Ti 和 Al 含量对 Fe-Ni 基合金中 η 相析出行为的影响 *

陈胜虎 赵明久 戎利建

(中国科学院金属研究所, 沈阳 110016)

摘 要 采用 OM, SEM, TEM 和 EPMA, 对 Ti 和 Al 含量不同的 Fe-Ni 基合金在 900—1030 C固溶温度范围内的 η 相析出行为进行了研究.结果表明, η 相的形成与合金中的 Ti 含量和 Al 含量密切相关, 提高 (Ti+Al) 含量或 Ti/Al 比, 可增 加 η 相的析出倾向; 在 980 C固溶处理后, 低 (Ti+Al) 含量和 Ti/Al 比的合金中不存在 η 相, 而在高 (Ti+Al) 含量和 Ti/Al 比的合金中仍存在 η 相; 随合金 (Ti+Al) 含量或 Ti/Al 比的增加, γ' 相可在更高温度存在, 在高温固溶处理过程中, η 相消耗 合金中的 γ' 而析出并长大; 合适的固溶温度可消除合金中的元素偏析和抑制 η 相的析出.

关键词 Fe-Ni 基合金, η相, 固溶处理, 析出行为

中图法分类号 TG139 文献标识码 A 文章编号 0412-1961(2012)11-1335-07

EFFECTS OF Ti AND Al CONTENTS ON THE PRECIPI-TATION BEHAVIOR OF η PHASE IN Fe–Ni BASE ALLOYS

CHEN Shenghu, ZHAO Mingjiu, RONG Lijian

Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 Correspondent: RONG Lijian, professor, Tel: (024)23971979, E-mail: ljrong@imr.ac.cn Supported by National Natural Science Foundation of China (Nos.51171178 and u1230118) Manuscript received 2012–04–26, in revised form 2012–07–20

ABSTRACT Fe–Ni base austenitic alloys have been widely used as structural materials in the hydrogen environment, which is strengthened by the precipitation of $\gamma'[Ni_3(Al, Ti)]$. η phase is present after solution treatment in some modified alloys, which is detrimental to hydrogen resistance performance of alloys. In order to eliminate the η phase and optimize the alloy composition, the precipitation behavior of η phase in Fe–Ni base alloys with different Ti and Al contents was investigated in the range of 900 °C to 1030 °C using OM, SEM, TEM and EPMA. The results show that the formation ability of η phase is related to the content of Ti and Al. Increasing the (Ti+Al) content or the Ti/Al ratio in the alloys promotes the precipitation of η phase. Moreover, the η phase does not exist in alloys with the lower (Ti +Al) content or Ti/Al ratio, but still presents in the alloys with higher (Ti+Al) content or Ti/Al ratio, but still presents in the alloys with higher (Ti+Al) content the standard solution treatment at 980 °C, which is due to that the η phase precipitates at the expense of the γ' phase existing at higher temperature. In situ microstructure observations indicate that η phase and elemental segregation can be eliminated by the optimization of solution treatment condition.

KEY WORDS Fe–Ni base alloy, η phase, solution treatment, precipitation behavior

Fe-Ni 基沉淀强化奥氏体合金 (如 A286 和 V-57 等) 属高强度抗氢脆合金, 是在单相奥氏体合金的基础上, 通过添加 Ti 和 Al 发展起来的, 合金中起沉淀强化作用 的是与基体共格的 γ' 相 [Ni₃(Al, Ti)]. 由于该类合金具 有较高强度和较好的塑性, 作为结构材料被广泛应用于燃 气发动机、核电以及临氢环境中^[1-4]. 值得关注的是, 与 单相奥氏体合金相比, Fe–Ni 基合金在强度提高的同时抗 氢损伤性能却明显降低. 第一原理计算 ^[5] 和正电子湮没实 验 ^[6] 表明, γ' 相与基体间的共格界面不是强的氢陷阱, H 不会在该界面聚集而造成氢致损伤. 除 γ' 相外, Fe– Ni 基合金在时效过程中还易于在晶界析出碳化物、 η 相 等 ^[1,7,8]. η 相与基体间的非共格界面是强的氢陷阱, H 易于在此界面富集, 恶化合金的抗氢损伤性能 ^[9,10], 加入 B 能够抑制 η 相在晶界析出, 从而消除 η 相产生的不利 影响 ^[11,12].

