宁波地区典型土层地基承载力确定*

陈 斌^{①②} 叶俊能^① 朱剑锋^② 刘干斌^② 贾 波^② (①宁波市轨道交通工程建设指挥部 宁波 315012) (②宁波大学建筑工程与环境学院 宁波 315211)

摘 要 基于宁波轨道交通1号线和2号线一期工程的静力触探、标准贯入、扁铲和十字板等原位试验数据,采用已有的经验 公式预测了宁波地区各典型土层的地基承载力。然后,根据K-S检验法提出了各经验公式预测结果的分布概型及数字特征。 在此基础上,通过与宁波地区地基承载力经验值对比,提出宁波地区典型土层地基承载力的建议值。研究结果可对宁波地区 岩土工程勘察设计中地基承载力的确定提供参考。

关键词 静力触探试验 标准贯入试验 十字板剪切试验 扁铲试验 地基承载力 中图分类号:TU471 文献标识码:A

METHODS FOR BEARING CAPACITY DETERMINATION OF TYPICAL SOIL FOUNDATIONS IN NINGBO REGION

CHEN Bin⁽¹⁾2 YE Junneng⁽¹⁾ ZHU Jianfeng⁽²⁾ LIU Ganbin⁽²⁾ JIA Bo⁽²⁾

(DNingbo Urban Rail Transit Project Construction Headquarters, Ningbo 315012)

(2) Faculty of Architectural Civil Engineering and Environment, Ningbo University, Ningbo 315211)

Abstract This paper is based on the first-stage in-situ test results of the Line 1 and Line 2 in Ningbo rail transit system. The tests include static cone penetration, standard penetration test, standard penetration test, and vane shear test. Accordingly, the foundation bearing capacities of the typical soils in Ningbo region are estimated and predicted with empirical formula. Then, the distributions and numerical characteristics of the predicted results are presented on basis of the K-S inspection method. Based on above analysis results, the recommended foundation bearing capacities of the typical soils are proposed after their comparisons with the empirical foundation bearing capacities of the typical soils in Ningbo area. The research findings can provide scientific references to determine the value of the bearing capacity of the geotechnical investigation and design in Ningbo area.

Key words Static cone penetration, Standard penetration test, Vane shear test, Flat dilatometer test, Foundation bearing capacity

* 收稿日期: 2012-08-20;收到修改稿日期: 2012-10-31.
 基金项目:宁波市轨道交通工程建设指挥部科技攻关专题(2011001)和宁波市重点学科(XKL11D2076)资助.
 第一作者简介:陈斌,主要研究城市轨道交通研究与管理.Email: chenbin.nb@163.com
 通讯作者简介:朱剑锋.主要从事岩土工程教学与设计.Email: zhujianfeng0811@163.com

1 工程概况

近年来,随着宁波都市经济区大规模建设发展, 对岩土工程勘察所提供的各项物理力学指标准确度 的要求也越来越高,尤其是地基土承载力的大小,对 工程造价影响极大。因此,合理确定地基的承载力, 使位于地基上的各种工程设施具有足够的安全储 备,确保地基不至于因承载力不足而发生整体剪切 破坏,保证工程在使用期内能正常、安全地发挥应有 的功能,具有重要的经济和社会效益。

目前,确定地基承载力的试验方法主要包括静 力载荷试验法、静力触探试验法、标准贯入试验法、 十字板剪切试验法以及扁铲试验法等。其中,通过 静力载荷试验获得的地基承载力特征值是最直接、 最准确的方法^[1,2],但该法费时、费力,不易进行大 面积推广。原位测试技术能够测定"原状土"的物 理力学性质,反映岩土的宏观结构对岩土力学性质 的影响。近年来,该项技术在岩土工程勘察工作中 的应用范围越来越广,关于原位测试与地基承载力 之间的相关分析研究,国内学者已开展了一定工作, 提出了诸如静力触探、标准贯入试验击数、十字板剪 切试验等与地基承载力之间的经验公式^[3~12],但上 述经验公式均具有一定的区域性,能否应用于宁波 地区仍须进一步验证。

宁波市轨道交通1、2号线一期工程分4个标段 进行勘察,勘察共计3875个有效钻孔,其中原位参 数有扁铲 88 个、十字板 183 个、静探 783 个、标贯 1269个。本文根据宁波轨道交通1、2号线的原位 试验数据,通过经验公式来推算宁波地区典型土层 (①20 黏土~⑥20 粉质黏土层)的地基承载力,提出 相应的分布概型,通过对比分析提出宁波地区各典 型土层地基承载力的建议值。

