Chinese Journal of Catalysis

文章编号: 0253-9837(2012)05-0870-08

DOI: 10.3724/SP.J.1088.2012.11010

Vol. 33 No. 5

研究论文: 870~877

超细 Fe-V-O 催化剂上甲苯液相氧化制苯甲醛

张贵泉,张 昕*,祁 敏,林 涛,龚 婷 西北大学化工学院,陕西西安 710069

摘要:分别采用共沉淀法,凝胶自燃烧法和水热法制备了 Fe-V-O 复合氧化物催化剂用于催化过氧化氢液相氧化甲苯制苯甲醛 反应中,并采用 N₂等温吸附-脱附法,粉末 X 射线衍射,红外光谱,扫描电子显微镜,能量弥散 X 射线光谱和 H₂程序升温还原 等方法对催化剂性质进行了表征.结果表明,制备方法显著影响催化剂的结构,比表面积,形貌,表面元素组成和还原性. Fe-V-O 催化剂颗粒的超细化调变了其比表面积和还原性,从而改善了催化剂上甲苯液相氧化制苯甲醛反应性能.其中水热法 制备的超细 Fe-V-O 催化剂具有最高的苯甲醛收率和较好的重复使用性能.这主要归因于该催化剂颗粒尺寸小,比表面积大,以及表面较多的活性钒氧物种和适宜的还原性.

关键词:铁;钒;复合氧化物;甲苯;液相氧化;苯甲醛

中图分类号: O643 文献标识码: A

收稿日期: 2011-11-26. 接受日期: 2012-01-19.

*通讯联系人. 电话: (029)88302853; 传真: (029)88303883; 电子信箱: zhangxinzhangcn@yahoo.com.cn

基金来源:新世纪优秀人才支持计划 (NCET-10-878);高等学校博士学科点专项科研基金 (20096101120018);教育部留学回国 人员科研启动基金 (2009-37);陕西省"13115"创新工程重大科技专项 (2009ZDKG-70);陕西省教育厅科技专项 (09JK793);西 北大学项目 (PR09005,10YSY08);西北大学固体表面物理化学国家重点实验室开放课题 (2009).

Superfine Fe-V-O Catalyst for Liquid-Phase Oxidation of Toluene to Benzaldehyde

ZHANG Guiquan, ZHANG Xin^{*}, QI Min, LIN Tao, GONG Ting

School of Chemical Engineering, Northwest University, Xi'an 710069, Shaanxi, China

Abstract: Iron-vanadium oxide catalyst (Fe-V-O) samples were prepared by co-precipitation, gel combustion, and hydrothermal method, respectively. The catalytic activity of the as-prepared catalyst in the liquid-phase oxidation of toluene by hydrogen peroxide was tested. In addition, the physicochemical properties of these samples were characterized by N_2 adsorption-desorption, powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, energy dispersive X-ray spectroscopy, and H_2 temperature-programmed reduction. The preparation method significantly affected the structure, specific surface area, morphology, surface V/Fe ratio and reducibility of the as-prepared catalyst samples. Fe-V-O sample prepared by hydrothermal method exhibited the highest benzaldehyde yield and better re-usability compared with other investigated samples, due to its smaller particle size, larger specific surface area, higher V/Fe surface ratio and the moderate reducibility.

Key words: iron; vanadium; composite oxide; toluene; liquid-phase oxidation; benzaldehyde

Received 26 November 2011. Accepted 19 January 2012.

*Corresponding author. Tel: +86-29-88302853; Fax: +86-29-88302883; E-mail: zhangxinzhangcn@yahoo.com.cn

This work was supported by the Program for New Century Excellent Talents in University (NCET-10-878), the Specialized Research Fund for the Doctoral Program of Higher Education (20096101120018), the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (2009-37), Shaanxi Province "13115" Innovation Program (2009ZDKG-70), Shaanxi Provincial Department of Education research Program (09JK793), Northwest University (PR200905, 10YSY08), and State Key Lab of Physical Chemistry for Solid Surface of Northwest University (2009). 苯甲醛是高附加值精细化工中间体, 广泛用于 医药, 香料, 农药, 染料和塑料添加剂行业. 过氧化 氢液相氧化甲苯制苯甲醛具有反应条件温和, 产品 纯度高, 环境污染轻等优点, 因而逐渐成为合成苯甲 醛的研究热点之一^[1]. 然而, 研制苯甲醛收率高和循 环使用性能好的催化剂仍是该研究领域的挑战.

