学,北京 100049)

摘要:利用高温热溶剂法合成了 NaYF₄:20% Yb³⁺,2% Er³⁺纳米粒子,通过 X 射线衍射谱、扫描电镜及低温 荧光光谱对其结构、形貌及发光性质进行了表征。研究结果表明:合成的纳米粒子为六角相,粒径大小约 30 nm。变温光谱研究表明:由于⁴S_{3/2}和²H_{11/2}能级差较小,当温度增加至 45 K 时,⁴S_{3/2}能级和²H_{11/2}能级的电子 布局同时相应地增加;而当温度超过 45 K 之后,温度依赖的²H_{11/2}能级布局随着温度的提高而增多,表现为 520 nm 的发光随着温度的提高一直增强。由于无辐射弛豫速率随温度升高而快速增加,导致 545 nm 的发光 随着温度的提高先增强后减弱。

关 键 词:稀土离子; NaYF₄: Yb³⁺, Er³⁺; 上转换发光; 变温光谱
 中图分类号: 0482.31
 文献标识码: A DOI: 10.3788/fgxb20133410.1283

Temperature Dependence of Upconversion Luminescence in NaYF₄: Yb³⁺, Er³⁺ Nanoparticles

ZHAO Cheng-zhou^{1,2}, KONG Xiang-gui^{1*}, SONG Shu-guang¹, ZENG Qing-hui¹

(1. State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;

2. University of Chinese Academy of Sciences, Beijing 100049, China)

* Corresponding Author, E-mail: xgkong14@ ciomp. ac. cn.

Abstract: Uniform NaYF₄: 20% Yb³⁺, 2% Er³⁺ nanoparticles were synthesized *via* solvothermal method following high temperature. The X-ray diffraction (XRD) shows that the samples are β -NaYF₄ nanocrystals, and SEM images show that the nanoparticles have an average of 30 nm. The intensity of 520 nm emissions gradually increase with temperature rising from 13 K to 300 K, while the intensity of 545 nm emissions first increase and then decrease under 980 nm laser excitation. The reason for this phenomenon is that the electronic distribution of ²H_{11/2} is dependent on the temperature, while the emissions of ⁴S_{3/2} energy level is governed by a competition process between the thermal agitation and non-radiation decay.

Key words: rare-earth ions; $NaYF_4$: Yb^{3+} , Er^{3+} ; upconversion luminescence; spectrum at various temperatures

收稿日期: 2013-05-16;修订日期: 2013-08-03

基金项目:国家自然科学基金(61275202,61275197,11174277,11004189,21304084)资助项目

作者简介:赵承周(1986-),男,山东菏泽人,博士研究生,主要从事稀土纳米材料的研究。

E-mail: zhaochengzhou@126.com, Tel: (0431)86176313

1引言

由于上转换发光材料独特的光学性质,在 诸如多色显示、场效应晶体管、生物标记与检 测、太阳能电池等[1-2]许多领域展现了巨大的应 用潜力。近10年来,上转换发光纳米材料引起 了众多科学家的强烈关注。最有效的上转换发 光材料是基于 Yb³⁺、Er³⁺或者 Yb³⁺、Tm³⁺共掺 的氟化物材料^[3-5]。在氟化物为基质的材料中, Yb³⁺、Er³⁺双掺的 NaYF₄ 纳米材料受到越来越 多的重视。众所周知,上转换发光强度与离子 掺杂浓度、纳米粒子大小、激发功率及退火温度 有很大的关系^[6-9]。研究稀土掺杂的上转换纳 米材料与温度的关系,有助于更深一步认识和 理解上转换发光机制,提高上转换发光的效率。 利用上转换材料的温度依赖关系,可以构建温 度传感器及生物传感器并拓展新的应用[10-11]。 迄今为止,这方面的研究多集中在稀土掺杂的 氧化物上。例如, Pires 等^[12] 报道的关于 Yb³⁺、 Er³⁺共掺的 Y₂O₃ 纳米材料, Er³⁺的发光随着温 度从10 K提高到室温的300 K时是逐渐减弱 的,他们认为无辐射多声子弛豫速率的增加是 导致发光减弱的主要原因。Suyver 等^[13]报道了 NaYF₄: Yb³⁺, Er³⁺体材料的发光强度与温度的 关系,发现初始时的发光是增强的,当温度到达 100 K时,发光强度趋于饱和。他们认为热布居 效应在这里起了很大的作用。