地基承载力确定方法 2

由概率论有关知识可知:可采用 Kolmogorov-Smirnov 拟合检验法(K-S 检验)检验经验分布与总 体分布是否吻合。如果 K-S 统计量的概率 K_s 值小 于显著性水平 α (=0.05),则应拒绝零假设,认为样 本来自的总体与指定的分布有显著差异:如果 K-S 统计量的概率 K_s 值大于显著性水平 α (=0.05),则 不能拒绝零假设,认为样本来自的总体与指定的分 布无差异^[13]。下文将根据不同的原位测试数据,拟 合本地区土层承载力经验公式,提出相应的分布模 型,并通过 K-S 法检验它们是否与总体吻合。

静力触探试验 2.1

(1)

对于黏性土、砂土和粉土地基,利用静力触探确 定其承载力的经验公式如下^[14]:

(1)黏性土:
$$f_{ak0} = 104p_s + 26.9$$
 (1)
(2)粉土:

$$f_{ak0} = 36p_{s} + 44.6 \tag{2}$$

(3)粉砂:

$$f_{ak0} = 20p_{\rm s} + 59.5 \tag{3}$$

其中, p_s 为侧摩阻力(MPa); f_{ak0} 为地基承载力特征 值(MPa)。

由表1可知:

(1)各土层的 K-S 统计量的概率 Ks 值大于显 著性水平 α (=0.05), 且①₂₀黏土和③₁₀粉土层地基 承载力呈对数正态分布,其余土层的地基承载力均 呈正态分布:

(2)③1.0粉土层地基承载力的变异系数最大 $(\delta_{max} = 0.534), ②_{21} 淤泥层地基承载力的变异系数$ 最小(δ_{min}=0.135),其余土层地基承载力的变异系 数多介于0.1~0.5之间;

(3)由于静力触探数据量大,且预测的地基承 载力变异系数适中。因此,采用静力触探参数预测 的宁波地区地基承载力可靠度较高。

2.2 标准贯入确定地基承载力

本节根据宁波轨道交通1、2号线的标贯原位试 验数据,通过相应经验公式来推算地基承载力的情 况。标贯试验共1269个孔、11690条记录,经过数 据筛选后,针对标贯试验数据量较多的黏性土、粉 土、砂土进行计算。由表2可知,对于同一种土层可 以有多种地基承载力经验预测公式[14]。为检验各 公式对宁波地区地基承载力的预测精度,现采用表 2 中的不同公式来预测相应土层的地基承载力 (表3~表5)其中公式①、②、③、④均引自文献[14]。 根据表3可知:

(1) 各土层的 K-S 统计量的概率 K_s 值大于显 著性水平 α (=0.05),除②₁₀黏土层、②₃₀淤泥质粉 质黏土层和④」。淤泥质粉质黏土层服从对数正态分 布外,其余土层的地基承载力呈正态分布规律;

(2) ②10 黏土层地基承载力的变异系数最大 $(\delta_{max} = 0.807), ③_{1,2}$ 粉质黏土层地基承载力的变异

表1 静力触探经验公式确定的地基承载力 fako 统计表

Table 1 Statistic results of foundation bearing capacities f_{at0} determined with empirical formula of the static cone penetration

土层	样本量 N	均值 µ/kPa	标准差 σ/kPa	变异系数δ	K _S	分布概型
①2-0黏土	4961	108.98	47.75	0. 438	0.963	对数正态
①3-0淤泥质黏土	17757	58.310	11.570	0. 198	0.312	正态
②1-0黏土	5382	82.64	15.32	0. 185	0. 921	正态
②1-1粉土	1304	109.86	43.84	0. 399	0.382	正态
② ₂₋₁ 淤泥	12997	64. 132	8.637	0.135	0. 180	正态
②2-2淤泥质黏土	23809	71.689	13. 282	0. 185	0.715	正态
②3.0淤泥质粉质黏土	16652	93.436	25. 524	0.273	0.945	正态
② ₄₀ 淤泥质黏土	4209	93.459	22. 859	0. 245	0.677	正态
③1-0粉土	9037	150.46	80. 37	0. 534	0. 538	对数正态
③ ₁₋₂ 粉质黏土	1748	157.23	50.46	0. 321	0.311	正态
③2-0粉质黏土	13472	124.67	40.44	0.324	0. 273	正态
④1-2粉质黏土	6209	126.18	25.69	0.204	0.802	正态
④2-0黏土	26861	144.13	30. 23	0.210	0. 788	正态
④3-0粉质黏土	4299	182. 55	51.43	0. 282	0. 595	正态
⑤1.0黏土	29441	336.87	86.35	0.256	0. 259	正态
⑤ ₂₋₀ 粉质黏土	25745	326.08	100. 95	0.310	0.262	正态
⑤3-0黏质粉土	12604	278.46	116.96	0.420	0.407	正态
⑤3-1粉砂	688	492.16	209.47	0.426	0. 147	正态
⑤4-0粉质黏土	16746	238.80	61.26	0.257	0.154	正态
⑤5-0粉土	2602	376.15	155.28	0. 413	0. 238	正态
⑥1-0黏土	12184	370. 17	107.68	0. 291	0.554	正态
⑥2-0粉质黏土	19501	237.40	64. 35	0. 271	0. 427	正态

