脉冲离子束辐照对 TiH2 膜表面微观结构的影响 *

刘洋1,2) 向伟2) 王博宇2)

1) 兰州大学核科学与技术学院, 兰州 730000

2) 中国工程物理研究院, 绵阳 621900

摘要在TEMP-6型强流脉冲离子束装置上,利用能量密度 0.1—0.5 J/cm²,脉宽 100 ns,能量 100 keV 的 C⁺和 H⁺ 混合离子束对 TiH₂ 膜进行逐次轰击以研究其在脉冲能量下的稳定性.采用扫描电镜和表面轮廓仪对 TiH₂ 膜辐照前后表面形貌 进行研究;利用 X 射线衍射和慢正电子湮没技术对脉冲离子束辐照前后 TiH₂ 膜的物相和缺陷结构进行分析.结果表明: 0.1— 0.3 J/cm²的脉冲束流辐照热 – 力效应不足以导致膜明显熔化和开裂; 0.5 J/cm²的脉冲束流辐照致使膜明显熔化并伴随产生 大量的网状裂纹. 0.1—0.3 J/cm²的脉冲辐照条件下 TiH₂ 的物相结构未发生明显变化,而 0.5 J/cm²条件下 δ -TiH₂开始 发生向体心四方 (bct) 结构的非平衡相变,并且随着辐照次数的继续增加膜内开始析出纯 Ti 的物相.脉冲束流辐照下的热 – 力 学效应导致膜内缺陷的分布发生显著改变,导致膜的慢正电子 Doppler 展宽谱的 S 参数在 0.5 J/cm² 5 次轰击时达最小,而在 0.3 J/cm² 1 次轰击时最大.

文章编号

0412 - 1961(2013)10 - 1269 - 06

关键词 TiH₂,脉冲离子束,表面形貌,慢正电子湮没技术 中图法分类号 TQ122.3 **文献标识码** A

EFFECT OF IRRADIATION WITH PULSED ION BEAM ON THE MICROSTRUCTURE OF TiH₂

LIU Yang ^{1,2)}, XIANG Wei ²⁾, WANG Boyu ²⁾ 1) School of Nuclear Science and Technology, Lanzhou University, Lanzhou 730000 2) China Academy of Engineering Physics, Mianyang 621900 Commence and dente WANC Boys, according professor, Tele (2016) 241100

Correspondent: WANG Boyu, associate professor, Tel: (0816)2484409, E-mail: liuyang_benjamin@126.com

Supported by National Natural Science Foundation of China (No.11205136) Manuscript received 2013–03–18, in revised form 2013–07–20

ABSTRACT Titanium has long been of interest as hydrogen storage material since titanium has a high affinity to hydrogen isotopes. Titanium deuteride or tritide is an important nuclear material used in the field of nuclear technology. Investigations concerning hydrogen-titanium system seem to mainly focus on the hydrogen thermal desorption spectra so as to study hydrogen desorption kinetics from metal hydride and to determine the rate-controlling step, but little is known on the evolution of its compositional changes under a much more un-equilibrium condition. In the past two decades, the intense pulsed ion beam (IPIB) technique has received extensive attention as a tool for surface modification of materials. Compared with conventional ion implantation, IPIB irradiation into materials possesses a higher energy density with shorter pulse width and be typical of more intense thermal-mechanical effect. From such a point of view, considering the features of extreme high heating and cooling rate of IPIB, IPIB as a method to evaluate the stability characteristics of titanium hydride film is utilized in order to determine a predictable behavior of the film's evolution under an extreme un-equilibrium external condition. In current study, TiH₂ films irradiated by intense pulsed ion beam have been investigated by using scanning electronic microscopy, surface profilometer, X-ray diffraction and slow positron annihilation, in order to evaluate the effect of irradiation with pulsed ion beam on the microstructure of TiH₂. Three sets of TiH₂ films are irradiated several shots

* 国家自然科学基金资助项目 11205136

收到初稿日期: 2013-03-18, 收到修改稿日期: 2013-07-20

作者简介: 刘 洋, 男, 1987 年生, 博士

DOI: 10.3724/SP.J.1037.2013.00122

at energy density ranging from 0.1 J/cm^2 to 0.5 J/cm^2 . No noticeable phenomenon of melting and change of phase structures have occurred to samples under irradiation of $0.1-0.3 \text{ J/cm}^2$. However, phenomenon of melting and indication of cracking has been detected on the surface after energy density reaches 0.5 J/cm^2 . Besides, desorption of hydrogen from the film, and a titanium hydride with a body centered tetragonal structure (bct), seldom reported by researchers and formed under extreme conditions, has also been identified only after energy density of IPIB reaches 0.5 J/cm^2 . S parameter of slow positron annihilation reflects that the crystal defect structures have been greatly changed by IPIB irradiation, in which S parameter reaches a large value at 0.3 J/cm^2 with 1 shot, while a small one at 0.5 J/cm^2 with 5 shots.

