doi:10.3969/j. issn. 1006-267x. 2012. 05. 018

共轭亚油酸对蛋鸡生产性能、蛋壳质量和 血清生化指标的影响

刘雪兰 石天虹* 井庆川 阎佩佩 魏祥法 刘瑞亭 (山东省农业科学院家禽研究所,济南 250023)

摘 要:为了研究共轭亚油酸(CLA)对蛋鸡生产性能和蛋壳质量的影响及机理,试验选用 40 周龄健康、体重和产蛋率相近的海兰白蛋鸡 480 只,采用单因素试验设计,随机分为 4 组,每组 3 个重复,每个重复 40 只,试验组分别添加 0.5%、1.0% 和 2.0% 的 CLA,对照组不添加,试验期 8 周。试验结束时,每组选 6 只采血并屠宰,测定血清中三碘甲腺原氨酸(T_3)、四碘甲腺原氨酸(T_4)、皮质醇、雌二醇(E_2)、钙离子、磷离子含量和碱性磷酸酶(ALP)活性及肝脏肉毒碱棕榈酰转移酶(CPT-I)活性。结果表明:1)各试验组蛋鸡生产性能与对照组均差异不显著(P>0.05)。2)各试验组蛋壳强度均显著大于对照组(P<0.05),蛋壳厚度均差异不显著(P>0.05)。3)2.0% CLA 组蛋鸡血清 T_3 、 T_4 、皮质醇和 E_2 含量显著高于对照组及 0.5% 和 1.0% CLA 组蛋鸡血清 ALP 活性显著高于对照组(P<0.05)。4)1.0% 和 2.0% CLA 组蛋鸡肝脏 CPT-I活性显著低于对照组(P<0.05)。由此可见,在本试验条件下,饲粮添加 1.0% 的 CLA 能显著提高蛋鸡血清中 ALP 活性,并在一定程度上促进 1.0% 化,显著提高蛋壳强度,且不影响蛋鸡的生产性能。

关键词: CLA;生产性能;蛋壳质量;血清生化指标;ALP;内分泌激素;CPT-I

中图分类号:S816.7 文献标识码:A 文章编号:1006-267X(2012)05-0926-07

优良的生产性能和蛋壳质量对禽蛋生产尤为重要,我国是世界蛋鸡养殖大国,商品蛋鸡占世界存栏量的 40%~45%,而每年因蛋壳破损带来的经济损失在 5 亿元以上^[1]。因此,有效提高蛋壳质量对促进禽蛋产业发展有重要意义。共轭亚油酸(conjugated linoleic acid, CLA)是一组亚油酸的异构体,具有广泛的生理功能,因此成为近 30 年来研究的热点。在蛋鸡方面的研究^[2-10]集中在CLA 在蛋黄中的富集规律及对蛋鸡生产性能和蛋品质的影响上,而且不同研究者得出的结论很不一致,且对其影响的机理目前报道较少。为此,本研究在测定蛋鸡生产性能和蛋壳质量的同时,进一步研究饲粮添加 CLA 对蛋鸡有美血清生化指

标和肝脏中相关酶活性的影响,目的是明确 CLA 对蛋鸡生产性能和蛋壳质量的影响,并阐明其机理,为生产上合理利用 CLA 提供理论依据。

1 材料与方法

1.1 试验材料

80型 CLA,2种主要异构体的比例为:顺-9, 反-11 39.70%,反-10,顺-12 41.21%,购自蓬莱市海洋生物有限公司,批号为 10005,物理形状为淡黄色油状液体。

1.2 试验动物

采用单因素完全随机设计,按体重、周龄、健康状况及遗传特性一致原则将40周龄海兰白蛋

收稿日期:2011-11-25

基金项目:山东省自然科学基金资助项目(ZR2009DQ017)

作者简介:刘雪兰(1974—),女,山东成武人,硕士,从事家禽营养工作。E-mail: liuxuelan7411@sina.com

*通讯作者:石天虹,研究员,E-mail: shith2004@163.com

鸡480 只分为4组,每组3个重复,每个重复40只。试验期8周。

1.3 试验管理及试验日程

试验在山东省农业科学院家禽研究所试验鸡舍进行。试验时间为2011年3月1日—2011年5月9日,其中2011年3月1日—2011年3月14日共14d为预试期,各组试验鸡根据需要调整,使组间产蛋率差异不显著(P<0.05)。调整结束后进入正式试验期,正式试验期从2011年3月15日—2011年5月9日共56d。以2层阶梯式金属笼饲养蛋鸡,每笼1只。按常规方法饲喂管理,乳头式饮水器,自由采食和饮水。鸡舍温度15~28℃,室内纵向机械通风,自然光照,早晚辅以人工光照,恒定光照时间为16h/d,光照强度为14lx。蛋鸡日饲喂2次,分别在08:00和17:00。每日记录