表 2 标准贯入试验确定的地基承载力经验公式

Table 2Empirical formula of foundation bearingcapacities determined with standard penetration test

序号	经验公式	适用范围	公式研究者
1	$f_{ak1} = 23.3N$	黏性土	公式①[14]
2	$f_{ak2} = 80+20. \ 2N$ (N=3~18)	黏性土、粉土	公式②[14]
3	$f_{ak2} = 152.6 + 17.48N$ (N=18~22)	黏性土、粉土	公式③[14]
4	$f_{ak3} = 72 + 9. \ 4N^{1.2}$ $f_{ak3} = -212 + 222N^{0.8}$ $f_{ak3} = -803 + 850N^{0.1}$	粉土 粉细砂 中、粗砂	公式④[14]

系数最小(δ_{min} = 0.269),其余土层地基承载力变异 系数多介于 0.3~0.8之间,离散性比较大。因此, 标贯经验公式①所预测的宁波地区地基承载力的可 靠度不高。

由表4可知:

(1)各土层的 K-S 统计量的概率 K_s 值大于显著性水平 α (=0.05),除②₁₀黏土层服从对数正态分布外,其余土层的地基承载力呈正态分布规律;

(2)③₂₀粉质黏土层地基承载力的变异系数最 大(δ_{max} =0.308),③₁₂粉质黏土层地基承载力的变 异系数最小(δ_{min} =0.155),其余土层地基承载力的 变异系数多介于0.1~0.3之间;

(3)与经验公式①相比,标贯经验公式②的预测结果的离散性显著降低,可靠度高。因此,经验公式②比较适用于预测宁波地区的地基承载力。

由表5知:

(1)各土层的 K-S 统计量的概率 K_s 值大于显 著性水平 α (=0.05),除⑤₅₀粉土层服从对数正态 分布外,其余土层的地基承载力呈正态分布规律;

(2) ⑤_{3.0} 黏质粉土层地基承载力的变异系数最 大(δ_{max} =0.484), ⑤_{3.1}粉砂土层地基承载力的变异 系数最小(δ_{min} =0.125),其余土层地基承载力变异 系数多均介于 0.2~0.5 之间,离散性比较大。因 此,经验公式③所预测的宁波地区地基承载力的可 靠度不高。

由表6可知:

(1)表6所列各土层的K-S统计量的概率K_s 值均大于显著性水平 α(=0.05),且地基承载力均

14	no e otuniono rose	into of J _{ak1} determ	innea with empiri	iour formulu (j		
土层	样本量 N	均值 µ/kPa	标准差 σ/kPa	变异系数δ	$K_{\rm S}$	分布概型
①2.0黏土	26	93.65	48.03	0. 513	0. 646	正态
②1.0黏土	43	58. 52	47.25	0.807	0. 284	对数正态
②1-1粉土	51	156.70	54.96	0.351	0.655	正态
②3-0淤泥质粉质黏土	193	58.914	43.804	0.744	0.355	对数正态
③1-0粉土	1238	228.93	97.63	0.426	0.350	正态
③ ₁₋₂ 粉质黏土	39	124.86	33. 59	0.269	0.812	正态
③2-0粉质黏土	473	121.72	65.83	0. 541	0. 194	正态
④1-0淤泥质粉质黏土	100	68.502	48.199	0.704	0. 252	对数正态
④1-1 淤泥质粉质黏土	117	75.675	35.004	0.463	0.710	正态
④1-2粉质黏土	53	118.70	51.75	0.436	0.205	正态
④2.0黏土	358	109.44	53.63	0.490	0. 168	正态
④3-0粉质黏土	37	129.09	43.10	0.334	0. 783	正态
⑤1-0黏土	436	359.60	120.90	0.336	0.951	正态
⑤ ₂₋₀ 粉质黏土	328	371.02	117.31	0.316	0. 246	正态
⑤3-0黏质粉土	563	469.89	167.14	0.356	0.612	正态
⑤4-0粉质黏土	273	253.82	96.05	0.378	0. 741	正态
⑥1-0黏土	172	403.82	122.73	0.304	0.479	正态
⑥ ₂₋₀ 粉质黏土	243	276.44	123.71	0. 448	0.037	正态

表 3 标贯经验公式①确定的 f_{ak1}统计表

Table 3 Statistic results of f_{ak1} determined with empirical formula (1)

表 4 标贯经验公式②确定的 f_{ak2} 统计表

Table 4 Statistic results of f_{ak2} determined

with empirical formula (2)

