北秦岭西段奥陶纪火山岩中发现近 4.1 Ga 的捕虏锆石

王洪亮 陈 亮 孙 勇 柳小明 徐学义 陈隽璐 张 红 第五春荣 (西北大学大陆动力学国家重点实验室, 西安 710069; 西安地质矿产研究所, 西安 710054. E-mail: <u>xawhongliang@cgs.gov.cn</u>)

摘要 通过高精度的LA-ICP-MS(激光剥蚀等离子体质谱仪)锆石微区原位U-Pb同位素测年,北秦岭西 段奥陶纪草滩沟群火山岩中获得(4079±5) Ma的年龄信息.北秦岭不仅成为继西澳Yilgam克拉通(碎屑 锆石,(4276±6),(4404±8) Ma)、加拿大Wopmay造山带(Acasta片麻岩,4016 Ma)和中国西藏普兰(碎屑锆 石,4103 Ma)之后世界上为数不多的发现冥古宙(4.56~3.85 Ga)地质记录的地区,而且成为世界上第一 个在较年轻的火山岩中发现地球早期地质记录的地方.本次近 4.1 Ga的锆石年龄不仅改写了秦岭没有 老于 4.0 Ga地质记录的历史,也为今后寻找固体地球初始阶段的地壳岩石提供了新的依据.所获得的 36 个测点的年龄数据可划分为 7 个时段,代表北秦岭造山带地壳演化过程中不同时期构造-岩浆事件的 时代信息,其中,相对集中的时段为 0.9~1.5 和 0.4~0.5 Ga,分别与北秦岭地区表现强烈的晋宁运动和 加里东运动的时限相吻合.

关键词 北秦岭西段 冥古宙 锆石 U-Pb 年龄 LA-ICP-MS

固体地球的早期演化一直是地球科学领域、尤 其是早前寒武纪地质研究的重要内容. 但迄今为止, 冥古宙^[1,2]的地壳岩石仅在北美加拿大的Wopmay造 山带中发现过、造山带的Acasta片麻岩形成时代为 4016 Ma^[3],是北美,也是地球上最早的岩石记录.长 时间以来,世界上老于 4.05 Ga的地质记录仅来自西 澳Yilgarn克拉通北部Jack Hills及邻区的碎屑锆石 [4.5]. 碎屑锆石的SHRIMP分析得到的结晶年龄为(4276±6) Ma^[4]. 在同一地区选出的锆石离子探针分析给出 (4404±8) Ma的²⁰⁷Pb/²⁰⁶Pb年龄^[5],该年龄是目前已 知最老的地球物质年龄记录. 锆石的原位氧同位素 研究显示当时已经存在早期的海洋、海陆的分异已 经初步形成 [5]. 最近, 我国地质学家 [6]也报道了西藏 普兰地区石英岩中 4.1 Ga的碎屑锆石, 这是我国发现 的最早的年龄记录.于津海等人 ^[1]报道的华夏陆块 潭溪片麻岩中锆石Hf同位素的模式年龄为 4.07 Ga. 但该锆石的形成年龄仅为 3755 Ma. Zhang等人 ^图发现 扬子陆块最古老的碎屑锆石年龄是 3.8 Ga、其Hf模式 年龄达 3.96~4.00 Ga. 以印度河-雅鲁藏布中生代缝 合带为界、其南属于冈瓦纳大陆(习称的南方大陆)、 其北属于劳亚大陆(习称的北方大陆),包含中朝克拉 通、塔里木陆块和扬子陆块在内的古中华陆块群均属 劳亚大陆的组成部分^[9].因此,已报道的>4.05 Ga的

锆石年龄仅分布于南方的冈瓦纳大陆上. 笔者近期 在北秦岭西段较年轻的火山岩中获得(4079±5) Ma 捕虏锆石的年龄数据, 这是秦岭, 也是古中华陆块群, 乃至劳亚大陆上发现的最老的年龄, 对研究地球早 期地壳的形成具有重要意义.

1 区域地质背景

研究区位于联结华北克拉通与华南克拉通的秦 岭造山带的西部(图 1).新元古代-古生代早期,先期 形成的古中国大陆大规模裂解,形成规模不等的陆 块群——古中华陆块群^[9],彼此以大小不一的洋盆隔 离开,除中朝、扬子、塔里木等几个陆块外,其余的 包括北秦岭、中祁连在内的小陆块均已卷入强烈的显 生宙造山带中.商丹缝合带即为加里东造山运动形 成的一条重要的板块对接带,除残留蛇绿岩外,秦岭-大别造山带断续发育数百千米的高压-超高压变质岩 带.因此,通常以加里东期的商丹缝合带为界,将秦 岭造山带分为南、北两大构造单元^[10-27],以北为北 秦岭造山带,以南为中南秦岭造山带(图 1).

商丹构造带(缝合带)裹携的主要地质体为新元 古代-奥陶纪丹凤岩群,岩石组合为变质中基性熔岩、 枕状熔岩、变碎屑岩、大理岩夹少量变质中酸性火山 岩、含炭硅质岩.研究区内岩湾一带发育的变质

²⁰⁰⁷⁻⁰⁴⁻²⁵ 收稿, 2007-06-14 接受

西北大学大陆动力学国家重点实验室开放课题基金(批准号: 06LCD16)、西北地区重要成矿带基础地质综合研究项目(编号: 1212010610319) 和国家科技支撑计划项目(编号: 2006BAB01A11)共同资助