目前, Fe–Ni 基合金中 η 相的研究工作主要集中于 合金固溶处理后的时效过程 ^[9,13–16], 实验中发现, 随着

^{*} 国家自然科学基金项目 51171178 和 u1230118 资助 收到初稿日期: 2012-04-26,收到修改稿日期: 2012-07-20 作者简介: 陈胜虎,男, 1986 年生,博士生 DOI: 10.3724/SP.J.1037.2012.00232

合金中 Ti 和 Al 含量的改变, 一些合金经过标准的固溶 处理 (980 ℃保温 1 h, 水淬) 后仍存在 η 相的析出, 将会 影响合金的抗氢损伤性能.因此, 研究 Ti 和 Al 对 Fe–Ni 基合金中 η 相析出行为的影响, 探讨 η 相的高温析出机 理, 有利于合理选择合金固溶处理制度、净化合金晶界, 从 而提高抗氢损伤能力.

本研究以 Fe-Ni 基沉淀强化奥氏体合金为研究对象, 制备了 4 种具有不同 Ti 和 Al 含量的合金,采用金相 显微镜 (OM)、扫描电镜 (SEM)、透射电镜 (TEM) 和 电子探针 (EPMA) 等分析方法,研究了不同固溶温度下 (Ti+Al) 含量和 Ti/Al 比变化对 η 相析出行为的影响, 为实现合金中的 η 相控制、优化合金成分与热处理工艺 奠定理论基础.

1 实验方法

实验合金采用 25 kg 真空感应炉熔炼备,通过在 30Ni15Cr1.3Mo0.25V0.2SiFe (质量分数,%)的基础上, 添加不同量的 Ti 和 Al 制得, 共制备了 4 种合金 (A1—4), 化学成分如表 1 所示. 合金成分设计上,分别采用 Ti/Al 比相同, (Ti+Al) 含量不同和 (Ti+Al) 含量相同, Ti/Al 比不同 2 种对比方案, 以分别考察 Ti/Al 比和 (Ti+Al)

含量对 η 相析出行为的影响. 其中合金 A1 的化学成分 为工业化 Fe-Ni 基沉淀强化奥氏体合金.

实验合金铸锭经 1160 ℃均匀化处理 12 h 后, 锻造并热轧成直径 15 mm 的棒材.采用线切割切取直径 15 mm, 厚 10 mm 的圆柱试样,分别在 900,930,980 和 1030 ℃进行固溶处理 1 h, 然后水淬.

将试样表面打磨和抛光后,在 10%(体积分数) 铬酸 溶液中电解腐蚀 2 min,电流为 0.1 A. 将腐蚀后的试样 用 Olympus GX51 型 OM 和 XL-30FEG 型 SEM 进 行微观组织观察,并用 Image Pro. Plus6.0 软件统计 η 相的体积分数. 采用 EPMA-1610 型 EMPA 对试样中 的元素分布进行分析. 采用 EM400 型 TEM 进行组织观 察和选区电子衍射分析, TEM 试样采用电解双喷法制备, 电解液为 10%(体积分数) 高氯酸酒精溶液.

2 实验结果与分析

2.1 (Ti+Al) 含量和 Ti/Al 对 η 相析出行为的影响

轧制态合金的微观组织如图 1 所示. 可见, 无论是 (Ti+Al) 含量不同的 A1 和 A3 合金 (图 1a 和 c), 还是 Ti/Al 比不同的 A2 和 A4 合金 (图 1b 和 d), 均为典型 的等轴晶, 且晶界洁净; 在 A3 合金的 SEM 像中没有观

表1 实验合金的化学成分和 Ti/Al 比

Table 1	Mass fractions of	elements in	experimental	alloys and	the ratio	of mass	fraction	of Ti	to that	of A
---------	-------------------	-------------	--------------	------------	-----------	---------	----------	-------	---------	------