目前对 NaYF₄: Yb³⁺,Er³⁺纳米材料上转换发 光与温度的关系尚鲜有报道。本文研究了 NaYF₄: Yb³⁺,Er³⁺纳米材料上转换发光与温度的依赖关 系。研究结果表明:Er³⁺离子 520 nm 的发光随着 温度的提高而逐渐增强,而 545 nm 的发光则随着 温度的提高先增强后减弱。这是由于⁴S_{3/2}能级 和²H_{11/2}能级差较小,而随着温度的增加,两个能 级的布局对温度具有不同的依赖关系所致。

2 实 验

2.1 主要实验试剂

实验中所用的氧化钇(Y₂O₃)、氧化铒(Y₂O₃)、 氧化镱(Yb₂O₃)购于长春应化所稀土实验室,纯 度为99.999%。稀土氯化物是由稀土氧化物和 稀盐酸反应,然后通过旋转蒸发仪烘干制得。油 酸和 ODE 从 Sigma-Aldrich 公司购买,乙醇、甲醇、 环乙烷购于北京化工厂。

2.2 材料制备与表征

样品的合成采用已有文献报道的方法并对其 进行了一些改进,具体步骤如下:将1 mmol 的稀 土氯化物(其中包括 0.78 mmol YCl₃ · 6H₂O₃) 0.20 mmol YbCl₃ · 6H₂O 和 0.02 mmol ErCl₃ · 6H₂O)放入容量为100 mL的三颈瓶中,然后加入 15 mL 的 ODE 和 6 mL 的油酸。将三颈瓶放入磁 力搅拌加热器中,并同时通入氮气进行保护,缓慢 加热到 160 ℃,并在该温度下维持 30 min。待氯 化物完全溶解后,得到颜色略有淡黄澄清透明的 溶液,冷却到室温下,将溶有4 mmol 的 NH₄F、2.5 mmol 的 NaOH 的 10 mL 甲醇溶液缓慢滴加到三 颈瓶中,再缓慢加热到70℃,保持30 min,将溶液 中的甲醇完全蒸发掉。然后,将溶液加热到 300 ℃,反应90 min,这时一直保持通氩气进行保护, 并有冷却水回流。90 min 后,将溶液冷却到室温, 加入乙醇离心醇化3次,将得到的样品溶解到6 mL 环己烷中备用。

XRD 图谱采用 Bruker D8 Focus X 射线衍射 仪测试,用铜靶 Kα 射线(λ = 0.154 06 nm)作为 辐射源,管电压 40 kV,管电流 200 mA,步长 0.02(°)/step,扫描范围 10°~60°。将环己烷中 的样品稀释超声分散,然后滴到表面带有羟基的 硅片上,用 Hitachi S-4800 场发射扫描电镜观测纳 米粒子的形貌。变温光谱用 Jobin-Youbin TRI-AX550 光谱仪测试,采用一个液氦的冷却装置放 置样品,激发光源是 Nlight 的 980 nm 半导体激 光器。

3 结果与讨论

3.1 XRD 结果分析

图 1 是 NaYF₄: 20% Yb³⁺, 2% Er³⁺ 的 X 射线 衍射(XRD)图。从图中可以看出, 合成样品的 X 射线衍射峰位置与标准卡片 JCPDS No. 16-0344 完全一致, 没有其他的衍射峰出现, 表明所合成的 样品是纯 β-NaYF₄ 相。以样品(100)面作为计算 晶粒尺寸的晶面, 通过谢乐公式计算得到的样品 的平均直径为 29 nm。

图2给出了样品的扫描电镜照片(SEM)。从 图2中可见样品为尺寸大小均一的纳米球,其直 径为30 nm,与经过谢乐公式计算得到的尺寸数 值非常接近。

- 图 1 样品 NaYF₄: 20% Yb³⁺, 2% Er³⁺ 纳米粒子的 XRD 谱
- Fig. 1 XRD patterns of $NaYF_4$: 20% Yb^{3+} , 2% Er^{3+} nanoparticles sample