祁连造山带; 华北克拉通; 北秦岭造山带; 商丹构造带(缝合带); 中南秦岭造山带; N-华北克拉通, N₁-西部陆块, N₂-中部构造带, N₃-东部陆块; S-华南克拉通, S₁-扬子陆块, S₂-华夏陆块; Q-祁连造山带; QD-秦岭-大别造山带; 1-晚石炭世草凉驿组; 2-晚泥盆世大草滩组; 3-奥陶纪 草滩沟群; 4-早古生代罗汉寺岩群; 5-新元古代-奥陶纪丹凤岩群; 6-古元古代秦岭岩群; 7-三叠纪二长花岗岩; 8-二叠纪石英二长岩(黄牛铺侵入 体); 9-志留纪含石榴石二长花岗岩(岩湾侵入体); 10-奥陶纪石英闪长岩(唐藏侵入体); 11-奥陶纪英云闪长岩(红花铺侵入体); 12-早古生代石英闪 长岩; 13-同位素样品采样位置

基性岩、超基性岩共同组成蛇绿构造混杂岩带.构造 带内也常发育有不同时期的中酸性侵入岩体(以唐藏 奥陶纪石英闪长岩为代表).

中南秦岭造山带出露的地层有早古生代罗汉寺 岩群和晚泥盆世大草滩组.罗汉寺岩群以变粉砂岩-细砂岩、粉砂质板岩为主,夹变中基性火山岩和少量 大理岩、结晶灰岩.大草滩组为一套浅灰—浅褐色碎 屑岩组合,砾岩具快速搬运、堆积特征.

北秦岭造山带的前寒武纪变质基底主体由古元 古代秦岭岩群构成.张宗清等人^[27]进行大量同位素 测年工作后认为秦岭岩群的年龄下限不超过(2226± 173) Ma.秦岭岩群北侧的奥陶纪草滩沟群为一套低 绿片岩相变质陆源碎屑岩-火山岩建造.1 25万区域 地质调查将草滩沟群自下而上分为红花铺组、张家庄 组和龙王庙组.红花铺组以浅变质碎屑岩为主夹砂 质灰岩和少量玄武岩、中酸性火山岩;张家庄组以中 基性、中酸性火山熔岩、火山碎屑岩为主夹少量砂岩、 板岩; 龙王庙组为浅变质碎屑岩、沉凝灰质碎屑岩夹 安山质火山岩. 晚石炭世草凉驿组为一套陆相含煤 碎屑岩建造.

研究区北部分布宝鸡岩基不同时代不同岩类的 侵入体,以三叠纪二长花岗岩为主体,其次有奥陶纪 英云闪长岩(红花铺侵入体)、二叠纪石英二长岩(黄 牛铺侵入体)及志留纪含石榴石二长花岗岩(岩湾侵 入体).

2 同位素测年

2.1 样品采集

同位素测年样品采自甘肃省两当县张家庄乡 桑园村南侧河谷中(107°18'36.8"E, 34°1'14.1"N, 海拔 1474 m), 样品重量约 65 kg, 采集对象为奥陶纪草滩 沟群张家庄组中基性火山岩. 中基性火山岩新鲜岩 石为灰绿色, 具斑状结构, 块状构造, 斑晶与基质矿 物成分基本一致, 以角闪石及斜长石为主, SiO2 含量 在 48%~56%之间,为中性-基性岩类. 奥陶纪草滩沟 群岩石组合及地球化学组成总体显示岛弧特征(成果 另文发表). 在实验室将样品粉碎至 80~100 目,经常 规浮选和磁选方法分选后,得到约 150 粒锆石. 在双 目镜下根据锆石颜色、自形程度、形态等特征初步分 类,挑选出具有代表性的锆石约 90 粒作为测定对象. 将分选出的锆石分组置于 DEVCON 环氧树脂中,待 固结后抛磨至粒径的大约二分之一,使锆石内部充 分暴露,然后进行锆石显微(反射光和透射光)照相、 阴极发光(CL)显微图像研究及锆石微区 U-Pb 同位素 年龄测定.

2.2 分析测试条件

锆石的 CL 图像拍照在西北大学扫描电镜实验室 完成,采用 FEI 公司 XL30 型 SFEG 电子束进行锆石 内部结构显微照相分析.同位素测试点的选取首先 根据锆石反射光和透射光照片进行初选,再与 CL 图 像反复对比,力求避开内部裂隙和包裹体,以获得较 准确的年龄信息.

LA-ICP-MS锆石微区U-Pb年龄测定在西北大学 大陆动力学国家重点实验室Agilent7500型ICPMS 和 德国Lambda Physik 公司的 ComPex102 ArF准分子 激光器(工作物质ArF、波长 193 nm)以及MicroLas公 司的GeoLas200M光学系统的联机上进行. 激光束斑 直径为 30 μm, 激光剥蚀深度为 20~40 μm. 实验中采 用He作为剥蚀物质的载气、用美国国家标准技术研 究院研制的人工合成硅酸盐玻璃标准参考物质NIST SRM610 进行仪器最佳化调试、采样方式为单点剥蚀、 数据采集选用一个质量峰一点的跳峰方式,每完成 4~5 个待测样品测定、插入测标样一次. 在所测锆石 样品 15~20 个点前后各测 2 次NIST SRM610. 锆石年 龄采用标准锆石 91500 作为外部标准物质, 元素含量 采用NIST SRM610 作为外标. 由于SiO2 在锆石中的 含量较恒定,选择²⁹Si作为内标来消除激光能量在点 分析过程中以及分析点之间的漂移, 对于大多数元 素单点分析的相对标准偏差为 5%~15%. LA-ICP-MS 锆石定年虽然在放射性同位素含量较低时测定误差 相对较大、但对古老锆石和铀含量较高的年轻锆石 的测定结果可以与SIMS和SHRIMP结果相媲美^[28~31]. 详细分析步骤和数据处理方法参见相关文献 [32,33].

