www.cagsbulletin.com www.地球学报.com

# 南京栖霞山铅锌矿区铅同位素示踪

储彬彬<sup>1)</sup>, 罗立强<sup>1)\*</sup>, 王晓芳<sup>1)</sup>, 刘 颖<sup>1)</sup>, 伯 英<sup>2)</sup>

1)国家地质实验测试中心,北京 100037;
 2)中国地质科学院矿产资源研究所,北京 100037

摘 要:南京栖霞山铅锌矿已开采 50 余年,环境问题日益突出。为了了解污染来源和污染传播方式,采集 了该地水、土、植物、大气沉降、燃油灰尘、矿石、人血和生物等多种样品进行重金属元素含量和铅同位 素示踪分析。结果表明矿区重金属污染严重,且污染随着靠近矿区而逐渐加重,重金属元素 Pb、As、Cd、 Cu、Zn 之间相关性明显,初步反映了污染与矿山有关;同位素分析显示,矿区大气沉降样品、大部分植物样 品、部分土壤和部分生物样品铅同位素组成与矿石铅同位素组成相似,证实了污染源为矿山。另外,大气沉 降与植物样品铅含量高且它们的铅同位素组成相当,反映了大气沉降是污染传播方式之一。

关键词: 南京栖霞山; 铅锌矿; 铅同位素

中图分类号: X502; X508; P618.4 文献标志码: A doi: 10.3975/cagsb.2012.02.09

# Lead Isotopes as Tracers in the Qixiashang Lead-Zinc Mining Area, Nanjing

CHU Bin-bin<sup>1</sup>, LUO Li-qiang<sup>1</sup>, WANG Xiao-fang<sup>1</sup>, LIU Ying<sup>1</sup>, BO Ying<sup>2</sup>

National Research Center for Geoanalysis, Beijing 100037;
 Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037

**Abstract:** The Qixiashan lead-zinc mine in Nanjing has been exploited for more than 50 years, and environmental pollution has become increasingly serious. In order to investigate the source and dispersion of the pollution, the authors collected water, soil, plants, atmospheric deposition, vehicle exhaust dust, ore, human blood and biological samples and analyzed heavy metals concentrations and lead isotopes with ICP-MS. The results show that the concentrations of heavy metals in soil, plants, and atmospheric deposition are very high, and the nearer to the mining area, the heavier the pollution. In addition, Pb, As, Cd, Cu and Zn show obvious correlation. Analyses of lead isotopes show that the lead isotope compositions in atmospheric deposition, plants, and part of soils and biological samples around the mining area are similar to those in ores, indicating that the pollution source has been derived form the mine. Furthermore, atmospheric deposition and plants have high lead concentrations and similar lead isotope compositions, suggesting that lead in atmospheric deposition contributes substantially to lead transfer. **Key words:** Qixiashan in Nanjing; lead-zinc mine; lead isotopes

铅有四种同位素: <sup>208</sup>Pb(约 52%)、<sup>206</sup>Pb(约 24%)、 <sup>207</sup>Pb(约 23%)、<sup>204</sup>Pb(约 1%)(Komárek et al., 2007)。 由于铅的同位素组成不因物理化学过程而改变,因 此具有"指纹特征"的铅同位素被广泛用于不同环 境介质中污染源的示踪研究(Bollhöfer et al., 2001; Veysseyre et al., 2001; Søndergaard et al., 2010; 王铁

夫等, 2005)。铅同位素不仅可以示踪铅的污染来源, 还可指示其它元素的污染来源(Hosono et al., 2010; 常向阳等, 2008)。另外, 铅同位素在生物链不同介质 中的分布还可指示铅污染的传递特征(Notten et al., 2008)。

南京栖霞山铅锌矿开采已有 50 余年, 是华东最

本文由国家自然科学基金项目(编号: 20775018)和国家高技术研究发展计划(863 计划)项目(编号: 2007AA06Z124)联合资助。 收稿日期: 2012-01-14; 改回日期: 2012-03-22。责任编辑:魏乐军。

第一作者简介:储彬彬, 女, 1985 年生。博士研究生。主要从事生物地球化学的研究。E-mail: binlun\_126@163.com。 \*通讯作者:罗立强, 男, 1959 年生。研究员。主要从事微区原位活体及生物地球化学研究。E-mail: luoliqiang@cags.net.cn。

大的多金属矿床之一。该区由矿山引发的环境问题 在 20 世纪 80 年代就已经突出,如山体滑坡、地下 水位下降、地面塌陷、地表水污染和空气污染等问 题(褚桂堂,1986)。近年来的研究也表明污染加剧, 重金属污染已经覆盖了土壤和植物,甚至通过生物 链对人体健康产生了一定的影响(储彬彬等,2010; 王晓芳等,2009;刘颖等,2008)。

本文根据对采自污染区的水、土、植物、生物、 大气沉降、燃油灰尘、矿石等多种类样品的铅同位 素分析数据,研究了铅在生物链中的传播规律和方 式,揭示了污染来源,为该区的矿山开采与生态环 境保护协调发展,提供了数据基础。