土层	样本量 N	均值 µ/kPa	标准差 σ/kPa	变异系数 δ	$K_{\rm S}$	分布 概型
①2-0黏土	22	171.36	34.68	0. 202	0.102	正态
② ₁₋₀ 黏土	16	172.16	40.38	0.235	0.711	对数正态
②1-1粉土	50	218.17	45.14	0.207	0.332	正态
③1-0粉土	1227	276.33	81.65	0. 295	0.268	正态
③ ₁₋₂ 粉质黏土	39	188.25	29.12	0.155	0.278	正态
③ ₂₋₀ 粉质黏土	473	185.53	57.08	0.308	0. 798	正态
④2-0黏土	358	174.88	46.49	0.266	0.655	正态
④3-0粉质黏土	35	196.01	34.06	0.174	0.644	正态
⑤1-0黏土	394	371.40	83.65	0. 225	0. 389	正态
⑤ ₂₋₀ 粉质黏土	286	375.48	74.86	0. 199	0. 613	正态
⑤ ₃₋₀ 黏质粉土	373	407.28	80.35	0. 197	0.700	正态
⑤ ₄₋₀ 粉质黏土	266	293.24	72.01	0.246	0.338	正态
⑥1-0黏土	144	401.66	84.88	0. 211	0.964	正态
⑥2-0粉质黏土	228	300.71	78.53	0. 261	0.208	正态

呈正态分布规律;

(2)标贯经验公式④所预测的宁波地区地基承
 载力的离散性小(δ_{max} = 0.154),可靠度高,比较适用
 于预测宁波地区的地基承载力。

表 5 标贯经验公式③确定的 f_{ak3} 统计表

Table 5 Statistic results of f_{ak3} determined

with empirical formula ③

土层	样本量 N	均值 µ/kPa	标准差 σ/kPa	变异系数 δ	$K_{\rm S}$	分布 概型
③1-0粉土	1238	219.87	75.17	0.342	0.642	正态
③ ₁₋₁ 粉砂	31	245.11	47.36	0. 193	0.564	正态
④1-2粉质黏土	53	182.91	44.87	0. 245	0.467	正态
⑤3-0黏质粉土	543	399. 85	193.42	0. 484	0.451	正态
⑤ ₃₋₁ 粉砂	84	425.12	52.97	0. 125	0.215	正态
⑤5-0粉土	206	472.90	213.35	0. 451	0.248	对数正态

表 6 标贯经验公式④确定的 f_{ak4} 统计表

Table 6 Statistic results of f_{ak4} determined

with empirical formula ④

土层	样本量 N	均值 µ/kPa	标准差 σ∕kPa	变异系数 δ	$K_{\rm S}$	分布 概型
③1-0粉土	1255	209.96	32. 29	0.154	0.060	正态
⑤3-0黏质粉土	563	256.02	20.09	0.078	0.454	正态
⑤5-0粉土	206	258.31	24.16	0.094	0. 921	正态

综上,在采用标准贯入试验参数预测宁波地区 地基承载力时,标贯经验公式①和③预测结果的离 散性大、可靠度不高;而标贯经验公式②和④预测

表7 十字板经验公式确定的 fals 统计表

Table 7 Statistic results of f_{ak5} determined

with empirical formula of the vane shear test

土层	样本量 N	均值 µ/kPa	标准差 σ∕kPa	变异系 数 δ	$K_{\rm S}$	分布 概型
①2.0黏土	139	135.04	38.26	0. 283	0. 924	正态
①3-0淤泥质黏土	734	127. 568	43.133	0.338	0.422	正态
②1.0黏土	225	153.91	27.49	0.179	0. 839	正态
② ₂₋₁ 淤泥	364	198. 383	39. 746	0.200	0.892	正态
②2-2淤泥质黏土	458	243. 784	61.084	0.251	0.125	正态
②3.0淤泥质粉质黏土	612	193. 261	65.217	0.337	0.336	正态
② ₄₋₀ 淤泥质黏土	205	255.020	64.686	0.254	0.875	正态
③1-0粉土	103	424.43	61.56	0.145	0.647	正态
③2-0粉质黏土	138	374.85	60.62	0.162	0.926	正态
④1.0淤泥质粉质黏土	219	323.042	77.365	0.239	0.106	正态
④1-1淤泥质粉质黏土	38	376.651	31. 339	0.083	0.620	正态
④1-2粉质黏土	27	445.13	47.86	0.108	0.841	正态
④2-0黏土	89	496. 39	51.78	0.104	0. 997	正态
⑤1.0黏土	114	582.71	109.05	0. 187	0. 938	正态
⑤2-0粉质黏土	7	620.21	84.84	0.137	0. 930	正态