2.3 锆石特征

草滩沟群张家庄组中基性火山岩中获得的锆石 总体可分为两类(图 2). 一类为无色透明的短柱状或 等轴状晶体,自形程度高,粒径多在 100~150 μm,个 别锆石颗粒较大,粒径可达 300 μm(图 2(b)),该类锆 石是测试的主体,锆石的 CL 图像色调较为均匀,同 心环状岩浆结晶环带细密而规则(图 2 (a)~(d)),锆石 具有较为一致的 ²⁰⁶Pb/²³⁸U 比值(0.072~0.074),不同 部位的年龄值基本一致(图 2 (a),(c)),Th/U 值均 >0.5(表1),具典型的同期岩浆结晶锆石特征,应为成 岩锆石.

另一类锆石为浑圆状晶体,颜色较杂,褐色至深 棕褐色,自形程度较差,CL 图像显示锆石内部结构 较为复杂(图 2(e),(f)),应为不同时期不同类型的捕 虏锆石.

4079 Ma 锆石(图 2(e)锆石 24、图 3(a))实体显微 镜下观察为暗棕色,透明度较差,呈浑圆状,可能由 于碎样原因,晶体不完整. CL 图像(图 3(a1))显示其具 有清楚的内核及外环结构,内核颜色为暗灰色,结晶 环带规则、细而密集,为较典型的岩浆锆石,Th/U 值 较高,为 0.49(表 1),也显示岩浆结晶锆石特征,应是 研究岩浆形成时深部信息得天独厚的对象;外环呈 灰白色,发育疏而宽的不规则条带,为后期增生边缘, 应是研究后期地壳演化信息的重点部分.透射光图 像(图 3(a2))及反射光图像(图 3(a3))显示锆石表面较 为平滑、未见裂隙发育,内部也未见包裹体.该锆石 与成岩锆石特征明显不同,应为捕虏锆石.

3233 Ma 锆石(图 2(e)锆石 B2,图 3(b))也可能是 碎样原因,仅部分残留,环带结构不明显,成因尚不 清楚.透射光图像(图 3(b2))及反射光图像(图 3(b3)) 同样显示锆石表面较为平滑、不发育裂隙,内部也未 见包裹体.

2.4 U-Pb 同位素测年结果

采用Glitter(ver4.0, Macquarie University)程序对 锆石的同位素比值及元素含量进行计算,并按照 Andersen Tom的方法^[34],用LAM-ICP-MS Common Lead Correction (ver3.15)对其进行普通铅校正,有效 测试点结果列于表 1,年龄计算及谐和图采用 Isoplot(ver3.0)完成^[35].

由表1可以看出, 锆石有效测试点共36个, 其中, 成岩锆石21个(测点1,2,3,4,5,6,7,10,11,12,17, 29,30,31,33,34,35,36,38,39,40), 捕虏锆石15个

图 2 草滩沟群中基性火山岩锆石 CL 图像

锆石上的圆圈为同位素测年激光剥蚀的示意范围, 暗色圆形坑状黑斑为激光剥蚀后残留的剥蚀坑, 相应的编号为测点号, 其他数字为 U-Pb 年龄 及误差, 年轻锆石标注的是 ²⁰⁶Pb/²³⁸U 年龄((a)~(d)), 捕虏锆石标注的是 ²⁰⁷Pb/²⁰⁶Pb 年龄((e)和(f)), 图中锆石比例尺均相同

图 3 4079 和 3233 Ma 锆石结构 (a) 4079 Ma 锆石, a1-CL 图像; a2-透射光图像; a3-反射光图像; (b) 3233 Ma 锆石, b1-CL 图像; b2-透射光图像; b3-反射光图像; 图中圆形 坑状黑斑为激光剥蚀坑

(其余测点, 其中, 编号含 B 的为后来补测捕虏锆石 样点).

成岩锆石 ²⁰⁶Pb 含量在 32.68~168.3 μ g·g⁻¹之间 变化, ²⁰⁷Pb 含量<11 μ g·g⁻¹. 所有测试点谐和性均较 好, 样点分布在谐和线上或两侧(图 4(b)), 除个别测 点不谐和度>5 外(3 个测点), 其余测点均<5(表 1). ²⁰⁶Pb/²³⁸U 值变化范围很小, 在 0.072~0.074 之间, 给 出的 ²⁰⁶Pb/²³⁸U 年龄值在误差范围内较为一致, 在 (451±4)至(463±4) Ma 之间变化, 加权平均年龄为 (456.4±1.8) Ma (MSWD=0.6) (图 4(b)). 对年轻的锆 石而言, 由于 ²⁰⁷Pb 含量较小, ²⁰⁷Pb 的分析误差对年 龄值影响较大, 而 ²⁰⁶Pb/²³⁸U 年龄较为稳定, 因此, ²⁰⁶Pb/²³⁸U 年龄值((456.4±1.8) Ma)可代表中基性火