图 2 NaYF₄: Yb³⁺, Er³⁺纳米粒子的扫描电镜图 Fig. 2 SEM image of NaYF₄: Yb³⁺, Er³⁺ nanoparticles

3.2 温度对 NaYF₄: Yb³⁺, Er³⁺纳米粒子上转换 发光的影响

图 3 给出了 β-NaYF₄: Yb³⁺, Er³⁺在 980 nm 的激光激发下随温度变化的上转换发光光谱。可 以观测到以 520,545 nm 为中心的绿光谱带和以 650 nm 为中心的红光谱带,这 3 个谱带分别来源 于 Er³⁺离子的²H_{11/2}→ ⁴I_{15/2}, ⁴S_{3/2}→⁴I_{15/2}和⁴F_{9/2}→ ⁴I_{15/2}跃迁。从图中可以看出,520 nm 的发光强 度在低温下非常小,随着温度的升高逐渐变大;

- 图 3 β-NaYF₄: Yb³⁺, Er³⁺随温度变化的上转换发光 光谱
- Fig. 3 Upconversion emission spectra of hexagonal-phase $NaYF_4$: Yb^{3+}, Er^{3+} nanocrystals at different temperature

545 nm 和 650 nm 的发光则是随着温度的提高先 增强后减弱。

图 4 给出了 NaYF₄: Yb³⁺, Er³⁺纳米粒子的能 级结构和跃迁示意图。Yb³⁺离子向 Er³⁺上转换 布居则通过两步来激发 Er³⁺离子:(1)首先, Yb3+离子吸收一个980 nm 的光子从基态2F,2 被 激发到激发态 $^{2}F_{5/2}$ 。由于 $^{2}F_{5/2}$ 能级和 Er^{3+} 离子 的⁴I11/2</sub>能级非常匹配,发生共振能量传递,将 Er³⁺离子从基态的⁴I_{15/2}激发到中间态的⁴I_{11/2},然 后再吸收从 Yb³⁺离子传递过来的能量, 被激发 到 ${}^{4}F_{7/2}$ 能级。 ${}^{4}F_{7/2}$ 能级上的 Er^{3+} 离子通过无辐射 弛豫到²H_{11/2}能级,由于²H_{11/2}和⁴S_{3/2}能级间隔非 常小, Er³⁺离子极容易发生无辐射弛豫到达⁴S_{3/2} 能级。一旦4S32能级被布居,2H112能级则通过遵 循波尔兹曼分布的热布居过程而布居。当 Er³⁺通 过辐射发光跃迁到基态时,即²H_{11/2}→⁴I_{15/2}(520 nm) 和⁴S_{3/2}→⁴I_{15/2}(545 nm),就会发射出绿光。(2) Er³⁺离子还可以继续从⁴S_{3/2}向下无辐射弛豫 到⁴F_{9/2}能级,这时 Er³⁺离子如果跃迁到基态 $({}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2})$ 就会发射出红光(650 nm)^[12]。 而⁴F₉₂能级还可以通过另外一种途径被布居,就 是当 Er^{3+} 被激发到⁴ $I_{11/2}$ 时,无辐射弛豫到⁴ $I_{31/2}$, 吸收从 Yb^{3+} 传递过来的能量,激发到⁴F_{9/2}能级。

图 4 NaYF₄: Yb³⁺, Er³⁺ 纳米粒子的能级结构和跃迁示意图 Fig. 4 Schematic diagram of energy levels and transitions of NaYF₄: Yb³⁺, Er³⁺ under 980 nm excitation

图 5 给出了 545 nm 和 520 nm 发光谱带的强 度随温度的变化关系。当温度升高时,545 nm 谱 带发光强度先增大,然后逐渐减小,其发光强度达 到最高点时的温度约为 45 K;520 nm 的发光则是 随着温度的提高而持续增强,这与 Suyver 等^[13]报 道的体材料 NaYF₄: Yb³⁺,Er³⁺的变化规律不同。 Suyver 发现当温度升高到 100 K 左右时,545 nm 的发光强度将会达到饱和而不会继续增加。体材 料和具有很大比表面积的纳米材料的性质是有区别的,正是这种区别造成了它们的发光特性与温度之间具有不同的依赖性。545 nm 的光强与温度的依赖关系主要是由于两种机制竞争而导致的:一种是敏化剂 Yb³⁺离子的吸收截面随温度增高而逐渐变大,Yb³⁺离子的吸收截面可以用公式