Alloy	Ti, %	Al, %	Ni, %	Cr, $\%$	Mo, %	V, %	Si, $\%$	В, %	Fe, %	Ti+Al, %	Ti/Al
A1	1.88	0.36	30.8	14.87	1.31	0.24	0.19	0.0008	Bal.	2.24	5.22
A2	2.01	0.99	30.9	14.80	1.32	0.24	0.19	0.0008	Bal.	3.00	2.03
A3	3.13	0.60	30.8	14.79	1.32	0.24	0.19	0.0008	Bal.	3.73	5.22
A4	2.73	0.22	30.9	14.91	1.33	0.24	0.20	0.0006	Bal.	2.95	12.41

图 1 热轧态合金的组织形貌

Fig.1 OM images of as-rolled A1 (a), A2 (b), A3 (c) and A4 (d) alloys and SEM image of as-rolled A3 alloy (e)

察到析出相 (图 1e).

图 2 为 900 ℃固溶处理后合金的微观组织.可见,在 4 种合金中均存在片层状析出相;图 3 是图 2 中析出相的 TEM 分析结果.由图 3 可知,图 2 中的片层状析出相为 hcp 结构的 η 相,选区电子衍射证实该 η 相与基体间的 晶体学位相关系为 $\{001\}_{\eta}//\{111\}_{\gamma}, \langle 100\rangle_{\eta}//\langle 110\rangle_{\gamma}$.表 2 给出了不同合金中 η 相体积分数的统计结果.可见,随 Ti/Al 比或 (Ti+Al) 含量的增加,合金中析出 η 相的体 积分数增加.结合图 2 和表 2 可知,当 (Ti+Al) 含量 为 2.24% 时, η 相不均匀分布在棒材试样的中心区域 (图 2a),体积分数小于 1%;当 (Ti+Al) 含量增大到 3.73% 时, η 相均匀分布在棒状试样的晶界上 (图 2c), 体积分数 增加到 14%; 当 Ti/Al 比为 2.03 时, η 相不均匀分布在 棒材试样的中心微小区域,体积分数小于 1%(图 2b); 而 当 Ti/Al 比提高到 12.41 时, η 相均匀分布在试样的晶界 处,体积分数达到了 6%(图 2d).

图 4 为 930 C固溶处理后合金的微观组织. 由图 4a 和 b 可见,随着固溶温度的提高,较低 (Ti+Al) 含量 和低 Ti/Al 比的合金中无 η 相析出. 与之相反的是,高 (Ti+Al) 含量和高 Ti/Al 比的合金中仍可观察到 η 相,如图 4c 和 d 所示,在较高分辨率的 SEM 像中可观察到 η 相均匀分布在棒状试样的晶界处 (图 4e 和 f),其体积

图 2 经 900 ℃固溶处理 1 h 的合金微观组织

Fig.2 SEM images of A1 (a), A2 (b), A3 (c) and A4 (d) alloys after solution treated at 900 °C for 1 h

图 3 经 900 ℃固溶处理 1 h 的 A2 合金中的 η 相的 TEM 像和选区电子衍射斑点及其标定

Fig.3 TEM bright field image (a), corresponding selected area electron diffraction pattern (b) and its indexing (c) of the cellular η phase in A2 alloy after solution treated at 900 °C for 1 h

分数分别为 4% 和 2%(表 2). 与 900 °C固溶处理相比, A1 和 A2 中的 η 相消失, A3 和 A4 中 η 相的数量减少, 但 η 相的形貌并没有发生变化.根据以上规律可判断,固

表 2 轧制态和经不同温度固溶处理合金中 η 相的体积分数

Table 2 Volume fractions of η phase in different alloys as
rolled and after solution treated at different temper-
atures

			(volume fraction, $\%$)					
Alloy	As-rolled	900 °C	930 °C	980 °C	1030 °C			
A1	0	<1	0	0	0			
A2	0	<1	0	0	0			
A3	0	14	4	<1	0			
A4	0	6	2	<1	0			

溶温度高于 930 ℃后, A1 和 A2 合金中不会有 η 相的 析出.