表1 北秦岭西段草滩沟群中基性火山岩单颗粒锆石 U-Pb 同位素测定结果 ^{a)}

	同位素比值								同位素年龄/Ma									同位素含量/µg·g ⁻¹						206	
样点编号	²⁰⁷ Pb/ ²⁰⁶ Pb		²⁰⁷ Pb/ ²³⁵ U		$^{206}{Pb}/^{238}U$		208Pb/232Th		²⁰⁷ Pb/ ²⁰⁶ Pb		$^{207}{Pb}/^{235}{U}$		206Pb/238U		²⁰⁸ Pb/ ²	²³² Th	204ph	²⁰⁶ Db	207 Db	208ph	²³² Tb	238 T T	Th/U	²⁰⁰ Pb / ²⁰⁴ Pb	不谐和度
	比值	1σ	比值	1σ	比值	1σ	比值	1σ	年龄	1σ	年龄	1σ	年龄	1σ	年龄	1σ	- P0	PO	PD	PO	In	U		, 10	
C1TW.01	0.056	0.002	0.56	0.02	0.073	0.001	0.024	0.000	432	61	452	13	456	5	474	8	2.37	99.20	6.24	13.59	360.02	362.24	0.99	41.86	-0.88
C1TW.02	0.057	0.002	0.57	0.01	0.073	0.001	0.022	0.000	473	41	459	10	456	4	447	6	<2.75	75.38	4.62	10.58	270.1	253.25	1.07	>27.41	0.66
C1TW.03	0.057	0.002	0.58	0.02	0.074	0.001	0.023	0.000	478	68	463	15	460	5	451	9	<3.06	43.44	2.67	4.63	115.75	146.88	0.79	>14.20	0.65
C1TW.04	0.055	0.002	0.56	0.02	0.074	0.001	0.023	0.000	402	53	451	12	460	5	452	7	<3.19	44.49	2.69	5.03	129.02	148.85	0.87	>13.95	-1.96
C1TW.05	0.054	0.002	0.54	0.01	0.073	0.001	0.022	0.000	356	44	440	10	456	4	447	7	<2.92	109.30	6.65	9.46	259.16	382.12	0.68	>37.42	-3.51
C1TW.06	0.056	0.001	0.58	0.01	0.074	0.001	0.023	0.000	471	32	463	8	461	4	458	5	<3.33	109.60	6.8	16.78	408.76	367.37	1.11	>32.91	0.43
C1TW.07	0.056	0.002	0.57	0.02	0.074	0.001	0.023	0.000	435	47	458	11	463	4	450	7	<3.26	67.23	4.12	6.14	153.64	221.95	0.69	>20.62	-1.08
C1TW.10	0.056	0.002	0.57	0.01	0.074	0.001	0.023	0.000	452	41	458	9	460	4	458	6	<3.25	96.94	5.93	12.88	325.77	328.3	0.99	>29.83	-0.43
C1TW.11	0.056	0.001	0.58	0.01	0.074	0.001	0.023	0.000	465	29	461	7	460	4	468	4	<2.92	109.30	6.65	9.46	259.16	382.12	0.68	>37.42	0.22
C1TW.12	0.056	0.001	0.57	0.01	0.073	0.001	0.023	0.000	460	25	456	6	455	3	452	4	<3.30	168.30	10.46	30.04	745.79	568.05	1.31	>51.01	0.22
C1TW.13	0.190	0.002	13.72	0.13	0.525	0.004	0.141	0.002	2739	7	2731	9	2719	17	2672	30	<3.36	233.20	48.82	11.05	40.84	102.8	0.40	>69.40	0.44
C1TW.17	0.054	0.002	0.54	0.01	0.073	0.001	0.022	0.000	361	43	438	9	453	4	444	6	<3.71	70.37	4.33	7.06	169.08	230.74	0.73	>18.97	-3.31
C1TW.21	0.072	0.001	1.65	0.02	0.166	0.001	0.052	0.001	989	17	990	9	990	7	1027	19	<3.75	268.20	21.27	5.29	54.23	362.07	0.15	>71.51	0.00
C1TW.23	0.089	0.001	2.97	0.03	0.241	0.002	0.070	0.001	1414	9	1401	7	1392	9	1369	16	<2.99	720.80	71.91	14.91	115.2	726.85	0.16	>241.08	0.65
C1TW.24	0.448	0.005	52.16	0.37	0.844	0.006	0.188	0.001	4079	5	4034	7	3944	21	3488	25	<4.47	1207	599.5	60.47	166.74	337.07	0.49	>269.92	2.28
C1TW.25	0.079	0.001	2.18	0.02	0.200	0.001	0.059	0.001	1177	12	1175	8	1173	8	1157	16	<3.29	336.70	29.78	7.46	65.4	396.03	0.17	>102.33	0.17
C1TW.26	0.078	0.001	2.16	0.03	0.201	0.002	0.058	0.000	1146	14	1168	9	1179	8	1135	9	<3.32	291.40	25.19	45.39	411.96	344.83	1.19	>87.77	-0.93
C1TW.29	0.060	0.003	0.60	0.03	0.073	0.001	0.022	0.001	605	82	479	19	453	6	441	11	<3.51	32.68	2.11	3.56	87.11	113.74	0.77	>9.31	5.74
C1TW.30	0.055	0.001	0.55	0.01	0.073	0.001	0.022	0.000	402	35	447	8	455	4	444	5	<3.54	111.60	6.93	12.24	288.97	370.19	0.78	>31.53	-1.76
C1TW.31	0.054	0.001	0.55	0.01	0.074	0.001	0.022	0.000	389	33	446	8	458	4	441	5	<3.32	174.00	10.63	22.08	525.33	585.99	0.90	>52.42	-2.62
C1TW.33	0.057	0.001	0.57	0.01	0.073	0.001	0.022	0.000	482	32	457	8	452	4	447	5	<3.74	123.70	8.12	13.76	323.92	408.44	0.79	>33.07	1.11
C1TW.34	0.061	0.003	0.62	0.02	0.074	0.001	0.026	0.001	638	65	489	16	458	5	524	12	<5.19	65.38	4.97	6.3	101.67	190.91	0.53	>12.60	6.77
C1TW.35	0.056	0.001	0.57	0.01	0.073	0.001	0.022	0.000	465	34	456	8	454	4	445	5	<4.96	120.60	7.53	13.24	306.62	395.74	0.77	>24.31	0.44
C1TW.36	0.056	0.002	0.56	0.02	0.072	0.001	0.021	0.000	461	46	452	10	451	4	426	5	<4.21	117.30	7.42	23.17	578.89	403.81	1.43	>27.86	0.22
C1TW.38	0.060	0.002	0.60	0.02	0.073	0.001	0.023	0.000	591	56	478	13	455	5	462	8	<4.66	46.65	3.33	5.2	108.42	150.01	0.72	>10.01	5.05
C1TW.39	0.057	0.002	0.57	0.02	0.073	0.001	0.023	0.000	487	54	461	12	455	5	453	8	<4.74	72.30	4.44	7.85	182.37	244.6	0.75	>15.25	1.32
C1TW.40	0.054	0.002	0.55	0.01	0.073	0.001	0.023	0.000	387	43	444	10	455	4	462	6	<4.66	84.97	5.24	9.18	203.89	283.6	0.72	>18.23	-2.42
C1TW.B01	0.109	0.001	4.32	0.03	0.289	0.002	0.085	0.001	1776	6	1698	6	1635	10	1654	18	5.77	1258	150.6	14.06	83.68	1022.2	0.08	218.08	3.85
C1TW.B02	0.258	0.0042	22.34	0.26	0.629	0.006	0.167	0.001	3233	24	3198	12	3144	22	3129	25	5.04	162.80	46.77	14.03	39.9	60.45	0.66	32.30	1.72
C1TW.B03	0.195	0.002	13.72	0.11	0.509	0.004	0.140	0.001	2788	6	2731	8	2654	15	2645	22	4.75	1112	238.8	52.17	190.1	512.8	0.37	234.10	2.90
C1TW.B06	0.147	0.002	8.23	0.08	0.408	0.003	0.114	0.001	2305	8	2257	9	2204	14	2186	21	2.38	405	64.85	22.6	101.56	234.09	0.43	170.15	2.40
C1TW.B09	0.075	0.002	1.85	0.04	0.179	0.001	0.054	0.000	1061	45	1063	13	1064	8	1064	7	3.14	180.40	15.81	13.64	117.9	235.71	0.50	57.46	-0.09
C1TW.B10	0.187	0.002	12.44	0.11	0.483	0.003	0.133	0.001	2714	19	2638	9	2541	15	2517	17	3.21	1001	204.5	58.96	223.31	488.75	0.46	311.80	3.82
C1TW.B11	0.084	0.002	2.61	0.06	0.225	0.002	0.067	0.000	1301	48	1305	17	1307	10	1307	9	2.67	240.50	24.12	33.75	243.42	250.65	0.97	90.07	-0.15
C1TW.B13	0.070	0.001	1.49	0.03	0.156	0.001	0.047	0.000	914	40	928	11	934	6	935	6	3.82	279.60	22.22	17.02	172.27	423.35	0.41	73.20	-0.64
C1TW.B14	0.078	0.001	1.93	0.02	0.180	0.001	0.055	0.001	1141	13	1093	8	1069	7	1074	13	2.1	391.90	32.85	13.83	132.51	515.66	0.26	186.61	2.25