目前,过渡金属氧化物催化剂,杂多酸及其负载 型催化剂,过渡金属配合物及其负载型催化剂,沸石 分子筛催化剂和离子液体催化剂等已用于甲苯液相 氧化制苯甲醛反应中^[1,2].其中 V 基催化剂的性能 较好. 例如,在适宜反应条件下, Mo-V/Al₂O₃催化剂 上苯甲醛最高收率为 13.2%^[3]. 另外, 以 0.1 g 的 17% V₂O₅/Al₂O₃ 为催化剂, 27.5 mmol 甲苯, 202.88 mmol 过氧化氢, 10 ml 乙腈于 50 ℃ 反应 3 h, 甲苯 转化率最高达 30%, 苯甲醛选择性为 79.0%^[4]. Wang 等^[5]采用乙酸钒为催化剂, 过氧化氢为氧化剂, 冰乙酸为溶剂进行甲苯氧化反应, 当乙酸钒用量为 0.1 mmol 时, 甲苯转化率最高 (19.8%); 至 0.03 mmol 时苯甲醛选择性最高 (72.8%); 90 °C 时甲苯 转化率最高 (15.4%), 苯甲醛选择性也达最高 (63%). V 基催化剂的活性与其钒氧物种的性质密切相关, 表面无定形的钒氧物种被认为有利于苯甲醛的生 成,而 V₂O₅ 虽然可以促进甲苯转化,但降低了苯甲 醛的选择性^[2~4].

研究发现, 过渡金属的掺杂不但可调变钒氧化物活性氧物种的传递能力, 还可活化转化芳烃分子. Ge 等^[6]发现, V/Zr 比例的变化可调变 V-Zr-O 复合氧化物的还原性, 从而直接影响该催化剂催化氧化甲苯为苯甲醛的活性. Zhang 等^[7]研究发现, Fe-SBA-15 具有较高的液相选择氧化苯乙烯的催化性能, Fe 的引入方法显著影响催化剂的性能. Sharghi 等^[8]报道, 活化的 α-Fe₂O₃ 可以在较低的反应温 度下催化转化苯.

本文分别采用共沉淀法,凝胶自燃烧法和水热 法制备新型 Fe-V-O 复合氧化物催化剂,用于过氧化 氢液相氧化甲苯制苯甲醛反应中,并运用 N₂ 吸附-脱附, X 射线粉末衍射 (XRD), 红外光谱 (FT-IR), 扫 描电子显微镜 (SEM), 能量弥散 X 射线光谱 (EDS) 和 H₂程序升温还原 (H₂-TPR) 等方法表征催化剂的 结构和性质.探讨制备方法对催化性质和性能的影 响,关联催化剂构效关系.

1 实验部分

1.1 催化剂的制备

共沉淀法. 按照 Fe/V 摩尔比 1:1 分别称量 Fe(NO₃)₃·9H₂O (A.R., 天津试剂厂)和 NH₄VO₃ (A.R., 上海三浦化工厂)并溶于蒸馏水制成溶液 A. 在 50 °C 搅拌条件下, 向溶液 A 中缓慢滴加 2.5% (体积分数)的 NH₃·H₂O (成都联合化工)进行沉淀 直至完全;继续搅拌 2 h 后,将上述固液混合物在室 温静置陈化 6 h, 经抽滤,洗涤后得到固体沉淀物. 将所得沉淀物在 110 °C 干燥 5 h, 800 °C 焙烧 6 h 后, 即得催化剂, 记作 FeV-CP.

凝胶自燃烧法. 在 80 °C 快速搅拌的条件下,将 适量柠檬酸 (C₆H₈O₇·H₂O, A.R., 天津试剂厂) 和聚 乙二醇-400 (PEG-400, C.P., 国药集团) 加入到上述 溶液 A 中,并继续搅拌直至形成凝胶.此时体系中 V:柠檬酸:PEG-400 = 1:4:0.05 (摩尔比). 然后,将凝 胶物在 200 °C 加热使其自燃. 待前驱物燃烧完毕 后,将所得固体在 800 °C 焙烧 6 h 后,制得催化剂, 记作 FeV-GC.