图 5 是 A3 和 A4 合金经 980 和 1030 ℃固溶处理后 的微观组织. 由图 5a 和 b 可见, 980 ℃固溶处理后, 合金 试样中的 η 相不均匀分布在棒材中心微小区域内(矩形所 示区域内), 其体积分数小于 1%; 当温度提高到 1030 ℃ 时, 合金中都观察不到 η 相的存在 (图 5c 和 d).

综上所述, η 相的形成与合金中的 Ti 和 Al 含量密 切相关. 在同一固溶温度下, 高 (Ti+Al) 含量和 Ti/Al 比的合金中 η 相析出数量较多, 说明提高 (Ti+Al) 含量 或 Ti/Al 比会增加 η 相的析出倾向; 合金中出现 η 相的 临界固溶温度与合金的 (Ti+Al) 含量或 Ti/Al 比有关, 980 ℃固溶处理后, A1 和 A2 合金中不析出 η 相, 而 η

图 4 经 930 ℃固溶处理 1 h 后合金的微观组织

Fig.4 OM images of A1 (a), A2 (b), A3 (c) and A4 (d) alloys and SEM images of A3 (e) and A4 (f) alloys after solution treated at 930 ℃ for 1 h

图 5 A3 和 A4 合金在 980 和 1030 ℃固溶处理后的微观组织

Fig.5 OM images of A3 (a, c) and A4 (b, d) alloys after solution treated at 980 °C (a, b) and 1030 °C (c, d) for 1 h (Rectangles in Fig.5a and b denote the regions with η phase)

相在 (Ti+Al) 含量更高的 A3 合金和 Ti/Al 比更高的 A4 合金中仍然析出; 当固溶温度提高到 1030 ℃, A3 和 A4 合金中均无 η 相析出.

2.2 η 相的析出机理

为揭示 η 相的析出过程, 对同一试样进行原位组织 观察. 以 A3 合金为例, 选取其圆棒试样的某一中心尺寸 约为 200 µm×200 µm 的区域, 用 Vickers 硬度计产生的 压痕进行标记,依次在 930, 980 和 1030 ℃进行固溶处理 1h 后水淬,对试样的组织形貌进行观察,并利用 EMPA 分析选区内的元素分布,结果如图 6 所示. 可见, 轧态试 样中,标记区的中心区域富 Ni 和 Ti,贫 Fe 和 Cr, Al 没 有明显偏析, 这与 Ni 和 Ti 的溶质分配系数小于 1, 容易 产生正偏析有关^[17-20];经930℃固溶处理后,标记区中 150 μm×150 μm 的范围内析出了 η相, 且发现 Ni和 Ti 的富集现象 (图 6b); 经 980 ℃固溶处理后, η 相的析出区 域缩小至 30 μ m×30 μ m, 说明固溶温度提高后, 部分 η 相溶解, Ni 和 Ti 富集区域缩小 (图 6c); 经 1030 C固溶 处理后, 由于选区内的 η 相溶解, 标定区域内的元素偏析 也随之消失 (图 6d). 图 6 所示结果说明, Ni 和 Ti 的富 集区域是 η 相的析出区域,随固溶温度的逐步提高, η 相 逐渐溶解,高于η相的析出温度时,合金中的η相和元素 偏析消失.