a) LA-ICP-MS U-Pb 同位素含量及年龄测试在西北大学大陆动力学国家重点实验室完成,使用 Andersen 等的软件进行了普通铅校正,不谐和度=(²⁰⁷Pb/²³⁵U-/²⁰⁶Pb/²³⁸U)/(²⁰⁶Pb/²³⁸U)×100

图 4 草滩沟群中基性火山岩锆石 U-Pb 年龄谐和图

山岩的成岩年龄,即该火山岩的形成时代为奥陶纪.

捕虏锆石所测年龄均>900 Ma,年龄值分布在 914~4079 Ma之间,变化范围很大,但各锆石具有较 谐和的年龄,多分布在谐和线上或附近(图 4(a)),不 谐和度均<5,其中,4079 Ma 锆石的不谐和度仅为 2.28(表 1),显示年龄数据极好的谐和性及可靠性.

测点 24 位于锆石内核的外边缘与外部增生环带的接合部位,具有较高的 ²⁰⁶Pb 值(1206.55 μ g·g⁻¹),较低的 ²⁰⁴Pb值(<4.47 μ g·g⁻¹), ²⁰⁶Pb/²⁰⁴Pb值达 269.92,表明该锆石 U-Pb 同位素体系封闭较好,受后期构造改造影响很小,测年数据可靠.同时获得的 ²⁰⁷Pb/²⁰⁶Pb, ²⁰⁷Pb/²³⁵U, ²⁰⁶Pb/²³⁸U 3 组年龄分别为 4079, 4034 和 3944 Ma,在误差范围内基本一致.考虑到同位素 ²⁰⁷Pb 和 ²⁰⁶Pb 在相同的初始条件和共同的地质构造环境中具有同步变化的特征,二者保持相对稳定的比值,对于古老锆石而言, ²⁰⁷Pb/²⁰⁶Pb 的年龄值更能代表锆石的真实年龄.因此, ²⁰⁷Pb/²⁰⁶Pb 的年龄值(4079 Ma)应能代表锆石的形成年龄.