水热法. 用 0.5 mol/L 硝酸将上述溶液 A 的 pH 值调至 2; 再加入适量乙二醇 (HOCH₂CH₂OH, A.R., 天津试剂厂), 并在 60 ℃ 搅拌 1 h. 此时溶液中 V:乙 二醇 = 1:1 (摩尔比). 然后, 将上述混合液倒入 100 ml 内衬聚四氟乙烯的高压反应釜中, 在 200 ℃ 晶化 24 h. 最后, 将经抽滤、洗涤后得到固体产物在 110 ℃ 干燥 4 h, 600 ℃ 焙烧 6 h, 所得催化剂记作 FeV-HS.

Fe₂O₃采用将 Fe(NO₃)₃·9H₂O 粉末在空气中于 550 °C 焙烧 5 h 后制得. V₂O₅ 是将 NH₄VO₃ 在 600 °C 焙烧 8 h 后制得.

1.2 催化剂的表征

样品的 N₂吸附-脱附等温线在 NOVA 4000e 型 化学和物理吸附仪 (美国康塔公司)上测定.采用 BET 法计算样品的比表面积, *t*-plot 法分析吸附线计 算 催 化 剂 的 孔 体 积. 样 品 的 XRD 谱 测 试 在 D/max-3C 型 X 射线衍射仪 (日本理学公司)上进 行. Cu K_{α} 靶辐射,管电压 35 kV,管电流 40 mA. 样 品的 FT-IR 谱采用 NICOLET 6700 型红外光谱仪 (美国 Nicolet 公司)测试. KBr 压片,仪器分辨率 4 cm⁻¹. 样 品 的 形 貌 和 表 面 元 素 组 成 分 析 在 JSM-6360LV-EDS 型 SEM (日本 JEOL 公司) 上进 行. 样品的 H₂-TPR 表征在自建装置上进行. 首先 将 150 mg 样品在 N₂ (40 ml/min) 气氛下以 10 °C /min 升至 200 °C 预处理 1 h, 降至室温后, 切换为 5% N₂-95% H₂ 还原气 (40 ml/min), 以 10 °C/min 的 速率进行程序升温. 采用北分瑞利 GC-3420 型色谱 仪, TCD 检测 H₂ 的信号.

1.3 催化剂的评价

过氧化氢液相氧化甲苯反应在装有温控仪,回 流冷凝管和电磁搅拌装置的三颈烧瓶中进行.烧瓶 置于精确控温的恒温水浴槽中.首先,向烧瓶中加 入一定量的乙酸、甲苯和催化剂,边搅拌边缓慢升温 至反应温度,继续搅拌 5 min 后,缓慢滴加过氧化氢, 反应开始计时.反应 3 h 后,混合液在冰水混合物中 迅速冷却,然后离心分离固体催化剂和液体混合物.

反应物和产物用气相色谱仪(北分瑞利 GC-3420)进行分析. 色谱条件为: KB-1 毛细管柱 (30 m×0.25 mm×0.25 µm), FID 检测器, 进样口温 度 250 °C, 检测器温度 280 °C. 色谱柱采用程序升 温, 即在 60 °C 保持 5 min 后升至 200 °C, 升温速率 10 °C/min. 采用内标法分析反应物及产物的含量, 内标物为邻硝基甲苯 (C₇H₇NO₂, A.R., 天津光复化 工厂).

2 结果与讨论

2.1 催化剂的性质

2.1.1 织构性质

表 1 为 Fe-V-O 催化剂的织构性质和结构.可 以看出, FeV-CP 和 FeV-GC 的比表面积为 1 m²/g, FeV-HS 的为 12.7 m²/g, 均小于 α-Fe₂O₃. 另外, FeV-CP, FeV-GC 和 FeV-HS 的孔体积均为 0.026

쿢	Ē1	Fe-V-O催化剂的织构性质和结构
Tabla 1	Tov	tural properties and structure of Fe V O catalys

Table 1	restatut properties and structure of re v o eduryst						
Sample	$A_{\rm BET}/({ m m}^2/{ m g})$	$V_{\text{pore}}/$ (cm ³ /g)	Phase composition and relative content (%)				
			FeVO ₄	$\mathrm{Fe_2V_4O_{13}}$	α-Fe ₂ O ₃		
FeV-CP	1.0	0.026	61	29	10		
FeV-GC	1.0	0.026	61	24	15		
FeV-HS	12.7	0.026	51	30	19		
α -Fe ₂ O ₃	32.0	0.007	—	—	100		
V_2O_5	3.0	0.020	_		_		

FeV—Fe-V-O; CP—Co-precipitation; GC—gel combustion; HS—hydrothermal method.

cm³/g,大于 α-Fe₂O₃的而与 V₂O₅的相近. 由此可见, FeV-CP, FeV-GC 和 FeV-HS 可能是非孔结构固体. 其中采用水热法制备的 Fe-V-O 催化剂的比表面积 最大.