表 8 扁铲经验公式确定的 f_{abb}统计表

Table 8 Statistic results of f_{abb} determined

with empirical formula of the flat dilatometer test

土层	样本量 N	b 均值 μ/kPa	标准差 σ/kPa	变异系 数δ	$K_{\rm S}$	分布 概型
①2-0黏土	215	126. 79	85.16	0.672	0.461	对数正态
①3-0淤泥质黏土	954	51.160	26. 199	0.512	0. 887	正态
②1-0黏土	285	106.66	55.85	0. 524	0. 103	正态
③ _{1-b} 粉质黏土	111	170.44	126. 37	0.741	0. 107	对数正态
② ₂₋₁ 淤泥	417	60.667	18.639	0.307	0. 847	正态
②2-2淤泥质黏土	1045	88. 598	39.069	0.441	0. 196	正态
②3-0淤泥质粉质黏土	579	105.150	67.989	0.647	0. 435	正态
② ₄₋₀ 淤泥质黏土	264	107.568	70. 546	0.656	0.085	正态
③ ₂₋₀ 粉质黏土	824	88.82	50.24	0.566	0.420	对数正态
④1-2粉质黏土	264	101.74	31.53	0.310	0. 529	对数正态
④2-0黏土	993	210.69	69.86	0.332	0.324	对数正态
⑤1-0黏土	1318	473.32	185. 54	0.392	0.056	正态
⑤ ₂₋₀ 粉质黏土	369	402.82	182.60	0.453	0. 165	正态
⑤4-0粉质黏土	206	223. 52	63.74	0. 285	0. 111	正态

结果的离散性小、可靠度高,可在宁波地区推广使用。

2.3 十字板剪切试验确定地基承载力

十字板剪切试验可用来预测淤泥土、淤泥质土、

湿陷性黄土等的地基承载力,相关经验公式如下^[14]:

$$f_{ak5} = 2C_u + \gamma h \tag{4}$$

式中, f_{ak5} 为十字板剪切试验确定的地基承载力特征 值(kPa); γ 为土的重度($kN \cdot m^{-3}$); C_u 为修正后的 十字板抗剪强度(kPa); h 为基础埋置深度(m)。

收集宁波轨道交通1、2 号线的十字板原位试验 数据,根据经验公式(4)推算地基承载力的情况。 其中,十字板试验共88个孔、3701条记录,经过数 据筛选后,针对十字板试验的主要及数据量较多的 黏性土和粉质黏土层进行计算(表7)。

根据表7所示十字板剪切试验确定的地基承载 力统计结果可以发现:

(1)表7所列各土层的K-S统计量的概率K_s
 值均大于显著性水平α(=0.05),且地基承载力均符合正态分布规律;

(2) ②₃₀ 淤泥质粉质黏土层地基承载力的变异 系数最大(但 δ_{max} 仅有 0.337),④₂₀ 黏土层地基承 载力的变异系数最小($\delta_{min} = 0.104$),其余土层地基 承载力变异系数多均介于 0.1~0.2;

(3)与其他原位试验预测地基承载力相比,十 字板剪切试验预测结果离散性小,可靠度高。但由 于十字板剪切试验数据量偏小,因此,可以结合静力 触探试验共同确定地基承载力。

2.4 扁铲试验确定地基承载力

扁铲试验主要可以预测黏性土和粉质黏土层的 地基承载力,经验公式为^[14]:

$$f_{ak6} = n\Delta p \tag{5}$$

式中, f_{ak6} 为扁铲试验确定的地基承载力特征值 (kPa); n 为经验修正系数, 对于黏性土 n = 1.14, 粉质黏土 n = 0.86; Δp 为钢膜中心外移 1.10mm 与 中心无外移时修正压力的差值。

本文根据宁波轨道交通1、2 号线的扁铲试验数 据(扁铲试验共88 个孔、11080 条记录),通过相应 参数来推算地基承载力的情况。经过数据筛选后, 针对扁铲试验主要数据量较多的黏性土和粉质黏土 层采用公式(5)进行计算(表8)。

根据表8所示扁铲试验确定的地基承载力统计 结果可以发现:

(1)表8所列各土层的K-S统计量的概率 K_s 值均大于显著性水平 α (=0.05),且②₁₀黏土、⑤₁₀ 黏土、⑤₂₀粉质黏土和⑤₄₀粉质黏土层的地基承载 力呈正态分布,而①₂₀黏土、③_{1b}粉质黏土、③₂₀粉