KEY WORDS TiH₂, pulsed ion beam, surface morphology, slow positron annihilation

Ti 作为一种优良的贮氢金属, 其吸 H 密度高达 9.2×10²² atom/cm², 比液氢密度大1倍多, 在氚工艺以 氢同位素生产中占据重要的位置,常用 Ti 作为吸氢 (及 其同位素) 的材料, 吸氢能使 Ti 发生 α 相到 δ 相的转 变, 当温度高于 250 ℃时, H 开始从 Ti 中解吸 ^[1-3]. Ti 的氢化物 (氘化钛、氚化钛) 作为一种重要的核材料被 广泛用于核技术如中子发生器中,其运行要求靶具有良好 的稳定性,即长时间工作下稳定的氢浓度和微观结构.因 此,了解钛氢及其同位素化物的物理化学性质对基础研究 和工程应用研究都具有重要意义. 目前国内外关于钛氢化 物的研究主要集中于钛氢化物的结构及结合状态^[4-6]、H 在 Ti 中的溶解^[7]、H 在 Ti 中的偏析与偏摩尔体积以及 钛氢体系的热力学性质^[8-10]和动力学性质^[11-13].研 究者^[14-17] 普遍采用热解析谱的方法研究 H 解吸附、解 离的动力学问题, 但是极少有实验研究关注其在更为复杂 的外部条件下所产生的内部结构的变化.

在过去的几十年间, 强流脉冲离子束 (IPIB) 作 为一种材料表面改性的方法引起了研究者们的广泛关 注^[18-21]. 与传统的离子束注入相比, IPIB 具有能量密 度高和脉冲宽度窄的特点,并能以 10⁸—10¹¹ K/s 的速 率使材料表面经历熔化、蒸发和冷却的过程. 若采用强流 脉冲作用于薄膜,辐照效应主要包括两个方面:一是膜材 在辐照过程中受到的显著热 - 力学作用导致材料宏观形 貌的变化;二是由于显著的能量、质量和动量作用,有效 地改变材料表面形态、结晶状态及其晶体结构、化学成分 等. 金属氢化物作为一种特殊的二相体系化物, 其在强流 脉冲离子束辐照下的特性变化未见有公开报道. 因此, 研 究强脉冲束流与氘化钛的作用机制,不但能加深对束流与 氢化物的作用机制的认识,更重要的是可为核技术领域中 氘、氚膜性能的评估提供理论依据和技术支撑. 鉴于此, 本 工作尝试从实验上研究强流脉冲离子束与钛氢化物相互 作用特性,将具有急剧升温和降温特点的 IPIB 作为一种 非平衡的外部处理方式来辐照 Ti 的氢化物膜, 以便研究 TiH2 在极端非平衡条件下的表面形貌和内部微观结构的 变化,从而提供一系列关于氢化钛膜稳定性的参数.

1 实验材料及方法

采用箱式真空镀膜机制备 Ti 膜, 将经表面高真空除

气处理后的 Mo 衬底放置在电子束蒸发镀膜机内的样品 架上,采用电子枪加热的方式将 99.9%的高纯 Ti 沉积在 Mo 衬底上, 镀膜时系统真空约为 10^{-4} Pa. Mo 衬底厚 为 1 mm, 制备的表面 Ti 膜厚度约为 6 μ m. 镀好的 Ti 膜在真空环境下被转移到 H₂ 饱和系统中, 该装置极限真 空为 10^{-4} Pa. 饱和用的 H₂ 从 U 粉瓶中通过热解吸得 到, 纯度为 99.5%, Ti 膜在 H₂ 饱和前在 10^{-3} Pa 下被 加热到 500 ℃除气 1 h, 然后被冷却到室温, 当系统真空 达到 10^{-4} Pa 时, 从 U 粉瓶中加热释放出一定量的 H₂, 加热样品至 550 ℃使 Ti 膜吸 H.