2.1.2 晶相结构

图 1 为不同方法制备的 Fe-V-O 催化剂的 XRD 谱.可以看出, FeV-CP, FeV-GC 和 FeV-HS 均在 2 θ = 16.4°, 17.3°, 20.0°, 24.9°, 27.0°, 27.6°, 31.2°和 42.0° 处出现衍射峰, 对应于 FeVO₄^[5-7]; 还在 2 θ = 12.4°, 18.8°, 22.6°, 26.7°, 29.0°, 31.8°处出现 Fe₂V₄O₁₃ 的衍 射峰^[9-11]; 同时均出现微弱而宽化的 α -Fe₂O₃ 的衍 射峰 (2 θ = 33.10°, 35.58°).可见各 Fe-V-O 催化剂中 Fe 与 V 发生相互作用生成复合金属氧化物 FeVO₄ 和 Fe₂V₄O₁₃ 物相.

图 1 不同 Fe-V-O 催化剂样品的 XRD 谱

Fig. 1. XRD patterns of different Fe-V-O catalyst samples. (1) α -Fe₂O₃; (2) FeV-GC; (3) FeV-CP; (4) FeV-HS.

分别根据 FeVO₄, α-Fe₂O₃ 和 Fe₂V₄O₁₃ 最强衍 射峰强度计算出它们的相对含量,结果列于表 1. 可 以看出, FeV-CP 和 FeV-GC 中 FeVO₄ 含量相等, 而 FeV-HS 中较低. 对于 Fe₂V₄O₁₃ 相对含量, FeV-HS > FeV-CP > FeV-GC. 另外, FeV-HS 中 Fe₂O₃ 的相对 含量最高.这进一步表明制备方法影响 Fe-V-O 催 化剂的相组成.

2.1.3 FT-IR 结果

图 2 为不同 Fe-V-O 催化剂样品的 FT-IR 谱; 各峰归属如表 2 所列.可以看出,各催化剂上均检 测到 FeVO₄和 α-Fe₂O₃的特征峰;在 FeV-HS 中检 测到可归属于 Fe₂V₄O₁₃的红外特征峰^[11~16].在 FeV-CP 和 FeV-GC 中没有检测到可归属为

Fig. 2. FT-IR spectra of different Fe-V-O catalyst samples. (1) FeV-HS; (2) FeV-CP; (3) FeV-GC.

Fe₂V₄O₁₃的特征峰. 这可能是由于 Fe₂V₄O₁₃含量较 少的缘故. 与 FeV-GC 和 FeV-CP 相比, FeV-HS 上 归属于 FeVO₄物相中 Fe-O-V 振动峰 (681, 710, 744 cm⁻¹) 发生蓝移, 表明 FeV-HS 中铁氧物种与钒氧物 种的相互作用较强.

2.1.4 形貌及表面组成

图 3 为不同 Fe-V-O 催化剂样品的 SEM 照片和

表 2	Fe-V-O 催化剂上红外光谱峰的可能归属
-----	-----------------------

Table 2Possible assignment of IR bands obtained from Fe-V-Ocatalyst

Phase	Vibration	IR	D (
	assignment	FeV-HS	FeV-CP	FeV-GC	Ref.
FeVO ₄	V–O–V	414	414	414	[10–14]
	deformation				
	Fe-O stretching	441	441	441	[10–14]
	V-O deformation	515	511	511	[10-14]
	V–O–Fe bridging stretching	681	667	667	[10–14]
	Ũ	710	694	694	[10–14]
		744	736	736	[10–14]
	V–O asymmetric stretching	775	767	767	[10–14]
	V–O–V symmetric stretching	837	837	837	[10–14]
	V–O terminal stretching	890	890	890	[10–14]
	V=O stretching	915	915	915	[10–14]
		958	958	958	[10–14]
	VO ₄ bending	992	992	992	[10-14]
$Fe_2V_4O_{13}$	FeO ₆ stretching	478	—	—	[13–15]
	V–O–V symmetric stretching	624	—	—	[13–15]
	VO ₄ stretching	794	—	—	[13–15]
	O–V–O symmetric stretching	855	_	—	[13–15]