鸡舍温度和气温。

1.4 试验设计与饲粮

试验饲粮按照我国鸡饲养标准(NY/T 33—2004)进行配制。采用玉米-豆粕-棉籽粕型饲粮,设4个CLA添加水平,分别为0(对照组)、0.5%、1.0%、2.0%。为使各组饲粮的能值相同,本试验采用重量替代法,在不同的饲粮处理中,用同样重量的豆油代替等量的CLA,即在基础饲粮的基础上,对照组豆油含量2.0%,CLA含量0;0.5%CLA组,豆油含量1.5%,CLA含量0.5%;1.0%CLA组,豆油含量1.0%,CLA含量1.0%;2.0%CLA组,豆油含量0,CLA含量2.0%。饲粮每周配制1次,4℃贮藏。试验饲粮组成及营养水平见表1。

表1 试验饲粮组成及营养水平(风干基础)

Table 1 Composition and nutrient levels of experimental diets (air-dry	basis)	
--	--------	--

07

项目	对照组	0.5% CLA 组	1.0% CLA 组	2.0% CLA 组	
Items	Control group	0.5% CLA group	1.0% CLA group	2.0% CLA group	
原料 Ingredients					
玉米 Corn	58.00	58.00	58.00	58.00	
麸皮 Wheat bran	3.00	3.00	3.00	3.00	
豆粕 Soybean meal	18.00	18.00	18.00	18.00	
棉籽粕 Cottonseed meal	6.00	6.00	6.00	6.00	
豆油 Soybean oil	2.00	1.50	1.00		
共轭亚油酸 CLA		0.50	1.00	2.00	
石粉 Limestone	8.00	8.00	8.00	8.00	
蛋氨酸 Met	0.14	0.14	0.14	0.14	
磷酸氢钙 CaHPO ₄	0.80	0.80	0.80	0.80	
食盐 NaCl	0.35	0.35	0.35	0.35	
预混料 Premix	3.71	3.71	3.71	3.71	
合计 Total	100.00	100.00	100.00	100.00	
营养水平 Nutrient levels					
代谢能 ME/(MJ/kg)		1	1.29		
粗蛋白质 CP	16.23				
蛋氨酸 Met	0.47				
钙 Ca	3.52				
总磷 TP	0.61				

每千克预混料含有 Contained the following per kg of premix: VA 160~000~IU, VD $_3~32~000~IU$, VE 400~IU, VK $_3~20~mg$, VB $_1~110~mg$, VB $_2~100~mg$, VB $_6~160~mg$, VB $_1~1.~6~mg$, 烟酸 niacin 320~mg, 生物素 biotin 6~mg, D — 泛酸 D-pantothenic acid 1~800~mg, 叶酸 folic acid 300~mg, 氯化胆碱 chorine chloride 30~000~mg, Cu (as copper sulfate) 1~600~mg, Fe (as ferrous sulfate) 1~400~mg, Mn (as manganese sulfate) 1~200~mg, Zn (as zinc sulfate) 1~600~mg.

1.5 样品采集

试验结束时每组随机抽取 6 只鸡(每个重复 2 只),翅静脉采集外周血,自然凝固,1 720 \times g 离心 10 min 取得血清,置于 -20 $^{\circ}$ 冰箱保存备用。同时,取肝脏 1 $^{\circ}$ 2 g,迅速剪成 50 $^{\circ}$ 100 mg 小块,放于 1.5 mL 离心管中,标记之后立即投入液氮速冻,速冻后的样品置于 -70 $^{\circ}$ C超低温冰箱保存备用。收集试验最后 1 d 的鸡蛋,测蛋壳质量。