πá	
~~~	
Ц	
5	
<b>T</b>	
<u>+</u>	
HHH	
¥¥.	
<u>ц</u>	
夏	
-F)	
<b>Ŧ</b>	
Ē	
晤	
4131	
弘	
Η	
÷	
13	
Im2	
周	
~	
5	
夷	
115	

Table 9 Summary of foundation bearing capacities determined with in-situ tests

								,			2	-											
	静力	り触探			扁铲							标	軖						+	-字板	弦	验值	隹荐值
土层	N	Ś	$f_{ak0}$ /kPa	Ν	8	$f_{abb}$ ⁄kPa	Ν	Ś	$f_{akl}$ ⁄kPa	N	ŷ	f _{ak2} ∕kPa	N	ŷ	f _{ak3} ∕kPa	Ν	δ	$f_{abt}$ ⁄kPa	N	8	aks J	ر kPa	$f_{ak}$ ⁄kPa
①2.0黏土	4961 0	. 438	109	215	0.672	127	26	0.513	94	22	0. 202	171		I	I			I	139 0.	283 1	35	65 1(	9 ~ 139
①3.0淤泥质黏土	17757 0	. 198	58	954	0.512	51													734 0.	338 1	28		61 ~ 58
②1.0黏土	5382 0	. 185	83	285	0.524	107	43	0.807	59	16	0. 235	172							225 0.	179 1	54 60	~ 65 8	3 ~ 109
②1-1 粉土	1304 0	. 399	110				51	0.351	158	50	0. 207	218		I					1				0 ~ 158
②2-1 淤泥	12997 0	. 135	64	417	0. 307	61													364 0.	200	98		2
②2-2淤泥质黏土	23809 0	. 185	72	1045	0.441	89													458 0.	251 2	44		'2 ~ 89
②3.0淤泥质 粉质黏土	16652 0	. 273	93	579	0. 647	105	193	0. 744	59	I	I	I	I	I	I	I	I	I	612 0.	337 1	93	6	3 ~ 105
②4.0淤泥质黏土	4209 0	. 245	93	264	0.656	108	I	I	I		I	I	I	I	I	I	I	I	205 0.	254 2	55	6	$3 \sim 108$
③1.0粉土	9037 0	. 534	150				1238	0.426	229	1227	0. 295	276	1238	0.342	220	1255	0.154	210	103 0.	145 4	24 90	~ 100 15	$0 \sim 210$
③1-2 粉质黏土	1748 0	. 321	157				39	0.269	125	39 (	0. 155	188										- 17	67 ~ 188
③2-0 粉质黏土	13472 0	. 324	125	824	0.566	89	473	0.541	122	473 (	0. 308	186							138 0.	162 3	15 70	~ 90 8	9 ~ 125
④1.0淤泥质 粉质黏土	8648 0	. 187	66	352	0. 440	76	100	0. 704	69										219 0.	239 3	;23		66 ~ 9,
④1-1淤泥质 粉质黏土	6206 0	. 202	126	337	0. 451	92	117	0. 463	76										38 0.	083 3	77	- 9	2 ~ 126
④1-2粉质黏土	6209 0	. 204	126	264	0.310	102	53	0.436	119				53	0. 245	183				27 0.	108 4	45	75 1(	12 ~ 126
④2.0黏土	26861 0	. 210	144	993	0. 332	211	358	0.490	109	358 (	0. 266	175							89 0.	104 2	96 75	~ 80 14	4 ~ 175
④3-0粉质黏土	4299 0	. 282	183				37	0.334	129	35 (	0. 174	196						I			1	80 18	3 ~ 196
⑤1.0黏土	29441 0	. 256	337	1318	0. 392	473	436	0. 336	360	394 (	0. 225	371							114 0.	187 5	83 180	~ 200 33	17 ~ 371
⑤2-0 粉质黏土	25745 0	. 310	326	369	0.453	403	328	0.316	371	286	0. 199	375						I	7 0.	137 6	20 160	~ 170 32	6 ~ 375
⑤3-0黏质粉土	12604 0	. 420	278				563	0.356	470	373 (	0. 197	407	543	0. 484	400	563	0.078	256			- 160	~ 180 25	6 ~ 278
⑤40粉质黏土	16746 0	. 257	239	206	0. 285	224	473	0.541	122	266	0. 246	293		I	I		I	I	1			110 22	4 ~ 239
⑤5.0粉土	2602 0	. 413	376										206	0.451	473	206	0.094	258				170 25	8 ~ 376
⑥10黏土	12184 0	. 291	370				172	0.304	404	144	0. 211	402	Ι	Ι	1					1		170 37	0~402
⑥2-0粉质黏土	19501 0	. 271	237		I		243	0.448	276	228	0. 261	301		Ι	I	I	I			I	- 120	~ 140 23	17~301