EDS 谱.可以看出, FeV-CP 和 FeV-GC 样品均是形状不规则的块状颗粒, 且尺寸较大; 而 FeV-HS 颗粒形状较规则, 尺寸均匀且较小 (约为 100 nm), 没有明显团聚.可见采用水热法可以制成尺寸均匀的超细 Fe-V-O 催化剂.

还可以看出, 各 Fe-V-O 催化剂样品表面主要含 有 Fe, V 和 O 元素, 但其组成不同. 其中 FeV-CP 和 FeV-GC 表面的 V/Fe 比约为 1, 而 FeV-HS 催化剂表 面的约为 2.1. 可见水热法合成的 Fe-V-O 催化剂表 面具有较多的钒氧物种.

2.1.5 还原性能

图 4 为不同 Fe-V-O 催化剂样品的 H₂-TPR 谱. 由图可见, α -Fe₂O₃ 在 417 和 662 °C 附近出现可归 属为 Fe₂O₃→FeO→Fe 的还原峰; V₂O₅ 在 701, 739 和 774 °C 附近出现对应于 V₂O₅→V₂O₄→V₆O₁₁→ V₂O₃ 的还原峰^[14]. FeV-CP, FeV-HS 和 FeV-GC 均在 550~600, 610~710 和 730~780 °C 处出现 3 个还原 峰. 它们的 TPR 过程比较复杂, 铁氧物种和钒氧物 种的还原过程叠加重合. 其中低温峰 (550~600 °C) 可能主要对应于铁氧物种还原的贡献, 中温峰 (610~710 °C) 可能对应于钒氧物种和铁氧物种的还 原, 高温峰 (730~780 °C) 很可能主要是钒氧物种的 还原.

为了进一步分析催化剂的 H2-TPR 行为, 借助

表 3 不同 Fe-V-O 催化剂样品的 H₂-TPR 结果 Table 3 H₂-TPR results of different Fe-V-O catalyst samples

Sample	Peak temperature (°C)			H ₂ consumption of peak			
	Ι	II	III	Ι	II	III	Total
FeV-CP	600	702	787	85	1208	294	1587
FeV-GC	568	700	780	100	1038	551	1689
FeV-HS	551	616	638	401	1164	840	2405
Fe ₂ O ₃	417	662	_	371	401	_	772
V_2O_5	701	739	774	524	949	1295	2768

Lorentzian 函数关系可将 FeV-CP, FeV-HS 和 FeV-GC 催化剂的 H₂-TPR 曲线可拆分为 3 个还原 峰.催化剂各 H₂-TPR 峰顶温度有如下大小顺序: FeV-CP > FeV-GC > FeV-HS. 另外,将各还原峰面 积积分并用于近似表示催化剂还原过程中的 H₂ 消 耗量,结果列于表 3.可以看出,H₂ 消耗量有如下大 小顺序: FeV-HS > FeV-GC > FeV-CP,即对应于催化 剂的还原性降低.可见制备方法显著影响催化剂的 还原性,其中以水热法制备的 Fe-V-O 催化剂的还原 性最强.

2.2 催化剂性能评价

2.2.1 制备方法的影响

表 4 为不同 Fe-V-O 催化剂上过氧化氢液相氧 化甲苯制苯甲醛的催化性能.可以看出,α-Fe₂O₃几 乎不具有催化氧化甲苯的性能;尽管 V₂O₅上甲苯 转化率较高,但主要发生苯环上的氧化反应,因此苯

表 4 不同 Fe-V-O 催化剂样品上过氧化氢液相氧化甲苯制 苯甲醛性能

 $\label{eq:table_formula} \begin{array}{ll} \textbf{Table 4} & \text{Catalytic activity of different Fe-V-O catalyst samples for} \\ \text{liquid-phase oxidation of toluene by } H_2O_2 \end{array}$