1.6 测定指标与方法

1.6.1 生产性能

每天统计各重复的产蛋量,试验结束时统计 各重复的耗料量,并计算产蛋率、蛋重、采食量和 料蛋比。

1.6.2 蛋壳质量

每个重复任取30枚鸡蛋测蛋壳质量。

蛋壳厚度:用 TSS 蛋品质测定系统的 KM-NO817 蛋壳厚度测定仪测定。

蛋壳强度:用 TSS 蛋品质测定系统的 Qc-SPA 蛋壳强度测定仪测定。

1.6.3 血清内分泌激素含量

血清三碘甲腺原氨酸(T₃)、四碘甲腺原氨酸(T₄)、皮质醇、雌二醇(E₂)含量委托济南军区总医院测定。其采用化学发光免疫分析法测定,检测原理是以发光物质代替同位素或酶作为标记物,并借助其发光强度直接进行测定。

1.6.4 肝脏肉毒碱棕榈酰转移酶(CPT-I)活性

采用上海研吉生物科技有限公司生产的组织 CPT-I活性比色法定量检测试剂盒测定肝脏 CPT-I活性。其方法为:用纯化的 CPT-I抗体包被微孔板,制成固相抗体,往包被单抗的微孔中依次加入 CPT-I,再与辣根过氧化物酶(HRP)标记

的 CPT- I 抗体结合,形成抗体 - 抗原 - 酶标抗体复合物,经过彻底洗涤后加底物四甲基联苯胺(TMB)显色。TMB 在 HRP 的催化下转化成蓝色,并在酸的作用下转化成最终的黄色。颜色的深浅与样品中的 CPT- I 活性呈正相关。用酶标仪在 450 nm 波长下测定吸光度(OD 值),通过标准曲线计算样品中 CPT- I 活性。操作步骤参照试剂盒所附产品说明书。

1.6.5 血清钙离子(Ca²⁺)和磷离子(P⁵⁺)含量 及碱性磷酸酶(ALP)活性

血清 Ca²⁺含量测定采用甲基麝香酚兰比色法,血清 P⁵⁺含量测定采用紫外终点法,ALP 活性测定采用硝基苯磷酸二钠动力学法。以上测定均采用北京利德曼生物技术有限公司生产的试剂盒,操作步骤参照所附产品说明书。

1.7 数据统计分析

采用 Excel 2007 统计记录试验数据,以 SPSS 13.0 软件的 ANOVA 模块进行方差分析,并用 Duncan 氏法分别以 0.05 水平进行显著性比较,试验结果以平均值 ±标准误表示。

2 结果与分析

2.1 饲粮 CLA 水平对蛋鸡生产性能的影响

表2表明,各试验组蛋鸡的生产性能与对照组差异不显著(P>0.05),但与对照组相比,0.5%和1.0%CLA组的产蛋率、蛋重和采食量均有所上升,料蛋比均有所下降,而2.0%CLA组则相反。可见,CLA添加量低于2.0%时,其对蛋鸡的生产性能具有促进作用,而达到2.0%时生产性能反而有所下降。

表 2 饲粮 CLA 水平对蛋鸡生产性能的影响

Table 2 Effects of dietary CLA level on performance of laying hens

项目	对照组	0.5% CLA 组	1.0% CLA 组	2.0% CLA 组
Items	Control group	0.5% CLA group	1.0% CLA group	2.0% CLA group
产蛋率 Laying rate/%	91.30 ± 0.65	91.74 ± 1.35	94. 20 ± 1. 14	91.07 ± 1.23
蛋重 Egg weight/g	63.24 ± 4.67	64.69 ± 3.42	63.36 ± 1.67	61.64 ± 3.35
采食量 Feed intake/g	123.00 ± 3.17	124.50 ± 2.88	124.90 ± 4.53	123.70 ± 2.27
料蛋比 Feed-egg ratio	2.27 ± 0.03	2.25 ± 0.01	2.24 ± 0.02	2.36 ± 0.01

同行数据肩标无字母或相同字母表示差异不显著(P>0.05),不同小写字母表示差异显著(P<0.05)。下表同。

In the same row, values with no letter or the same letter superscripts mean no significant difference (P > 0.05), while with different small letter superscripts mean significant difference (P < 0.05). The same as below.