对所测锆石年龄进行统计分析(<900 Ma 的年龄 采用 ²⁰⁶Pb/²³⁸U 值,其余的用 ²⁰⁷Pb/²⁰⁶Pb 值),获得的 36个点可明显分为7个时段(图 5),即:(1)4.0~4.1 Ga (*n*=1),(2)3.2~3.3 Ga (*n*=1),(3)2.7~2.8 Ga (*n*=3),(4) 2.1~2.3 Ga (*n*=1),(5)1.7~1.8 Ga (*n*=1),(6)0.9~1.5 Ga (*n*=8),(7)0.4~0.5 Ga (*n*=21),可能分别代表了北秦岭 造山带不同地质时期的构造-岩浆事件的时代信息. 其中,相对集中的时段为0.9~1.4和0.4~0.5 Ga,分别 与北秦岭地区表现强烈的晋宁运动和加里东运动的 时限吻合.

3 讨论

目前,世界上已报道的>4.05 Ga的地质记录均为 石英岩中的碎屑锆石^[4-6],而且这些锆石均分布于南 方的冈瓦纳大陆上.

华北克拉通是由东、西两大陆块沿中部碰撞带在 1.8 Ga前后拼合而成(图 1)^[36-41]. 华北已知的最老的 年龄记录来自于华北东部地区, Liu等人^[42,43]在冀东 迁西曹庄群的铬云母石英岩中首次报道了 3.8 Ga的 碎屑锆石, Song等人^[44]在鞍山花岗岩和长英质片麻 岩中获得了 3.8 Ga的岩石形成年龄. Wan等人^[45]在鞍 山发现了 3.8 Ga的岩石形成年龄. Wan等人^[45]在鞍 山发现了 3.8 Ga的石英闪长岩. 锆石的原位Lu-Hf同 位素研究发现^[40],它们的Hf同位素组成与球粒陨石 相同,模式年龄也在 3.8 Ga前后,证明他们来自于未 经历过显著壳幔分异的地幔源区. 据此,前人^[40,41] 认为华北地区可能不存在更老的地壳岩石记录. 华南克拉通由扬子陆块和华夏陆块沿早新元古 代江南造山带拼合而成^[46]. Zhang等人^[8]在扬子陆块 三峡大坝的莲沱组砂岩中发现了一颗U-Pb年龄达 3.8 Ga的碎屑锆石,该锆石具有负的*E*_{Hf}(*t*)值(-8)^[8], Hf 模式年龄为 3.96~4.00 Ga;于津海等人^[7]报道的华夏 陆块潭溪片麻岩中锆石年龄为 3.8 Ga, Hf同位素的模 式年龄达 4.07 Ga. 这些研究证明,扬子陆块和华夏 陆块都存在冥古宙-太古宙地壳残片,地壳生长则早 达冥古宙晚期^[46]. Zhang等人^[47]认为扬子陆块早期 在形成和演化上与华北克拉通具有可比性.

秦岭造山带是联结我国华北克拉通与华南克拉 通的纽带、北秦岭造山带是秦岭造山带的重要组成 部分. 由于不同的学者研究的角度与思路各不相同、 以致于对北秦岭造山带的属性认识分歧很大、北秦 岭的构造归属问题也就成为地学界长期争论的科学 问题.通常的观点是以加里东期的商丹缝合带为界、 将秦岭造山带分为南、北两大构造单元 [10~27], 认为 北部的北秦岭造山带是早古生代华北板块的南侧活 动陆缘,包括本次采样的草滩沟群在内的北秦岭早 古生代火山岩-碎屑岩是靠华北板块一侧的弧后盆地 建造、南部的中南秦岭造山带为华南板块北侧的被 动陆缘[10~12,19~21]. 地球化学研究也证明, 北秦岭中元 古-新元古代宽坪岩群碎屑岩的沉积物源既来自南边 北秦岭古元古代秦岭岩群、也来自北边华北克拉通 太古宙太华杂岩, 具双重性 [48~50], 表明在宽坪岩群 碎屑岩沉积之前、北秦岭基底就已与华北克拉通相 连接或极为接近 [10]; 部分研究者 [51~53] 从Pb同位素填 图等研究发现、北秦岭基底岩层放射性Pb同位素比 值普遍较高,类似扬子和南方大陆同位素地球化学 特征,而与华北克拉通有显著差异,认为北秦岭原不 属华北, 而属扬子; 也有人 [22,23,54] 认为现今的北秦岭 至少在新元古代-早古生代是一个由北侧的北秦岭洋 盆和南侧的商丹洋盆围限的独立微陆块、向西与中 祁连陆块相对应,可能既不属华北,也与扬子相分离, 早古生代末的加里东造山运动使其北与华北克拉通, 南与扬子陆块碰撞拼合,形成一个不同时期不同属 性的地质体不同程度混杂的复杂构造带.

北秦岭造山带早前寒武纪变质基底由古元古代 秦岭岩群组成,张宗清等人^[27]进行大量的同位素测 年工作后认为秦岭岩群的年龄下限不超过(2226 ± 173) Ma. 本文报道了我们在北秦岭西段秦岭岩群北 侧的奥陶纪草滩沟群中基性火山岩中获得的(4079 ± 5) Ma年龄, 是迄今为止除西藏普兰外我国发现的最 早的锆石年龄, 也是劳亚大陆上最老的年龄记录, 表 明北秦岭可能存在冥古宙地壳物质. 所获锆石不同 于世界上其他地区报道的碎屑锆石, 它们是较年轻 火山岩中的捕虏锆石, 与同时获得的 3233 Ma锆石(1 粒)和>2700 Ma的锆石(3 粒)一起, 构成了研究北秦岭 造山带地壳早期(冥古宙-太古宙)形成与演化的珍贵 的物质基础, 具有重要的科学意义, 也为今后寻找固 体地球初始阶段的地壳岩石提供了新的依据.