IPIB 轰击在 TEMP-6 强流脉冲离子束装置上进 行,加速器为单极模式,束流主要成分为 30% C⁺ 和 70% H⁺(原子分数),加速能量 100 keV.对 TiH₂ 样 品进行能量密度 0.1-0.5 J/cm² 的轰击,轰击次数 0-50 次.

采用 A JSM-5600LV 型扫描电子显微镜 (SEM) 和 Surfcorder SE-3H 型轮廓仪 (针尖半径为 2 μ m) 进行 表面粗糙度 R_a 测量,用 SHIMADZUXRD-6000 型 X 射线衍射仪 (XRD) 鉴定表面层组织.采用正电子湮没的 Doppler 展宽技术,对样品进行无损伤测量 ^[22-24].单能 正电子束能量在 0—20 keV 之间连续可调.用高纯 Ge 探 测器探测正电子湮没产生的辐射能谱,能量分辨约 1 keV. 所有样品均在室温下测量,每个能谱的计数为 10⁵ 以上. 展宽能谱线形 S 参数定义为:

$$S = \frac{\int_{-a}^{a} C(E) dE}{\int_{-\infty}^{\infty} C(E) dE}$$
(1)

式中, C(E) 是扣除本底后的慢正电子 Doppler 展宽实验 谱, E 是正电子湮没后所探测到的 γ 射线的能量, (-a, a)是以 511 keV 为能量坐标原点的能量区间,这里取 a=1 keV. S 参数的变化主要受能谱中心区相对计数的影 响,因而主要反映正电子与低动量电子湮没的情况. 空位 型缺陷处,低动量电子密度相对较大,正电子发生湮灭的 511 keV 的 γ 射线 Doppler 展宽谱较小,对应于能谱的 中心区, S 参数值增大.

2 实验结果与讨论

2.1 脉冲束流对 TiH₂ 膜表面形貌的影响

IPIB 轰击前后 TiH₂ 膜表面形貌如图 1 所示. 图 1a 为原始 TiH₂ 膜的 SEM 像. 可以看出, 原始 TiH₂ 膜表面晶粒边界清晰, 但晶粒大小不规则, 具有显著的微观几何不均匀性, 同时膜表面隐约呈现出横向平行凹凸条状起伏. 当能量密度为 0.1 J/cm², 和原始样品相比, 1—50 次脉冲轰击下膜表面均未存在表面晶粒明显的熔

化后再凝固的痕迹,但随着辐照次数的继续增加,脉冲离 子束的热冲击作用增强,表面存在平整化和致密化的趋势. 0.3 J/cm^2 条件下,膜表面也未发生十分明显的熔化现象, 与 0.1 J/cm^2 情况类似,膜表面似乎也存在平整化的趋势. 图 2 为不同情况下 IPIB 辐照 TiH₂ 膜表面粗糙度与 辐照次数的关系.可以看出,在能量密度为 0.1 J/cm^2 , 1-20次辐照时,TiH₂ 膜表面粗糙度没有显著的变化, 当增加辐照次数增至 50,TiH₂ 膜表面粗糙度降低至 $0.21 \ \mu$ m. 在 0.3 J/cm^2 条件下,可以看到膜粗糙度也

图 1 强流脉冲离子束 (IPIB) 辐照后 TiH₂ 膜的表面形貌

Fig.1 Surface morphologies of TiH_2 films irradiated by intense pulsed ion beam (IPIB) with different shots and energies

图 2 IPIB 辐照后 TiH₂ 膜表面粗糙度 *R*_a 随辐照次数和能量 密度变化

Fig.2 Surface roughness R_a of TiH₂ films by IPIB under different shots and energy densities

存在类似的变化趋势.虽然在此能量密度下, 膜表面没有 明显可见的熔化现象,但是从整体膜表面粗糙度的变化趋 势来看,随着辐照次数的增加并伴随着脉冲束热冲击效应 的增强,膜表面趋于更加平整和致密的状态.图 1j,k分 别为0.5 J/cm²的 IPIB 轰击 1,5 次后膜的表面形貌.可 以看出,1 次轰击后膜表面已经存在微裂纹,而5 次轰击 后,除了大量的网状裂纹之外还可以观察到表面晶粒特别 是边缘处十分明显的熔化后再凝固的现象.此种网状裂 纹是由脉冲束流瞬时加热和冷却过程中所产生的极高热 应力所致^[15-18],此外,TiH₂是一种脆性相,从而导致 开裂的产生.实验表明,当能量密度至少高于 0.3 J/cm² 时,TiH₂ 膜会产生十分明显的熔化和开裂现象.