质黏土、④₁₋₂粉质黏土层的地基承载力符合对数正态分布规律;

(2)③_{1-b}粉质黏土层地基承载力的变异系数最 大( $\delta_{max}$ =0.741),⑤₄₀粉质黏土层地基承载力的变 异系数最小( $\delta_{min}$ =0.285),其余土层地基承载力变 异系数多均介于0.3~0.7;

(3)与采用静力触探试验预测地基承载力相 比,扁铲试验数据量小,且预测的地基承载力离散性 大,因此,扁铲试验参数所预测的地基承载力的可靠 度低于静力触探参数预测结果。

### 3 原位参数确定地基承载力对比分析

在采用原位试验数据估算宁波地区土层承载力 时可选用不同的经验公式。由前述分析可知,对于 同一土层,不同经验公式预测结果的离散程度存在 差异,可靠度有高有低。因此,有必要将上述统计结 果进行对比分析,进而提出宁波地区各典型土层的 地基承载力。汇总表1~表8的地基承载力统计结 果,根据样本量、变异系数、安全性等指标与经验值 *f_{ak7}进行对比分析*,可得如表9所示的宁波地区地基 承载力推荐值*f_{ak}*。其中,*f_{ak}的取值主要依据样本量 大、可靠性高的静力触探的统计结果,并参考扁铲试 验、标贯经验公式②和④。* 

由表9可知:

(1)由于静力触探试验样本量大且对应的地基 承载力变异系数适中,预测的地基承载力比较可靠;

(2)十字板剪切试验样本量偏小,虽然变异系数最小,但预测值明显高于其他经验公式预测的地 基承载力(如:④₂₀黏土层的*f_{aks}为*496kPa远高于 推荐值109kPa和经验值75~80kPa),因此不建议 采用此法预测宁波地区地基承载力;

(3) 扁铲试验样本量及对应的地基承载力变异 系数适中,但部分土层的预测值偏高(如:⑤₁₋₀黏土 的*f_{ak6}为*473kPa,高于推荐值337kPa和经验值180 ~200kPa);

(4)标贯经验公式①和③预测结果的离散性 大、可靠性不高;而标贯经验公式②和④预测结果 的离散性小、可靠性高;

(5)与原位试验相比,经验值所预测的地基承载力过于保守,明显低于基于原位试验数据的经验公式所预测的宁波地区的地基承载力,建议采用表9所推荐的宁波地区各典型土层的地基承载力。

### 4 结 论

根据宁波轨道交通1、2号线的静力触探、十字 板、扁铲和标贯原位试验数据,拟合了不同的经验公 式来推算宁波地区各土层的地基承载力。在此基础 上,对不同试验数据的统计结果进行了对比分析,结 果发现:

(1)十字板剪切试验经验公式预测值偏高,标 贯经验公式①和③预测结果的离散性大、可靠度不高;因此不推荐使用上述3种经验公式预测宁波地 区各典型土层的地基承载力。

(2)静力触探试验、扁铲试验以及标贯经验公式②和④所预测的地基承载力变异系数适中,因此 推荐选用上述3种经验公式预测宁波地区各典型土 层的地基承载力。

(3)结合地区经验并综合对比分析各经验公式 的预测结果,提出了宁波地区各典型土层的地基承 载力的推荐值,所得结果可为宁波轨道交通后续工 程勘察、设计及施工提供参考。

#### 参考文献

- 郭莹, 董秀竹,栾茂田."建筑地基基础设计规范"承载力的确 定方法研究[J]. 岩土力学, 2002,23(4): 474~477.
   Guo Ying, Dong Xiuzhu, Luan Maotian. Study on the method for determining the bearing capacity in "Code for Soil Foundation of Building". Rock and Soil Mechanics, 2002,23(4): 474~477.
- [2] 王生力,袭平一,刘九功.利用原位测试数据确定石家庄市天然地基土承载力[J].北京地质,2001,(1):21~25.
  Wang Shengli, Xi Pingyi, Liu Jiugong. The method of obtaining foundation bearing capacity by the date of in-situ testing in Shiji-azhuang area. Beijing Geology, 2001,(1):21~25.
- [3] 魏杰.静力触探确定桩承载力的理论方法[J]. 岩土工程学报, 1994,16(3): 103~110.
  Wei Jie. Theoretical method for determining the bearing capacity of pile from static cone penetration. Chinese Journal of Geotechnical Engineering, 1994,16(3): 103~110.
- [4] 王国强,吴道祥,岳涛,等.安徽亳州市新近沉积粉土性质及其 承载力的确定[J].地质与勘探,2000,36(6):73~75.
  Wang Guoqiang, Wu Daoxiang, Yue Tao, et al. The newly sedimentary silt's characters in Bozhou city, Anhui and it's bear capacities. Geology and Prospecting, 2000,36(6):73~75.
- [5] 杨迎晓,吾独龙,朱向荣.衢州安居工程四期地基承载力试验研究[J].土木工程学报,2004,37(10):68~72.
   Yang Yingxiao, Wu Dulong, Zhu Xiangrong. An experimental study on the bearing capacity of the foundation soil for the 4th Quzhou's Anju project. China Civil Engineering Journal,2004,37

500

 $(10): 68 \sim 72.$ 

[6] 梁勇然.螺旋板载荷试验在测定粉土承载力中的应用[J].工 程勘察, 1996,(1): 10~12.