 $\sigma(T) = \sigma(0) [\exp(h\omega/kT) - 1]^{-\Delta E/h\omega}, (1)$ 表示,其中 $\sigma(0)$ 是温度0K时的吸收截面, $h\omega$ 是 声子能量。另一种机制则是无辐射弛豫速率随温 度的变化,它随温度的升高而增大,这样就会导致 发光随温度的升高而减弱。不同能级间的无辐射 弛豫几率取决于多声子弛豫过程,无辐射弛豫几 率与温度的关系可以用公式

$$W_{\rm NR} = W_{\rm NR}(0) \left[1 - \exp(-h\omega/kT) \right]^{-\Delta E/h\omega},$$
(2)

表示,式中 W_{NR}(0) 是温度为0 K 的无辐射弛豫速 率。通过以上分析可知,当温度较低时,无辐射弛 豫速率基本不变,发光强度主要取决于 Yb³⁺离子 的吸收截面的变化,所以发光强度随着温度的升 高而变大;当温度升高到一定数值时,无辐射弛豫 几率成指数型增长,起主导作用,使得辐射速率变 小,从而使上转换发光在高温阶段减弱。

图 5 545 nm 谱带(a)和 520 nm 谱带(b)的上转换发光 强度与温度的关系

Fig. 5 545 nm (a) and 520 nm (b) green-upconversion emission intensity as a function of temperature 依 Boltzmann 分布, Er^{3+} 离子激发态² $H_{11/2}$ 和⁴ $S_{3/2}$ 的粒子数密度 $n_{\rm H}$ 和 $n_{\rm S}$ 比为:

$$\frac{n_{\rm H}}{n_{\rm S}} = \frac{g_{\rm H}}{g_{\rm S}} \exp\left(-\frac{E_{\rm H} - E_{\rm S}}{kT}\right) = \frac{g_{\rm H}}{g_{\rm S}} \exp\left(-\frac{\Delta E_{\rm HS}}{kT}\right),$$
(3)

式中 $n_{\rm H}$ 和 $n_{\rm s}$ 分别是能级²H_{11/2}和⁴S_{3/2}上的粒子数 密度, $g_{\rm H}$ 和 $g_{\rm s}$ 是相应能级的简并度, $\Delta E_{\rm HS}$ 是两能 级间的能量差,k是波尔兹曼常数,T为绝对温 度。520 nm 和 545 nm 上转换发光强度比为^[14]:

$$R = \frac{I_{525}}{I_{545}} = \frac{g_{\rm H}\sigma_{\rm H}\omega_{\rm H}}{g_{\rm S}\sigma_{\rm S}\omega_{\rm S}} \exp\left(-\frac{\Delta E_{\rm HS}}{kT}\right) = C \exp\left(-\frac{\Delta E_{\rm HS}}{kT}\right),$$
(4)

式中 $\sigma_i \ \omega_i (i = H, S)$ 分别是相应能级上的发射截 面和角频率, $C = g_H \sigma_H \omega_H / g_S \sigma_S \omega_S$ 。从公式可知 520 nm 和 545 nm 两者的发光强度比R = 1/T是 单指数关系。我们将得到的数据用单指数拟合得 到图 6。其中拟合值 $E_{HS} = 627 \text{ cm}^{-1}$,与文献报道 的两者的能级差 750 cm⁻¹相比略小。当忽略掉 温度导致的斯托克斯移动时,这个数值是可信的。

图 6 *I*₅₂₀/*I*₅₄₅比值与温度 1/*T* 的关系,其中黑色实线是拟合曲线。

Fig. 6 Curve of intensity ratio I_{520}/I_{545} vs. 1/T. The solid line is the fitted curve with single exponential function.