	Toluene	Selectivity (%)					
Sample	conversion	R7H	B70H	B700H	PhOH	Cresol	yield
	(%)	DLII	bzon	bloon	THOM	ciesoi	(wt%)
FeV-CP	16.7	69.1	20.4	0.0	10.5	0.0	11.5
FeV-GC	20.4	68.5	22.0	0.0	9.5	0.0	14.0
FeV-HS	44.4	42.4	12.4	26.6	12.6	6.0	18.8
α-Fe ₂ O ₃	0.0	0.0	0.0	0.0	0.0	0.0	0.0
V_2O_5	42.9	19.5	9.3	11.8	33.1	26.3	8.4

Reaction conditions: 5 ml toluene, 20 ml $\rm H_2O_2$ (30%), 20 ml acetic acid, 0.2 g catalyst, 60 °C, 3 h.

BzH-benzaldehyde; BzOH-benzyl alcohol; BzOOH-benzoic acid.

甲醛和苯甲醇的选择性都较低. FeV-CP 和 FeV-GC 上甲苯转化率较低,但仅生成苯甲醛和苯甲醇,且苯 甲醛的选择性较高. FeV-HS 上甲苯转化率 (44.4%) 和苯甲醛收率 (18.8%) 最高.甲苯侧链甲基氧化产 物苯甲醛、苯甲醇和苯甲酸的选择性为 81.4%.上述 结果表明, Fe-V-O 催化剂中钒氧物种可能是主要的 活性中心,催化剂中铁氧物种与钒氧物种发生了强 相互作用,从而改善催化剂的性能.其中以水热法 制成的 Fe-V-O 催化剂上苯甲醛收率最高.

2.2.2 反应温度的影响

图 5 为反应温度对 FeV-HS 上过氧化氢液相氧

图 5 反应温度对 FeV-HS 催化剂上过氧化氢液相氧化甲 苯制苯甲醛性能的影响

Fig. 5. Effect of reaction temperature on the activity of FeV-HS for liquid-phase oxidation of toluene to benzaldehyde by H_2O_2 . (1) Toluene conversion; (2) BzH selectivity; (3) BzOH selectivity; (4) BzOOH selectivity; (5) PhOH selectivity; (6) Cresol selectivity; (7) BzH yield. Reaction conditions: 5 ml toluene, 20 ml H_2O_2 (30%), 20 ml acetic acid, 0.2 g catalyst, 3 h.

化甲苯制苯甲醛反应性能的影响.可以看出,40 ℃ 时 FeV-HS 上即可以发生甲苯氧化反应,低于已报 道的多数催化剂的起始反应温度,表明 FeV-HS 具 有较高的催化过氧化氢液相氧化甲苯反应性能.当 反应温度升至 60 ℃ 时,甲苯转化率逐渐升高;苯甲 醛选择性逐渐降低,苯甲酸和甲酚选择性逐渐升高, 苯甲醇和苯酚的选择性略有降低,苯甲醛的收率达 最高;继续升高至 70 ℃ 时,甲苯转化率开始降低, 苯甲醇和甲酚的选择性升高,苯甲醛和苯酚选择性略有降低, 苯甲醇和甲酚的选择性升高,苯甲醛收率有所降低. 可见,在 60 ℃ 反应有助于甲苯氧化反应的进行;温 度过高,可能导致苯甲醛等深度氧化,其产物可能沉 积在催化剂表面覆盖了表面活性中心,因而甲苯转 化率降低.

2.2.3 催化剂的重复使用性能

考察了 FeV-HS 催化剂的重复使用性能,结果 见图 6. 反应后,催化剂经离心与液相分离,用冰乙 酸洗涤后直接用于下一次反应.由于催化剂颗粒尺 寸较小,所以完全回收催化剂较困难.因此,在回收 的催化剂中加入少量新鲜催化剂(约为催化剂总量 的10%)用于补充催化剂损失.