2.2 脉冲束流轰击对 TiH₂ 物相结构的影响

虽然在 0.1—0.3 J/cm² 条件下, TiH₂ 膜表面未发生 明显的熔化现象,但由于TiH2的分解温度相对较低^[1-3], 所以其内部的物相结构在此条件下仍然可能发生转变. 图 3 所示为 IPIB 辐照前后 TiH₂ 膜的 XRD 谱. 可以看出, 原始 TiH₂ 膜表层主要由 δ 相的 TiH₂ 构成, 同时也检 测到了基体 Mo 的物相. 当能量密度为 0.1 J/cm² 时, 经过 IPIB 1—50 次辐照, TiH₂ 膜表层相结构均未发生 明显的变化. 当能量密度为 0.3 J/cm², IPIB 辐照 1 次 后, 衍射谱中存在 α-Ti (002) 衍射峰并且 Mo 的 (200), (211) 和 δ -TiH₂ 的 (220), (211) 衍射峰逐渐分离开来, 而 5 和 10 次辐照后,各衍射峰和原始谱图相比并无本 质上的差别. 此种情况是由于样品在保存或者制备的过 程中存在 H 从样品中逃逸造成 TiH₂ 的含量减小, 从而 导致 α-Ti (002) 峰的析出和原本几乎重合的 Mo (200), (211) 和 δ-TiH₂ (220), (211) 衍射峰分离开来. 图 3c 为 0.5 J/cm² IPIB 轰击下, TiH₂ (110), (220), 纯 Ti (002) 衍射峰的演化图,从图中看出,H从 TiH2 中分解的过程 并伴随着 α-Ti (002) 峰的析出. 另外, 还观测到了体心

图 3 0.1—0.5 J/cm² 条件下 IPIB 辐照 TiH₂ 膜表层的 XRD 谱

Fig.3 XRD spectra of TiH₂ films irradiated by IPIB with different shots under 0.1 J/cm² (a), 0.3 J/cm² (b), 0.5 J/cm^2 (c)

立方 (bct) 结构氢化物的存在, 是一种亚稳态, 一般存 在于材料中应力集中的区域^[29,30]. Wang 等^[31,32] 曾对此结构做过详细的研究. 这种非平衡相结构的出现 与 IPIB 快速加热及随后的快速冷却的非平衡过程密切 相关,在等温加热的情况下, bct-TiH₂ 会继续分解为 α -Ti 和 δ -TiH₂, 而 IPIB 辐照结束后的快速冷却,"冻结" 了这种高温组织,使其来不及分解而保存下来. 结果表明, 在 IPIB 轰击下, δ -TiH₂ 分解的能量密度条件仍然高于 0.3 J/cm². 但由于基体的干扰, TiH₂ 可能在更低的能量 密度范围内已经发生相变.