图 7 为合金经不同温度固溶处理后的 SEM 像. 可 见,在 930 和 980 ℃固溶处理后,A1 和 A2 合金中没有

观察到 γ′相 (图 7a); 而在 930 和 980 ℃固溶处理后 的 A3 和 A4 合金中都观察到了 γ' 相的存在 (图 7b 和 c); 1030 ℃固溶处理抑制了 A3 和 A4 合金中 γ' 相的析 出 (图 7d). 图 7 所示结果说明, γ' 相的析出温度与合金 中 (Ti+Al) 含量以及 Ti/Al 比有关. Headley 等^[21] 对 Ti 含量为 2.15%, Al 含量为 0.20% 的 Fe-Ni 基合金中 γ' 相的析出行为的研究表明, γ' 相不会在 900 C以上析 出. 但在本工作中, 对于高 (Ti+Al) 含量 (A3) 和 Ti/Al 比 (A4) 的合金, 即使经过 980 ℃固溶处理, 仍能观察到 γ' 相的存在. 从图 8 所示的 Al 在 $\gamma(Ni)$ 中的溶解度曲 线 [22,23] 可以看出, Al 在 γ (Ni) 中溶解度随温度升高而 增加, 当 Al 含量高于溶解度时, γ' 相可存在, 当 Al 含量 大于 8% 时, 在 980 ℃下 γ' 相仍能存在. Ti 和 Al 作为 γ' 相 ([Ni₃(Al,Ti)]) 的形成元素, 一般认为, 约 90% 的 Ti 以及 80% 的 Al 在时效过程中进入 γ' 相, 并由此产生 沉淀强化^[24]. 因此, 高 (Ti+Al) 含量 (A3) 和 Ti/Al 比 (A4) 的合金中, γ' 相可在更高温度存在. Maniar 等 [25,26] 在研究合金元素对 Ni20Cr 基耐热合金中 γ' 溶 解温度的影响时, 也发现提高 Ti 和 Al 含量, 会明显提高 γ' 相的溶解温度, 使 γ' 相能在更高温度存在.

由图 6 及图 7b 和 c 可知, 合金经固溶处理后, 在 Ni 和 Ti 元素的富集区域析出 γ' 和 η 相. 当合金中 Ti 含量 足够高时, Ti 可以代替 γ' [Ni₃Al] 中的 Al, 而生成亚稳态 的 [Ni₃(Al, Ti)], 亚稳相 γ' 可以转变为 η 相. 图 7b 和

图 6 经不同温度固溶处理的 A3 合金中 η 相形貌及元素分布的 EPMA 结果

Fig.6 SEM images of η phase and EPMA results in a selected area in as-rolled A3 alloy (a) and after solution treated at 930 °C (b), 980 °C (c) and 1030 °C (d)

図7 合金中 η 相的 SEM 像 Fig.7 SEM images of η phases in different alloys after different solution treatments (a) A1 alloy after solution treated at 930 °C for 1 h (b) A3 alloy after solution treated at 930 °C for 1 h (c) A4 alloy after solution treated at 980 °C for 1 h (d) A3 alloy after solution treated at 1030 °C for 1 h

图 8 Al 在 Ni 中的溶解度曲线 Fig.8 Solubility curve of Al in Ni^[16,17]

c 显示在 η 相片层周围观察到明显的贫 γ' 相区域, 说明 高温热处理时, 发生了 $\gamma' \rightarrow \eta$ 的转变, η 相的析出长大 是以消耗 γ' 为基础的. 而提高合金中的 (Ti+Al) 含量或 Ti/Al 比, γ' 可在更高的温度存在, 是 A3 和 A4 合金 η 相能在更高温度存在的主要原因.

对于 Fe–Ni 基合金来说,固溶制度的选定应在消除 合金中偏析,防止 η 相析出的温度之上,获得合适的晶粒 尺寸.对于高 (Ti+Al) 含量 (A3) 和 Ti/Al 比 (A4) 的 合金则不能采用标准的固溶温度 (980 ℃),从实验结果可 知,1030 ℃固溶处理能够防止 A3 和 A4 合金中 η 相的 析出及元素偏析.

3 结论

Fe-Ni 基高温合金中 η 相的形成与合金中的 Ti 和 Al 含量密切相关, 提高合金中 (Ti+Al) 含量或 Ti/Al 比 会增加 η 相的析出倾向. 在 980 ℃进行固溶处理, A1 和 A2 合金中不析出 η 相, 而在较高 (Ti+Al) 含量的 A3 合 金和较高 Ti/Al 比的 A4 合金中仍然有 η 相析出, 这是 由于提高合金中的 (Ti+Al) 含量或 Ti/Al 比, γ' 可在更 高的温度存在, η 相消耗合金中的 γ' 析出长大. η 相析出 的区域为 Ni 和 Ti 的富集区, 随固溶温度的提高, η 相逐 渐溶解而消失, 同时, 元素偏析现象也消失.