值得一提的是, (4079 ± 5) Ma 的测点位于该锆石 岩浆成因内核的外部边缘与外部增生环带的接合部 位,预示其内核形成的时代可能还要早些.对本文获 得的冥古宙-太古宙锆石进行 Hf, Sr, Nd 和 O 同位素 研究,结合华北和华南克拉通近几年来在冥-太古宙 地质研究方面取得的突出成果,探讨秦岭造山带基 底与华北和华南克拉通之间的关系,进而研究古中 国大陆地壳的演化等,是今后值得进一步深入探究 的重要科学问题.

4 结论

()(4079±5) Ma 的年龄记录为北秦岭造山带 寻找>4 Ga 的地壳残片提供了依据.北秦岭是继西藏 普兰之后,中国第二个发现>4.0 Ga 锆石的地方,北 秦岭有可能存在更老的地壳物质.北秦岭地区寻找 早期地壳物质的重点对象可能有两类:一类是前寒 武纪变质岩系;另一类是后期火山岩及侵入岩中的 早期地壳残留体.

()研究结果显示,36个测点的年龄数据可划 分出7个时段,分别代表北秦岭造山带地壳演化过程 中不同时期的构造-岩浆事件的时代.其中,相对集 中的两个时段(0.9~1.5和0.4~0.5 Ga)分别与北秦岭地 区表现强烈的晋宁运动和加里东运动的时限吻合.

致谢 衷心感谢特邀编辑和两位审稿人对论文提出的建设 性修改意见. 在论文修改过程中得到周鼎武教授的有益帮 助, 在此亦表示谢意.

参考文献

- 1 Gradstein F M, Ogg J G, Smith A G, et al. A new Geologic Time Scale, with special reference to Precambrian and Neogene. Episodes, 2004, 27(2): 83—100
- 2 陆松年,王惠初,李怀坤. 解读国际地层委员会 2004 年前寒武 纪地层表及 2004—2008 年参考方案. 地层学杂志, 2005, 25(2): 180—187
- 3 Sano Y, Terada K, Hidaka H, et al. Palaeoproterozoic thermal

events recorded in the ~4.0 Ga Acasta gneiss, Canada: Evidence from SHRIMP U-Pb dating of apatite and zircon. Geochim Cosmochim Acta, 1999, 63(6): 899–905 [DOI]

- 4 Compston W, Pidgeon R T. Jack hills, evidence of more very old detrital zircons in Western Australia. Nature, 1986, 321(19): 766— 770[DOI]
- 5 Wilde S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Ga ago. Nature, 2001, 409: 175–178[DOI]
- 6 多吉, 温春齐, 郭建慈, 等. 西藏 4.1 Ga 碎屑锆石年龄的发现. 科学通报, 2007, 52(1): 19—22
- 7 于津海, O'Reilly Y S, 王丽娟, 等. 华夏陆块古老物质的发现和 前寒武纪地壳的形成. 科学通报, 2007, 52(1): 11—18
- 8 Zhang S B, Zheng Y F, Wu Y B, et al. Zircon U-Pb age and Hf isotope evidence for 3.8 Ga crustal remmant and episodic reworking of Archean crust in South China. Earth Planet Sci Lett, 2006, 252: 56-71[DOI]
- 9 任纪舜,王作勋,陈炳蔚,等.从全球看中国大地构造——中国 及邻区大地构造图简要说明书.北京:地质出版社,1999
- 10 张国伟,张本仁,袁学诚,等.秦岭造山带与大陆动力学.北京: 科学出版社,2001
- 11 肖思云,张维吉,等.北秦岭变质地层.西安:西安交通大学出 版社,1988
- 12 陕西省地质矿产局,编.陕西省区域地质志.北京:地质出版社, 1989
- 13 夏林圻,夏祖春,等.秦岭、祁连山系海相火山岩.武汉:中国 地质大学出版社,1991
- 14 宋志高. 北秦岭丹凤群向西延入祁连造山带的地质意义. 中国 地质科学院院报, 1993(27-28): 15-26
- 15 张二朋,等.秦巴及邻区地质-构造特征概论.北京:地质出版 社,1993
- 16 张维吉,孟宪恂,胡建民,等.祁连-北秦岭造山带结合部位构 造特征与造山过程.西安:西北大学出版社,1994
- 17 张宏飞,赵志丹,骆庭川,等.从岩石 Sm-Nd 同位素模式年龄特
 征论北秦岭地壳增生和深部性质.岩石学报,1995,11(2):160—
 170
- 张宏飞,张本仁,赵志丹,等.东秦岭商丹构造带陆壳俯冲碰撞: 花岗质岩浆源区同位素示踪证据.中国科学 D 辑:地球科学, 1996,26:231—236
- 19 张国伟, 孟庆任, 于在平, 等. 秦岭造山带的造山过程及其动力学特征. 中国科学 D 辑: 地球科学, 1996, 26: 193—200
- 20 殷鸿福,张克信.中央造山带的演化及其特点.地球科学——中 国地质大学学报,1998,23(5):438—442
- 21 董云鹏,张国伟,朱炳全.北秦岭构造属性与元古代构造演化. 地球学报,2003,24(1): 3—10
- 22 冯益民,曹宣铎,张二朋,等.西秦岭造山带结构、造山过程及 动力学.西安:西安地图出版社,2002.1—263
- 23 冯益民,曹宣铎,张二朋,等.西秦岭造山带的演化、构造格局 和性质.西北地质,2003,36(1):1—10
- 24 任纪舜. 昆仑-秦岭造山系的几个问题. 西北地质, 2004, 37(1): 1 --5
- 25 陆松年, 李怀昆, 陈志宏, 等. 秦岭中-新元古代地质演化及对 Rodinia 超级大陆事件的响应. 北京: 地质出版社, 2003