2.3 束流轰击对 TiH₂ 膜缺陷结构的影响

原始纯 Ti 膜、TiH2 膜以及不同条件 IPIB 轰击 下 TiH₂ 膜的慢正电子 S 参数谱图如图 4 所示. 可以 看出,由于蒸发镀膜本身的特点,在镀膜过程中膜内已经 存在大量的原生空位、空洞缺陷. 膜充 H 以后随着氢化 物的生成,大量脆性氢化物的产生使膜又产生了大量的缺 陷, 膜的 S 参数相对于原始状态呈现增大的趋势. "氢致 缺陷"一方面是由于当金属内部出现氢化物时其和母体材 料存在不适配性,导致材料内部出现断裂和位错;另一方 面金属 -H 原子复合体能够降低材料内部空位缺陷形成 能,从而引起材料内部缺陷浓度的增大^[33].图 4b 分别给 出了 0.3 J/cm² 的 IPIB 辐照 TiH₂ 1, 5, 10 次的慢正 电子 S 参数谱图. 为了方便对比分析,同时也测量了 0.1 和 0.5 J/cm^2 的 IPIB 5 次脉冲条件下膜的慢正电子 S 参数谱图. 结果表明, 充 H 能在 Ti 膜内引入缺陷, IPIB 的辐照亦能导致 TiH2 膜产生大量的缺陷结构, 缺陷结构 的峰值主要集中于膜表层 0.4 µm 以内. 有资料^[34]表明, 100 keV 的 C⁺ 和 H⁺ 所产生的缺陷范围分别主要集中 于 0.25 和 0.75 μm 处 (图 4a). 虽然 IPIB 成分中 H⁺ 相对 C⁺ 要多, 但是单个 C⁺ 对膜材料的损伤程度却高 出 H⁺ 约 2 个数量级, 所以 IPIB 辐照材料所产生缺陷峰 值主要集中于 C+ 的峰值处. 值得注意的是, 随着辐照次 数的增加, S 参数的峰值略微下降, 预示着缺陷浓度在下 降. 为了做进一步的对比分析, 图 4c 给出的是 0.1, 0.3, 0.5 J/cm^2 的 IPIB 5 次轰击下 TiH₂ 膜 S 参数随膜深 度的变化. 可以看出 0.1 和 0.3 J/cm² 条件下, S 参数 峰值相当,而 0.5 J/cm² 条件下膜的 S 参数急剧下降, 几乎达到原始 TiH2 膜的值. 结果表明, 在 0.3 J/cm² 1 次轰击条件下 S 参数值最大,并随着轰击次数的增加 而逐渐减小. 由于正电子对材料中原子尺度的缺陷极其敏 感, 当空位与基体原子比达到 10-4 时会导致正电子湮没 趋于饱和^[35].离子的注入,辐照过程中所产生的远离平 衡态的热 - 力学效应以及期间形成的由表及里应力波使 膜内部产生大量的空位型缺陷和位错型大尺寸缺陷. 当缺 陷尺寸达到上百纳米时,正电子无法再对其进行分辨,正 电子在期间湮没几乎可以视为自由态湮没. 由此可推断在 0.3 J/cm² 1 次 IPIB 轰击下, 材料内部可产生大量的空 位型缺陷并存在位错型大尺寸缺陷,而且随着轰击次数的 继续增加,在 IPIB 反复的热冲击效应下,大尺寸缺陷浓度

- 图 4 单个 C⁺ 和 H⁺ 辐照 TiH₂ 膜后在其路径上所产生的单位长度空位数及 TiH₂ 膜经 IPIB 辐照后慢正电子 S 参数随膜表面深度的变化
- Fig.4 Vacancy productions per incident ion along projective range (a), and evolution of the positron annihilation characteristics S parameter in TiH₂ with different shots as a function of depth (b, c) (S parameter is defined as the ratio of the counts in the central area of the slow positron annihilation, Doppler broadening peak: 510.56—511.44 keV)

也随之增加,导致大量的正电子在其间近乎以自由态湮没. 0.5 J/cm² 5 次脉冲条件下 TiH₂ 膜试样表面存在大量的 网状裂纹,线尺寸可达数十至几十微米,此类缺陷也极有 可能延伸至膜内部一定深度处.正电子在如此尺寸的缺陷 中湮没实则可视为自由态湮没,这种湮没方式对于 *S* 参 数的增加并无贡献. 另外,与原始 TiH₂ 膜相比,辐照后的 S 参数值在某些点存在十分明显的波动, 预示着在辐照期间, 膜内部产生了较多的非均匀分布的缺陷结构.

3 结论

(1) 在 0.1—0.3 J/cm² 的 IPIB 轰击条件下, 虽然 TiH₂ 膜表面并未出现明显的熔化现象, 但膜表层的整体 粗糙度在束流不断的热冲击条件下趋于平整; 在 IPIB 能 量密度达到 0.5 J/cm² 时, TiH₂ 膜表层发生十分明显的 熔化和开裂现象.

(2) 当能量密度达到 0.5 J/cm² 时, TiH₂ 膜表层相 结构才发生明显的变化, H 开始从 TiH₂ 膜内大量的解吸 并伴随有 δ -TiH₂ 向 bct-TiH₂ 结构的非平衡相结构转 变.

(3) 在 0.3 J/cm² 1 次 IPIB 轰击下 TiH₂ 膜的慢正 电子 Doppler 展宽 *S* 参数可达到饱和值,并随着轰击次 数的增加而减小. 当 IPIB 能量密度增为 0.5 J/cm² 时, *S* 参数几乎降为初始值,表明 IPIB 反复的热冲击效应能 导致材料内部大尺寸缺陷浓度的急剧增加,正电子在此缺 陷内部的趋近于以自由态湮没.