参考文献

- Cicco H D, Luppo M I, Gribaudo L M, Garcia J O. Mater Charact, 2004; 52: 85
- [2] Thompson A W. Metall Trans, 1976; 7A: 315
- [3] Tan Y, Yu Y, Pan X X, Li G D, Zhang F J, Feng J, Zhou D H, Rong L J, Ma L M. Acta Metall Sin, 2002; 38: 684

(谭 云,余 勇,潘晓霞,李东光,张方举,丰 杰,周德惠,戎利
 建,马禄铭.金属学报,2002;38:684)

- [4] Rho B S, Nam S W. Mater Lett, 2001; 48: 49
- [5] Li X Y, Zhang J, Rong L J, Li Y Y. *J Mater Sci Eng*, 2005; 23: 484 (本本権 관, 律 市紀本 本位位: 計測到学長工研学報 2005.

(李秀艳,张 建,戎利建,李依依. 材料科学与工程学报, 2005; 23: 484)

- [6] Zhang J, Li X Y, Rong L J, Zheng Y N, Zhu S Y. Acta Metall Sin, 2006; 42: 469
 - (张 建, 李秀艳, 戎利建, 郑勇男, 朱升云. 金属学报, 2006; 42:469)
- [7] Thompson A W, Brooks J A. Metall Trans, 1975; 6A: 1431
- [8] Rho B S, Hong H U, Nam S W. Scr Mater, 2000; 43: 167
- [9] Brooks J A, Thompson A W. Metall Trans, 1993; 24A: 1983
- [10] Zhao M J, Rong L J. Acta Metall Sin, 2009; 45: 167
 (赵明久, 戎利建. 金属学报, 2009; 45: 167)
- [11] Zhao M J, Guo Z F, Rong L J. Mater Sci Eng, 2010; A527: 5844
- [12] Guo Z F, Liang H, Zhao M J, Rong L J. Mater Sci Eng, 2010; A527: 6620
- [13] Asgari S. Metall Trans, 2006; 37A: 2051
- [14] Wan W J, Han G W, Deng P. J Iron Steel Res Int, 2010; 17: 64
- [15] Li X Y, Zhang J, Rong L J, Li Y Y. Chin J Mater Res, 2006; 20: 113
 (李秀艳,张 建, 戎利建, 李依依. 材料研究学报, 2006; 20: 113)
- [16] Li X Y, Zhang J, Rong L J, Li Y Y. Mater Sci Eng, 2008; A488: 547
- [17] Brooks J A, West A J, Thompson A W. Metall Trans, 1983; 14A: 75
- [18] Nakkalil R, Richards N L, Chaturvedi M C. Scr Mater, 1992; 26: 545
- [19] Min Z X, Shen J, Feng Z R, Wang L S, Liu L, Fu H Z. Acta Metall Sin, 2010; 46: 1543
 (闵志先, 沈 军, 冯周荣, 王灵水, 刘 林, 傅恒志. 金属学报, 2010; 46: 1543)
- [20] Guo S R, Lu D Z. Acta Metall Sin, 1991; 27: 421
 (郭守仁, 卢德忠. 金属学报, 1991; 27: 421)
- [21] Headley T J, Karnowsky M M, Sorenson W R. Metall Trans, 1982; 13A: 345
- [22] Ansara I, Dupin N, Lukas H L, Sundman B. J Alloys Compd, 1997; 247: 20
- [23] Du Y, Clavaguera N. J Alloys Compd, 1996; 20: 32
- [24] Guo J T. Material Science and Engineering for Superalloys. Beijing: Science Press, 2008: 123
 (郭建亭. 高温合金材料学. 北京: 科学出版社, 2008: 123)
- [25] Maniar G N, Jr Bridge J E. Metall Trans, 1971; 2: 95
- [26] Maniar G N, Jr Bridge J E, James H M. Metall Trans, 1971; 2: 1484