2.2 饲粮 CLA 水平对蛋壳质量的影响

从表 3 可以看出,各试验组的蛋壳强度均显著大于对照组(P<0.05),但试验组间差异不显著

(*P*>0.05)。各试验组的蛋壳厚度均在一定程度上大于对照组,但均差异不显著(*P*>0.05)。

表 3 饲粮 CLA 水平对蛋壳质量的影响

Table 3 Effects of dietary CLA level on eggshell quality

项目 Items	对照组 Control group	0.5% CLA 组 0.5% CLA group	1.0% CLA 组 1.0% CLA group	2.0% CLA 组 2.0% CLA group
蛋壳强度 Eggshell strength/(kg/cm²)	3.70 ± 0.72^{b}	4.30 ± 0.95^{a}	4.89 ± 0.92^{a}	4.70 ± 0.55^{a}
蛋壳厚度 Eggshell thickness/mm	0.33 ± 0.02	0.36 ± 0.04	0.36 ± 0.06	0.34 ± 0.02

2.3 饲粮 CLA 水平对蛋鸡血清内分泌激素含量的 影响

从表 4 可以看出,随着饲粮 CLA 添加量的增加,蛋鸡血清中 T₃、T₄、皮质醇和 E₂ 含量呈增加趋

势,但0.5%和1.0%CLA组与对照组均差异不显著(P>0.05),当CLA添加量为2.0%时,各激素含量均显著高于其他各组(P<0.05)。

表 4 饲粮 CLA 水平对蛋鸡血清内分泌激素含量的影响

Table 4 Effects of dietary CLA level on endocrine hormone contents in serum of laying hens

项目	对照组	0.5% CLA 组	1.0% CLA 组	2.0% CLA 组
Items	Control group	0.5% CLA group	1.0% CLA group	2.0% CLA group
三碘甲腺原氨酸 T ₃ /(pmol/L)	4.39 ± 0.89^{b}	5.46 ± 0.36^{b}	$5.76 \pm 0.43^{\text{b}}$	9.89 ± 0.75^{a}
四碘甲腺原氨酸 $T_4/(pmol/L)$	3.37 ± 0.65^{b}	3.39 ± 0.63^{b}	3.62 ± 0.39^{b}	12.63 ± 0.37^{a}
皮质醇 Cortisol/(nmol/L)	0.50 ± 0.01^{b}	0.51 ± 0.03^{b}	0.51 ± 0.02^{b}	0.61 ± 0.02^{a}
雌二醇 E ₂ /(ng/L)	121.32 ± 2.61^{b}	121.83 ± 4.06^{b}	126.10 ± 2.13^{b}	140.94 ± 2.19^{a}

2.4 饲粮 CLA 水平对蛋鸡肝脏 CPT- I 活性的 影响

表 5 显示,随着 CLA 添加量的增加,蛋鸡肝脏 CPT- I 活性逐渐降低;当添加量达到 1.0% 时

CPT- I 活性比对照组低 15.8%, 添加量为 2.0% 时, CPT- I 活性比对照组低 20.6%, 均达到显著水平(P < 0.05)。可见, 一定量的 CLA 能降低蛋鸡肝脏 CPT- I 活性。

表 5 饲粮 CLA 水平对蛋鸡肝脏 CPT- I 活性的影响

Table 5 Effects of dietary CLA level on the activity of CPT- I in liver of laying hens

项目	对照组	0.5% CLA 组	1.0% CLA 组	2.0% CLA 组
Items	Control group	0.5% CLA group	1.0% CLA group	2.0% CLA group
CPT- I 活性 CPT- I activity/(U/L)	6.32 ± 0.02^{a}	5.53 ± 0.05^{ab}	5.32 ± 0.09^{b}	5.02 ± 0.06^{b}

2.5 饲粮 CLA 水平对蛋鸡血清 Ca²⁺、P⁵⁺含量和 ALP 活性的影响

从表 6 可以看出,各试验组蛋鸡血清 Ca^{2+} 、 P^{5+} 含量均在一定程度上高于对照组,但尚未达到显著水平(P>0.05);0.5% 和 1.0% CLA 组蛋鸡血清 ALP活性均显著高于对照组(P<0.05),但 2.0% CLA 组与对照组差异不显著(P>0.05)。本试验结果表明,饲粮添加适量的 CLA 对蛋鸡血