由图 6 可见, 在相同反应条件下, 随着 FeV-HS 使用次数的增加, 甲苯转化率逐渐降低,苯甲醇和苯甲醛的选择性略有升高, 苯甲酸和苯酚的选择性降

图 6 过氧化氢液相氧化甲苯制苯甲醛反应中 FeV-HS 的 重复使用性能

Fig. 6. Reusability of FeV-HS in the liquid-phase oxidation of toluene to benzaldehyde by H_2O_2 . (1) Toluene conversion; (2) BzH selectivity; (3) BzOH selectivity; (4) BzOOH selectivity; (5) PhOH selectivity; (6) Cresol selectivity; (7) BzH yield. Reaction conditions: 5 ml toluene, 20 ml H_2O_2 (30%), 20 ml acetic acid, 0.2 g catalyst, 60 °C, 3 h. 低,甲酚的选择性略有波动;苯甲醛收率呈现缓慢的 下降趋势.使用至第5次时,苯甲醛收率由18.8% 降至15.2%.这可能是由于甲苯进行液相氧化时,甲 苯的深度氧化产物或者多烷基化产物沉积在 FeV-HS催化剂表面,并覆盖了部分催化剂的活性中 心;即使反应后用冰乙酸洗涤,可能不能完全洗去 沉积物,从而导致催化剂表面暴露的有效活性中心 数量随使用次数增加而减少,导致甲苯转化率降低, 产物苯甲醛和苯甲醇的选择性发生变化.

综上可见,在 60°C,5 ml 甲苯,20 ml H₂O₂ (30%),20 ml 乙酸,0.2 g FeV-HS 催化剂的条件下进 行甲苯氧化反应 3 h,甲苯的转化率为 44.4%,苯甲 醛 的 收 率 为 18.8%;高于相 似 反 应 条 件 下 Mo-V/Al₂O₃^[2]和乙酸钒^[4]催化剂上苯甲醛收率,略 低于 17%V₂O₅/Al₂O₃^[3]催化剂上苯甲醛收率.

2.3 催化剂性质与其催化性能的关系

2.3.1 制备方法对催化剂性质的影响

制备方法影响所制的 Fe-V-O 催化剂的性质. 相比较而言,水热法制备 Fe-V-O 时,样品的比表面 积较大,颗粒的尺寸较小,表面 V/Fe 比较高,还原性 较强.

FeV-HS, FeV-CP 和 FeV-GC 催化剂中主要包含 FeVO₄ 和 Fe₂V₄O₁₃, 它们是铁氧物种 (或铁氢氧化 物) 与钒氧物种 (或钒氢氧化物) 在制备过程中经过 固相反应生成.相对于共沉淀法和凝胶自燃烧法, 水热法的制备条件较温和,并在合成体系中加入乙 二醇,可防止反应中生成长链的金属氧化物 (或氢氧 化物) 和颗粒发生团聚, 从而使得 FeV-HS 的颗粒尺 寸相对较小, 比表面积较大.

由上文结果可知, FeV-HS 颗粒尺寸 (约为 100 nm) 远小于 FeV-CP 和 FeV-GC. 超细的颗粒尺寸使 得 FeV-HS 中铁氧物种和钒氧物种间相互作用较强, 可能使得更多的钒氧物种暴露在催化剂表面, 因此 FeV-HS 催化剂表面 V 含量远大于 Fe 含量, 即 VO_x 物种多于 FeO_x 物种, 使得表面产生较多的晶格氧缺 陷位, 从而降低了催化剂的表面能,改善了晶格氧的 流动性^[13], 所以 FeV-HS 催化剂具有较强的还原性. 另外, FeVO₄ 是八配位的三斜晶系, α-Fe₂O₃ 属于六 配位的三方晶系, Fe₂V₄O₁₃ 具有单斜构型. 催化剂 中 FeVO₄, α-Fe₂O₃ 和 Fe₂V₄O₁₃ 三相相互接触时由 于界面结构的差异将导致界面传递晶格氧的能力不

同,它们的含量可能影响催化剂中晶格氧的传递能力;而 FeV-HS 催化剂中这三相的比例可能有利于 晶格氧的传递,所以该催化剂具有较强的还原性能. 由此可见,采用不同方法制备催化剂可调变催化剂 的比表面积和还原性,从而可改善催化剂的性能.

2.3.2 催化剂性质对其催化性能的影响

不同方法制备的催化剂的性质不同,因而在过 氧化氢液相氧化甲苯反应中表现出不同的催化性 能.如图 7 所示,随着 Fe-V-O 催化剂在 TPR 过程 中 H₂消耗量的增加,即催化剂的还原性增强,甲苯 转化率升高,苯甲醛的选择性和收率先升高后降低. 由此可见, Fe-V-O 催化剂的还原性与其过氧化氢液 相氧化甲苯制苯甲醛性能密切相关.