- 26 张国伟, 郭安林, 姚安平. 中国大陆构造中的西秦岭-松潘大陆 构造结. 地学前缘, 2004, 11(3): 23—32
- 27 张宗清,张国伟,付国民,等.秦岭变质地层年龄及其构造意义.
 中国科学 D 辑:地球科学,1996,26(3):216—222
- 28 Horn I, Rudnick R L, Mc Donough W f. Precise elemental and isotope ratio determination by solution nebulization and laser ablation-ICP-MS: Application to U-Pb geochronology. Chem Geol, 2000, 167: 405-425[DOI]
- 29 Ballard J R, Palin J M, Williams I S, et al. Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit of northern Chile by ELA-ICP-MS and SHRIMP. Geology, 2001, 29: 383–386[DOI]
- 30 Kosler J, Fonneland H, Sylvester P, et al. U-Pb dating of detrital zircons for sediment province studies—a comparison of laser ablation ICPMS and SIMS techniques. Chem Geol, 2002, 182: 606 —618[DOI]
- 31 袁洪林,吴福元,高山,等.东北地区新生代侵入体的锆石激光 探针 U-Pb 年龄测定与稀土元素成分分析.科学通报,2003, 48(14):1511—1520
- 32 陈丹玲,刘良,孙勇,等.北秦岭松树沟高压基性麻粒岩锆石的 LA-ICP-MS U-Pb 定年及其地质意义.科学通报,2004,49(18): 1901—1908
- 33 王洪亮,何世平,陈隽璐,等.太白岩基巩坚沟变形侵入体 LA-ICP-MS 锆石 U-Pb 测年及大地构造意义——吕梁运动在北 秦岭造山带的表现初探.地质学报,2006,80(11):1660—1667
- 34 Andersen T. Correction of common lead in U-Pb analyses that do not report ²⁰⁴ Pb. Chem Geol, 2002, 192: 59–79[DOI]
- 35 Ludwig K R. Isoplot—A plotting and regression program for radiogenic-isotope data. US Geological Survey Open-File Report, 1991, 39: 91—445
- 36 Zhao G C, Wilde S A, Cawood P A. Thermal evolution of Archean basement rocks from the eastern part of the North China Craton and its bearing on tectonic setting. Int Geol Rev, 1998, 40: 706– 721
- 37 Zhao G C, Cawood P A, Wilde S A, et al. Metamorphism of basement rocks in the Central Zone of the North China Craton: Implications for Palaeoproterozoic tectonic evolution. Precambrian Res, 2000, 103: 55–88[DOI]
- 38 Zhao G C. Palaeoproterozoic assembly of the North China craton. Geol Mag, 2001, 138: 89—91[DOI]
- 39 Zhao G C, Sun M, Wilde S A, et al. Late Archean to Palaeoproterozoic evolution of the North China Craton: Key issues revisited. Precambrian Res, 2005, 136: 177–202[DOI]
- 40 吴福元,杨进辉,柳小明,等. 冀东 3.8 Ga 锆石 Hf 同位索特征
 与华北克拉通早期地壳时代.科学通报,2005,50(18):1996—2003
- 41 Wu F Y, Zhao G C, Wilde S A, et al. Nd isotopic constraints on crustal formation in the North China Craton. J Asian Earth Sci, 2005, 24: 523—545[DOI]
- 42 Liu D Y, Nutman A P, Compston W. Remnants of >3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology, 1992, 20:

339—342[DOI]

- 43 刘敦一, Nutman A P, Williams J S, 等. 中朝克拉通老于 38 亿年 的残余陆壳——离子探针质谱锆石微区 U-Pb 年代学证据. 地球 学报, 1994, (1-2): 4—13
- Song B, Nutman AP, Liu D Y, et al. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Res, 1996, 78: 79–94[DOI]
- 45 Wan Y S, Liu D Y, Song B, et al. Geochemical and Nd isotopic compositions of 3.8 Ga meta-quartz dioritic and trondhjemitic rocks from the Anshan area and their geological significance. 2005, JAES, 24(5): 563-575
- 46 郑永飞,张少兵.华南前寒武纪大陆地壳的形成和演化.科学通报,2007,52(1):1—10
- Zhang S B, Zheng Y F, Wu Y B, et al. Zircon isotope evidence for 3.5 Ga continental crust in the Yangtze craton of China. Precambrian Res, 2006, 146: 16—34[DOI]

- 48 高山, 张本仁, 谢千里, 等. 秦岭造山带元古宙陆内裂谷作用的 沉积地球化学证据. 中国科学 B 辑, 1990, 20: 1494—1496
- 49 张宗清,张旗.北秦岭晚元古代宽坪蛇绿岩的地球化学特征.岩 石学报,1995,11(增刊):165—177
- 50 欧阳建平, 张本仁. 北秦岭微古陆形成与演化的地球化学证据. 中国科学 D 辑: 地球科学, 1996, 26(增刊): 42--48
- 51 张本仁,张宏飞,赵志丹,等.东秦岭及邻区壳、幔地球化学分 区和演化及大地构造意义.中国科学 D 辑:地球科学,1996, 26(3):201—208
- 52 张本仁, 高山, 张宏飞, 等. 秦岭造山带地球化学. 北京: 科学 出版社, 2002. 1—187
- 53 朱炳泉. 壳幔地球化学不均一性与块体地球化学边界研究. 地 学前缘, 1998, 5(1-2): 72—82
- 54 孙勇, 张国伟, 杨司祥, 等. 北秦岭古生代二郎坪蛇绿岩片的组 成和地球化学. 中国科学 D 辑: 地球科学, 1996, 26: 49—55