清 ALP 活性有显著影响。

3 讨论

3.1 饲粮 CLA 水平对蛋鸡生产性能影响

采食量是影响动物生产水平的重要因素,而 影响采食量的因素有多种,如遗传因素、动物所处 的生理阶段及健康状况、饲粮能量浓度及蛋白质 和氨基酸水平等。本试验所选蛋鸡来源于同一品 种、同一日龄,健康状况良好,生产性能相近,所用基础饲粮相同,不同之处在于 CLA 的添加水平。本试验中虽然添加 CLA 对采食量的影响较微弱,未显示出显著差异,但试验组采食量略大于对照组。而周孟清^[11]、尚秀国^[12]报道 CLA 对采食量有显著降低作用;Ahn 等^[13]报道,饲粮中添加2.5%的 CLA 对蛋鸡的采食量没有显著影响,当CLA 的添加量达到5.0%时,白来航蛋鸡的采食量显著降低;Chamruspollert等^[14]报道,CLA 对26周龄蛋鸡的采食量没有显著影响,但显著降低了62周龄蛋鸡的采食量。以上研究与本研究结果不尽相同,可能与所用的蛋鸡周龄、品种及 CLA 的

添加水平不同有关。为探明 CLA 对采食量的影响机理,本研究测定了各组蛋鸡肝脏中 CPT- I 的活性。CPT- I 是脂肪酸 β - 氧化过程的限速酶 $^{[15]}$,此酶活性的高低决定了体内脂肪酸的 β - 氧化强弱,从而决定了机体 ATP 的生成量。本研究发现,随着 CLA 添加量的增加,蛋鸡肝脏 CPT- I 的活性逐渐降低,添加 1.0% 和 2.0% CLA 显著降低了其活性,由此可知,试验组蛋鸡体内的脂肪酸 β - 氧化作用减弱,蛋鸡在摄入相同量脂肪时机体内产生较少的 ATP,因此为满足机体能量需求,试验组的采食量增加。

表 6 饲粮 CLA 水平对蛋鸡血清 Ca^{2+} 、 P^{5+} 含量和 ALP 活性的影响

Table 6 Effects of dietary CLA level on the contents of Ca²⁺ and P⁵⁺ and the activity of alkaline phosphatase in serum of laying hens

项目	对照组	0.5% CLA 组	1.0% CLA 组	2.0% CLA 组
Items	Control group	0.5% CLA group	1.0% CLA group	2.0% CLA group
钙离子 Ca ²⁺ /(mmol/L)	11.25 ± 1.25	12.22 ±1.05	12.48 ±1.38	11.36 ±1.38
磷离子 P ⁵⁺ /(mmol/L)	1.26 ± 0.08	1.43 ± 0.12	1.52 ± 0.06	1.36 ± 0.12
碱性磷酸酶 ALP/(U/L)	522.21 ± 77.99^{b}	627.87 ± 78.55^{a}	643.23 ± 76.81^{a}	596.65 ± 56.89^{ab}

在本试验中添加 0.5% 和 1.0% 的 CLA,产蛋 率和蛋重在一定程度上高于对照组,料蛋比在一 定程度上低于对照组,但当添加量为2.0%时,以 上各指标均较对照组差,与官丽辉等[16]、李晓轩 等[17]、郑洲等[18]的结论一致。为探明其机理,本 研究测定了试验各组蛋鸡血清中 T₃、T₄、皮质醇和 E, 含量。T₃、T₄ 能促进蛋白质及各种酶的生成, 增强卵巢的功能,促进排卵;E,是蛋鸡体内协调各 种生理功能和调节营养物质代谢的最重要的激素 之一,E。调控蛋鸡体内与脂质转运和蛋黄形成有 关的脂蛋白和载脂蛋白的合成,还调控着脂蛋白 的载体——卵黄生成素的基因转录,另外,E。诱导 卵黄蛋白原和极低密度脂蛋白的合成,因此雌激 素是卵泡生长发育和成熟所必需的,与蛋鸡生产 性能密切相关。血清 E2 含量上升可以促进卵泡 发育,从而增加蛋重。皮质醇可促进蛋白质分解、 抑制其合成,皮质醇分泌过多常引起生长停滞、产 蛋下降等症状^[19]。本研究表明,随着 CLA 添加量 的增加,蛋鸡血清中 T3、T4、皮质醇和 E2 含量呈增 加趋势,戴求仲等[20]也有类似的报道。在本试验 中,添加量为0.5%和1.0%时,甲状腺激素和E。 含量要稍高于对照组,而皮质醇含量数值上仅有 0.01 的差距,其含量相对较低,对甲状腺激素和 E_2 作用影响很小,因此,0.5% 和 1.0% CLA 组的上述生产性能指标高于对照组,而 2.0% CLA 组的生产性能略有降低,则可能是由于此组蛋鸡血清中高含量的皮质醇抵消了甲状腺激素和 E_2 的作用引起的。