4 结 论

通过高温热溶剂法合成了粒径为 30 nm 的 NaYF₄: Yb³⁺, Er³⁺ 纳米粒子, XRD 图谱表明为六角 相。通过变温光谱研究了 Er³⁺离子的上转换发光与 温度的关系,实验数据表明 Er³⁺离子的 545 nm 的发 光随着温度的逐渐升高,先增强后减弱,这是由于热 布局及无辐射弛豫速率两种机制相互竞争导致的。 520 nm 和 545 nm 的发光强度比与温度的关系是单 指数关系, 拟合数据表明能级²H_{11/2}和⁴S_{3/2}的能量差 约为 627 cm⁻¹, 与文献报道基本符合。

参考文献:

- [1] Ji T H, Yang F, Du H Y, *et al.* Preparation and characterization of upconversion nanocomposite for β-NaYF₄: Yb³⁺, Er³⁺-supported TiO₂ nanobelts [J]. J. Rare Earths, 2010, 28(4):529-533.
- [2] Ehlert O, Thomann R, Darbandi M, et al. A four-color colloidal multiplexing nanoparticle system [J]. ACS Nano, 2008, 2(1):120-124.
- [3] Boyer J C, Vetrone F, Cuccia L A, et al. Synthesis of colloidal upconverting NaYF₄ nanocrystals doped with Er³⁺, Yb³⁺ and Tm³⁺, Yb³⁺ via thermal decomposition of lanthanide trifluoroacetate precursors [J]. J. Am. Chem. Soc., 2006, 128(3):7444-7445.
- [4] Chen G Y, Ohulchanskyy T Y, Kumar R, et al. Ultrasmall monodisperse NaYF₄: Yb³⁺/Tm³⁺ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence [J]. ACS Nano, 2010, 4(6):3163-3168.
- [5] Li H, Yang K S, Qi N, *et al.* Preparation and luminescence properties of Yb³⁺, Er³⁺-codoped oxyfluoride glass ceramics [J]. *Chin. Opt.*(中国光学), 2011, 4(6):672-677 (in Chinese).
- [6] Pollnau M, Gamelin D R, Lüthi S R, et al. Power dependence of upconversion luminescence in lanthanide and transitionmetal-ion systems [J]. Phys. Rev. B, 2000, 61(5):3337-3346.
- [7] Suyver J F, Aebischer A, García-Revilla S, et al. Anomalous power dependence of sensitized upconversion luminescence
 [J]. Phys. Rev. B, 2005, 71(12):125123-1-9.
- [8] Wang X, Kong X G, Yu Y, et al. Effect of annealing on upconversion luminescence of ZnO: Er³⁺ nanocrystals and high thermal sensitivity [J]. J. Phys. Chem. C, 2007, 111(41):15119-15124.
- [9] Lei Y Q, Song H W, Yang L M, et al. Upconversion luminescence, intensity saturation effect, and thermal effect in Gd₂O₃: Er³⁺, Yb³⁺ nanowires [J]. J. Chem. Phys., 2005, 123(17):174710-1-5.
- [10] Wang Y, Tu L P, Zhao J W, et al. Upconversion luminescence of β-NaYF₄: Yb³⁺, Er³⁺ @ β-NaYF₄ core/shell nanoparticles: Excitation power density and surface dependence [J]. J. Phys. Chem. C, 2009, 113(17):7164-7169.
- [11] Pires A M, Serra O A, Heer S, et al. Low-temperature upconversion spectroscopy of nanosized Y₂O₃: Er, Yb phosphor
 [J]. J. Appl. Phys., 2005, 98(6):063529-1-5.
- [12] Suyver J F, Grimm J, Kramer K W, et al. Highly efficient near-infrared to visible up-conversion process in NaYF₄: Er³⁺, Yb³⁺ [J]. J. Lumin., 2005, 114(1):53-59.
- [13] Silver J, Martinez-Rubio M I, Ireland T G, et al. Yttrium oxide upconverting phosphors. Part 2: Temperature dependent upconversion luminescence properties of erbium in yttrium oxide [J]. J. Phys. Chem. B, 2001, 105(30):7200-7204.
- [14] Zheng L J, Gao X Y, Xu W, et al. Temperature characteristic of blue up-conversion emission in Tm³⁺, Yb³⁺ codoped oxyfluride glass ceramic [J]. Chin. J. Lumin. (发光学报), 2012, 33(9):944-948 (in Chinese).