图 7 Fe-V-O 催化剂的还原性与催化剂活性的关系 Fig. 7. Relationship of the reducibility with the activity of Fe-V-O catalyst.

研究表明^[3~5,17~19], 过氧化氢液相氧化甲苯反应 过程遵循 Mars van Krevelen 氧化机理, 晶格氧可能 是反应的活性物种, 催化剂的还原性决定甲苯的转 化率和产物分布.甲苯不仅可以发生侧链甲基氧化, 并经连续氧化过程生成苯甲醇, 苯甲醛和苯甲酸, 还 可以发生苯环上的氧化生成甲酚和苯酚等.苯甲醛 是反应中间产物, 可进一步氧化转化.若催化剂的 还原性过高, 虽然可改善催化剂催化甲苯转化的性 能, 但有可能使苯甲醛发生进一步氧化反应, 或者导 致甲苯发生苯环上的氧化反应, 从而可能会降低苯 甲醛的选择性和收率.因此, 催化剂必须具有适宜 的还原性.

3 结论

制备方法影响 Fe-V-O 催化剂的比表面积,结

构,形貌,颗粒尺寸,表面 V/Fe 比和还原性,从而导 致其催化过氧化氢液相氧化甲苯性能不同. 超细 Fe-V-O 催化剂的颗粒尺寸,可以调变催化剂的比表 面积和还原性,从而改善其催化性能.采用水热合 成制备的 Fe-V-O 催化剂具有较高的过氧化氢液相 氧化甲苯制苯甲醛性能,可能归因于其具有超细的 颗粒尺寸,较大的比表面积,以及表面活性钒氧物种 较多和具有适宜的还原性.

参考文献

- 1 张昕, 张贵泉, 林涛, 祁敏, 龚婷. 化工进展 (Zhang X, Zhang G Q, Lin T, Qi M, Gong T. *Chem Ind Eng Progr*), 2010, **29**: 1890
- 2 章维超,赵卫娟,卓广澜,姜玄珍.催化学报 (Zhang W Ch, Zhao W J, Zhuo G L, Jiang X Zh. *Chin J Catal*), 2006, **27**: 36
- 3 Wu J P, Wang X Q, Zhu L F, Li G, Hu Ch W. Chem Res Chin Univ, 2007, 23: 585
- 4 Shijina A V, Renuka N K. React Kinet Catal Lett, 2008, 94: 261
- 5 Wang X Q, Wu J P, Zhao M W, Lv Y F, Li G Y, Hu C W. *J Phys Chem C*, 2009, **113**: 14270
- 6 Ge J, Xue M, Sun Q, Aurox A, Shen J. J Mol Catal A,

2007, 278: 209

- 7 Zhang L X, Hua Z L, Dong X P, Li L, Chen H R, Shi J L. J Mol Catal A, 2007, 268: 155
- 8 Sharghi H, Jokar M, Doroodmand M M, Khalifeh R. *Adv Synth Catal*, 2010, **352**, 3031
- 9 Deng J H, Jiang J Y, Zhang Y Y, Lin X P, Du C M, Xiong Y. Appl Catal B, 2008, 84: 468
- 10 Wickman A, Aderson A. Appl Catal A, 2011, 391: 110
- 11 Benčič S, Orel B, Šurca A, Lavrenčič Štangar U. Solar Energy, 2000, 68: 499
- 12 王希涛, 钟顺和. 分子催化 (Wang X T, Zhong Sh H. J Mol Catal (China)), 2003, 17: 173
- 13 Routray K, Zhou W, Kiely C J, Wachs I E. ACS Catal, 2011, 1: 54
- 14 Wang X D, Heier K R, Stern C L, Poeppelmeier K R. Inorg Chem, 1998, 37: 6921
- 15 Zic M, Ristic M, Music S. J Mol Struct, 2007, 834: 141
- 16 Liang M S, Kang W K, Xie K C. J Nat Gas Chem, 2009, 18: 110
- 17 Li X, Xu J, Wang F, Gao J, Zhou L, Yang G. Catal Lett, 2006, 108: 137
- 18 Li X, Xu J, Zhou L, Wang F, Gao J, Chen C, Ning J, Ma H. Catal Lett, 2006, 110: 255
- 19 Jin L, Chen C, Crisostomo V M B, Xu L, Son Y, Suib S L. *Appl Catal A*, 2009, **355**: 169