3.2 饲粮 CLA 水平对蛋壳强度的影响

血清 Ca²⁺、P⁵⁺的含量及 ALP 活性反映了蛋壳形成中 Ca²⁺、P⁵⁺的代谢状况^[21],血清 Ca²⁺、P⁵⁺含量上升,蛋壳质量则提高。ALP 不仅能水解各种磷酸酯键而释放出无机磷,而且还能将释放出来的无机磷直接转移到受体中去,若血清 ALP 活性升高,无机磷的释放和受体中的含量则增加,有利于良好蛋壳的形成。另外,蛋壳的形成也和 E₂有关,E₂可促进壳腺动员钙、磷和分泌蛋壳^[22]。在本试验中,CLA 一方面在一定程度上提高了血清中 Ca²⁺、P⁵⁺含量及 ALP 活性,另一方面使血清E₂含量提高,促使壳腺对钙、磷的分泌与沉积增加,因此蛋壳韧性和弹性提高,蛋壳强度增加。

4 结 论

- ① 饲粮添加 0.5% ~1.0% CLA 对生产性能 没有负面影响,而且对生产性能有微弱的促进作用。其机理在于:一方面,CLA 能降低蛋鸡肝脏 CPT-I 的活性,从而增加采食量,进而提高蛋鸡的生产性能;另一方面,CLA 能够通过促进甲状腺激素和 E₂ 的分泌,来提高蛋鸡的蛋重和产蛋率,降低料蛋比。
- ② 添加 CLA 能提高蛋壳强度,其机理在于: 一方面,CLA 提高了血清中 Ca²⁺、P⁵⁺含量和 ALP 活性,而血清中 Ca²⁺、P⁵⁺含量和 ALP 活性与蛋壳质量呈正相关;另一方面,CLA 使血清 E₂ 含量提高,促使壳腺对钙、磷的分泌与沉积增加。
- ③ 综合 CLA 对蛋鸡生产性能和蛋壳强度影响,在生产实践中,80 型 CLA 在蛋鸡饲粮中的最佳添加量为1.0%。

参考文献:

- [1] 宋慧芝,王俊,叶均安. 鸡蛋蛋壳受载特性的有限元研究[J]. 浙江大学学报:农业与生命科学版,2006,32(3):350-354.
- [2] DU M, AHN D U, SELL J L. Effect of dietary conjugated linoleic acid on the composition of egg yolk lipids [J]. Poultry Science, 1999, 78:1639 1645.
- [3] KIM J H, HWANGBO J, CHOI N J, et al. Effect of dietary supplementation with conjugated linoleic acid, with oleic, linoleic, or linolenic acid, on egg quality characteristics and fat accumulation in the egg yolk [J]. Poultry Science, 2007, 36(6):1180-1186.
- [4] AYDIN R, COOK M E. The effect of dietary conjugated linoleic acid on egg yolk fatty acids and hatchability in Japanese quail [J]. Poultry Science, 2004, 83 (12):2016 2022.
- [5] SHANG X G, WANG F L, LI D F, et al. Effects of dietary conjugated linoleic acid on the productivity of laying hens and egg quality during refrigerated storage
 [J]. Poultry Science, 2004, 33 (10): 1688 1695.
- [6] SUKSOMBAT W, SAMITAYOTIN S, LOUN-GLAWAN P. Effects of conjugated linoleic acid supplementation in layer diet on fatty acid compositions of egg yolk and layer performances [J]. Poultry Science, 2006, 85(9):1603-1609.
- [7] 官丽辉,马旭平,程玉芳. 日粮添加 CLA 对蛋鸡产 蛋性能和蛋黄脂肪酸的影响[J]. 黑龙江畜牧兽医,