参考文献

- [1] Karamanis D. Nucl Instrum Meth, 2002; 195B: 350
- [2] Hughey B J. Nucl Instrum Meth, 1995; 95B: 393
- [3] Bhosle V, Baburaj E G, Miranova M, Salama K. Mater Sci Eng, 2003; A356: 190
- [4] Schur D V, Zaginaichenko S Y U, Adejev V M. Int J Hydrogen Energy, 1996; 21: 1121
- [5] Wang Y, Wang P X, Zhang J W. *Rare Met*, 1995; 19: 348
 (王 宇, 王佩璇, 张建伟. 稀有金属, 1995; 19: 348)
- [6] Shapovalova O M, Babenko E P, Babenko J V. Hydrogen Mater Sci Chem Met Hydrides, 2002; 82: 69
- [7] Schwickert M, Carpene E, Lieb K P. Appl Phys Lett, 2004; 84: 5231
- [8] Kasess U, Majer G, Stoll M. J Alloys Compd, 1997; 259: 74
- [9] Wu H L, Zhao G Q, Zhou Z Y. Nucl Sci Technol, 1996; 19: 326
 - (伍怀龙, 赵国庆, 周筑颖. 核技术, 1996; 19: 326)
- [10] Papazoglou T P, Hepworth M T. Trans Met Soc Alme, 1968; 242: 682
- [11] Schwickert M, Carpene E, Lieb K P. Appl Phys Lett, 2004; 84: 5231

- [12] Hirooka Y, Miyake M. J Nucl Mater, 1981; 96: 227
- [13] Wasilewski R J, Kehl G L. *Metallurgia*, 1954; 50: 225
- [14] Hirooka Y, Miyake M, Sano T. J Nucl Mater, 1981; 96: 227
- $\left[15\right]$ Wang W E. J Alloys Compd, 1996; 238: 6
- [16] Lisowski W, Keim E G, Kaszkur Z, Smithers M A. Appl Surf Sci, 2008; 254: 2629
- [17] Masatoshi T, Hiroki K, Setsuo Y, Hamazo N, Katsunobu I. Appl Surf Sci, 2008; 258: 1405
- [18] Shulov V A, Nochovnaya N A, Remnev G E, Pellerin F, Monge C P. Surf Coat Technol, 1998; 99: 74
- [19] Zhu X P, Lei M K, Ma T C. Nucl Instrum Meth, 2003; 211B: 69
- [20] Wang X, Zhang J S, Lei M K. Acta Metall Sin, 2007; 43: 393

(王 旭, 张俊善, 雷明凯. 金属学报, 2007; 43: 393)

- [21] Lei M K, Dong Z H, Zhang Z, Hu Y F, Zhu X P. Surf Coat Technol, 2007; 201: 5613
- [22] Wang B Y, Xiang W, Tan X H, Dai J Y, Cheng L, Qin X B. Acta Metall Sin, 2010; 46: 810
 (王博宇,向 伟, 谈效华, 戴晶怡, 程 亮, 秦秀波. 金属学报, 2010; 46: 810)
- [23] Miao Z, Cheng L L, Hui M W, Scholzc R, Gösele U. Thin Solid Films, 1998; 333: 245
- $\left[24\right]$ Wu Y C, Jean Y C. Appl Surf Sci, 2006; 252: 3278
- [25] Dong Z H, Zhang Z, Liu C, Zhu X P, Lei M K. Appl Surf Sci, 1998; 99: 74
- [26] Li P, Lei M K, Zhu X P. Appl Surf Sci, 2010; 257: 72
- [27] Han X G, Zhu X P, Lei M K. Surf Coat Technol, 2011; 206: 874
- [28] Zhang F G, Zhu X P, Wang M Y, Lei M K. Acta Metall Sin, 2011; 47: 958
 (张峰刚, 朱小鹏, 王明阳, 雷明凯. 金属学报, 2011; 47: 958)
- [29] Zheng P. J Mater Sci Lett, 1990; 9: 75
- [30] Grambole D, Wang T, Herrmann F, Eichhorn F. Nucl Instrum Meth, 2003; 210B: 526
- [31] Wang T S, Grambole D, Herrmann F, Peng H B, Wang S
 W. Surf Interf Anal, 2007; 39: 52
- [32] Wang T S, Eichhorn F, Grambole D, Grötzschel R, Herrmann F, Kreissig U, Möller W. Condens Matter, 2002; 14: 11605
- [33] Čížek J, Procházka I, Kužel R, Bečvář F, Cieslar M, Brauer G, Anwand W, Kirchheim R, Pundt A. J Alloys Compd, 2005; 404: 580
- [34] http://www.SRIM.org
- [35] Shirai Y, Araki H, Mori T, Nakamura W, Sakaki K. J Alloys Compd, 2002; 330: 125

(责任编辑:罗艳芬)