Liang Yongran. The application of spiral plate loading test to the determination of bearing capacity. Journal of Geotechnical Investigation and Surveying, 1996, (1):  $10 \sim 12$ .

 [7] 刘树庆.标贯试验确定黏性土地基承载力方法探讨[J].北方 交通,2008,(3):75~76.

Liu Shuqing. An approach to determination of bearing capacity of clay foundation by standard penetration test(SPT). Beijing Geology, 2008,(3): 75 ~76.

[8] 陈国民. 扁铲侧胀仪试验及其应用[J]. 岩土工程学报, 1999,
 21(3): 177~183.

Chen Guomin. Flat dilatometer test and its application. Chinese Journal of Geotechnical Engineering, 1999, **21**(3): 177 ~ 183.

- [9] 单红仙,陈勇,刘正银,等.现代黄河三角洲粉质类土承载力确定[J].岩石力学与工程学报,2006,25(增2):4089~4096. Shan Hongxian, Chen Yong, Liu Zhengyin, et al. Determination of slity soil bearing capacity on modern Yellow river delta in China. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2):4089~4096.
- [10] 樊向阳,莫群欢,张继红,等. 扁铲侧胀试验计算地基承载力[J]. 工程地质学报, 2005, 13(1): 94~99.

Fan Xiangyang, Mo Qunhuan, Zhang Jihong, et al. Foundation

soil's bearing capacity calculation using DMT. Journal of Engineering Geology,  $2005, 13(1): 94 \sim 99$ .

- [11] 史玉金,曾正强,严学新,等.上海市崇明岛浅层砂土、粉土分布探讨[J].工程地质学报,2005,13(1):34~39.
  Shi Yujin, Zeng Zhengqiang, Yan Xuexin, et al. Distribution of the shallow sandy soil and silty soil of Chongmin island, Shanghai. Journal of Engineering Geology, 2005,13(1):34~39.
- [12] 邓永锋,吴燕开,刘松玉,等.连云港浅层海相软土沉积环境及物理力学性质研究[J].工程地质学报,2005,13(1):29~33.

Deng Yongfeng, Wu Yankai, Liu Songyu, et al. Sediment environment of shallow marine clays deposited in Lianyungang area and their physical and mechanical properties. Journal of Engineering Geology, 2005, 13(1): 29 ~ 33.

- [13] 邓远北,周润兰.应用概率统计[M].北京:科学出版社, 2002,131~135.
  Deng Yuanbei, Zhou Runlan. Applied Probability and Statistics.
  Beijing: Science Press, 2002,131~135.
- [14] 《工程地质手册》编委会.工程地质手册(第四版)[S].北京:中国建筑工业出版社,2007,134~136.
  Editorial of Engineering Geology Handbook. Handbook of Engineering Geology(Fourth Edition). Beijing: China Architecture & Building Press, 2007,134~136.

### 新书简介

# 《汶川地震工程地质与地质灾害》一书出版

由殷跃平、张永双教授等著的《汶川地震工程地质与地质灾害》,在"5·12"汶川 M_s8.0 级地震 5 周年之际,由科学出版社出版发行。本书对汶川 M_s8.0 级地震区的地震工程地质和地质灾害进行了系统研究,涉及汶川地震区域地质构造、地震工程地质、斜坡地震动监测与试验方法、地震地质灾害等关键科学问题。

全书共4篇18章。第1篇介绍了龙门山活动构造带现场调查、深部大地电磁测深、地震前后 GPS 长期



观测和构造应力场演化研究成果。第2篇介绍了汶川地震的同震地表 破裂分布、地震工程地质特征和地震滑坡的地震断裂控制效应。第3 篇介绍了汶川地震后建立的斜坡地震动和斜坡地脉动原位观测最新 成果,以及地震滑坡大型振动台试验和斜坡岩体地震稳定性评价新方 法。第4篇介绍了汶川地震触发滑坡机理、高速远程滑坡一碎屑流运 动学和动力学效应、以及已有滑坡抗滑桩防治工程的动力响应特征, 并介绍了对地震触发的体积最大滑坡一大光包巨型滑坡、震后高位泥 石流和地震地质灾害快速评估与编图等研究成果。

本书是研究汶川地震工程地质与地质灾害较为系统的一本专著, 图文并茂,理论与实践相结合,可供从事地质灾害防治、地震地质、工 程地质、岩土工程、城镇建设等领域的科研和工程技术人员参考,也可 供有关院校教师和研究生参考使用。

全书约80万字。定价:260元。