- 2010(15):84 -85.
- [8] 徐焱,万小保,凌利. 富含生理活性物质 CLA 强化鸡蛋的试验研究[J]. 粮食与饲料工业,2005(12): 34-35.
- [9] RAES K, HUYGHEBAERT G, DE SMET S, et al. The deposition of conjugated linoleic acids in eggs of laying hens fed diets varying in fat level and fatty acid profile[J]. The Journal of Nutrition, 2002, 132 (2): 182-189.
- [10] JONES S, MA D W, ROBINSON F E, et al. Isomers of conjugated linoleic acid (CLA) are incorporated into egg yolk lipids by CLA-fed laying hens [J]. The Journal of Nutrition, 2000, 130(8); 2002 2005.
- [11] 周孟清. CLA 对蛋鸡生产性能和蛋品质的影响 [D]. 硕士学位论文. 长沙: 湖南农业大学, 2004.
- [12] 尚秀国. CLA 对蛋黄脂肪酸组成调控机理的研究 [D]. 博士学位论文. 北京: 中国农业大学, 2004.
- [13] AHN D U, SELL J L, JO C, et al. Effect of dietary conjugated linoleic acid on the quality characteristics of chicken eggs during refrigerated storage [J]. Poultry Science, 1999, 78(6):922 928.
- [14] CHAMRUSPOLLERT M, SELL J L. Transfer of dietary CLA to egg yolks of chickens [J]. Poultry Science, 1999, 78:1138 1150.
- [15] 周顺伍. 动物生物化学[M]. 北京:中国农业出版 社,1999:118.
- [16] 官丽辉,马旭平,李亚奎. 日粮添加 CLA 对蛋鸡产 蛋性能和蛋黄中胆固醇的影响[J]. 黑龙江畜牧兽 医,2010(6):94-95.
- [17] 李晓轩, 靳明明, 田亚东, 等. 共轭亚油酸对固始鸡蛋品质和血清生化指标的影响[J]. 河南农业科学, 2009(7):124-126.
- [18] 郑洲,缪锦来. 共轭亚油酸对蛋鸡产蛋性能和蛋品质的影响[J]. 现代农业科技,2008(12):248-250,252.
- [19] 陈杰. 家畜生理学[M]. 北京:中国农业出版社, 2010;371,382.
- [20] 戴求仲,蒋桂韬,胡艳,等. 共轭亚油酸对产蛋鸡血液生化指标的影响[J]. 湖南畜牧兽医,2006(4):2-4.
- [21] 余东游,邹晓庭. 杆菌肽锌和金霉素对蛋鸡产蛋性能和蛋品质的影响机理[J]. 浙江大学学报:农业与生命科学版,2000,26(2):169-172.
- [22] 刘平祥,陈鹭江,谢德彪,等. 铬对蛋鸡生产性能的 影响及其在体内的分布[J]. 江西农业大学学报, 1999,21(4):564-568.

Dietary Conjugated Linoleic Acid Level Affects Performance, Eggshell Quality and Serum Biochemical Indices of Laying Hens

LIU Xuelan SHI Tianhong* JING Qingchuan YAN Peipei WEI Xiangfa LIU Ruiting (Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, China)

Abstract: This experiment was conducted to investigate the effects of the supplementation of conjugated linoleic acid (CLA) on the performance, eggshell quality, and its mechanism. Four hundred and eighty healthy 40week-old Hy-Line White laying hens with similar body weight and laying rate were divided randomly into 4 groups with 3 replicates per group and 40 birds in each replicate. The control diet had no CLA, and the experimental diets contained 0.5%, 1.0% and 2.0% CLA, respectively. Eight weeks later, six of each group was slaughtered and the blood was collected to determine the contents of thiothyone (T₃), tetraiodothyronine (T₄), cortisol, estradiol (E₂), Ca²⁺ and P⁵⁺, the alkaline phosphatase activity (ALP) in serum, and the carnitine palmitoyltransterase (CPT-I) activity in liver. The results showed as follows: 1) there was no significant difference in performance between the control group and experimental groups (P > 0.05). 2) Compared with the control group, the eggshell strength in experimental groups was significantly improved (P < 0.05), but there was no significant difference in eggshell thickness between the control group and experimental groups (P > 0.05). 3) The contents of T_3 , T_4 , cortisol and E_2 in serum of laying hens in 2.0% CLA group were significant higher than those in the other groups (P < 0.05); there were no significant differences in the contents of calcium ions and inorganic phosphorus ions in serum of laying hens between the control group and experimental groups (P > 0.05); compared with the control group, the ALP activity in serum of laying hens in experimental groups was significantly increased (P < 0.05) except for 2.0% CLA group. 4) The CPT- I activity in liver of laying hens was significantly lower than that in the control group (P < 0.05). It is concluded that 1.0% CLA can significantly increase serum ALP activity, and improve serum E2 content, so it can significantly improve the eggshell strength, furthermore, it has no bad effect on performance of layers. [Chinese Journal of Animal Nutrition, 2012, 24(5):926-932

Key words: conjugated linoleic acid; performance; eggshell quality; serum biochemical indices; alkaline phosphates; endocrine hormones; carnation palmitoyltransterase