# 1 材料与方法

#### 1.1 样品采集

围绕栖霞山铅锌矿区采集了土壤、水、植物、 矿石、大气沉降、燃油灰尘、生物样品和人血用于 同位素分析,具体如下所述。

采集了矿区附近 3 块菜园(图 1 中 V1 至 V3)的 表层土壤(0~20 cm)和蔬菜等植物样品,采集了当地 的地表水、地下水和矿井排污水。为了比较污染来 源的多样性和差异,采集了远离矿区 5 km 以外的菜 园土壤、植物和地表水作为参考,另外,还收集了加 油站、炼油厂附近的土壤和植物样品作参考。从选 矿厂采集了矿山主要矿石菱锰矿、方铅矿、闪锌矿 和黄铁矿。采用集尘缸放置在高于 4 m 的平台收集 干沉降 5 个月(2007 年 11 月—2008 年 4 月),共收集 了有效大气沉降样品 9 个,如图 1 所示(A1 至 A9)。 收集了栖霞区机动车排气管的尾气灰尘样品 4 个, 按照燃气种类不同分柴油灰和汽油灰。采集了矿区 居民的血液样品,并购买了一些矿区居民饲养的





A1-A9: atmospheric deposition)

鸡、鱼等生物样品用于分析。

#### 1.2 样品分析

铅同位素分析测定及重金属含量分析由吉林 大学测试中心同位素室完成,所用仪器为 Agilent-7500a ICP-MS。人血和生物样品的前处理和 含量测试均由南京市畜牧兽医站中心实验室完成。

## 2 结果与讨论

## 2.1 重金属污染分布特征

首先,矿区重金属污染严重,并且污染分布呈 规律性。矿区附近的菜园土壤 Pb、As、Cd、Zn 等 重金属污染严重, 其中菜园土壤铅平均含量可达到 637 mg·kg<sup>-1</sup>(储彬彬等, 2010), 已超过土壤环境质量 (GB15618—1995)三级标准;菜园蔬菜也受到了重 金属污染,其中韭菜(干重)铅含量可达 73.87 μg·g<sup>-1</sup>(王晓芳等, 2009); 并且该地居民的血铅 平均含量相应偏高(刘颖等, 2008)。从图1和表1可 以看出、靠近矿区的 A1 至 A6 号大气沉降样品重金 属 Pb、Cd、As、Zn 和 Cu 都高于 A7、A8、A9 等 远离矿区的采样点、并且靠近选矿厂的 A1、A2、A3 的大气沉降重金属含量分别为 Pb: 7788~10269 mg·kg<sup>-1</sup>, Cd: 69.6~114 mg·kg<sup>-1</sup>, As: 32.8~75.9 mg·kg<sup>-1</sup>, Zn: 11994~21244 mg·kg<sup>-1</sup>, Cu: 471~671 mg·kg<sup>-1</sup>, 远远高于其他采样点, 这说 明选矿厂附近空气污染严重; 而远离矿区 A8、A9 号样品、以及地势较高的电视台 A7 号样、重金属含 量相对较低。总之、大气沉降样品越靠近矿山、重金 属含量越高。另外、储彬彬等(2010)作了南京栖霞山 铅锌矿区土壤重金属综合污染评价图, 从图中可以 看出污染主要集中在矿区 2 km 以内, 并且随着靠近 矿山污染程度逐渐加重; 王晓芳等(2009)分析了植 物中铅含量也是随着靠近矿山含量逐渐增加。这些 都说明污染可能与矿山有关。

其次, 重金属元素相关性明显。通过将矿区附 近菜园 52 个土壤样品进行重金属元素相关性分析, 发现 Cd-Zn、Pb-As、Cu-Zn、Cd-Cu 相关系数均大 于 0.8, 属于高度相关, 其它 Pb-Cu、Pb-Zn、As-Cu 相关系数也大于 0.5。重金属元素 Pb、As、Cd、Cu、 Zn 两两相关性显著, 这可能与矿区主要矿石中这些 元素相互伴生有关。

总之, 矿区重金属污染严重, 且污染随着靠近 矿区而逐渐加重, 重金属元素 Pb、As、Cd、Cu、Zn 之间相关性明显, 初步反映了污染与矿山有关, 下 文的铅同位素分析可以确定污染源及污染传播 途径。

|     | Table 1 Heavy | metals concentration | ns in atmospheric dej | position/(mg·kg <sup>-</sup> ) |       |
|-----|---------------|----------------------|-----------------------|--------------------------------|-------|
| 样品名 | Pb            | Cd                   | As                    | Cu                             | Zn    |
| A1  | 10269         | 69.6                 | 32.8                  | 671                            | 11994 |
| A2  | 7788          | 92.4                 | 51.4                  | 471                            | 15894 |
| A3  | 9574          | 114                  | 75.9                  | 509                            | 21244 |
| A4  | 955           | 8.32                 | 17.6                  | 137                            | 1707  |
| A5  | 810           | 5.46                 | 17.7                  | 73.8                           | 1183  |
| A6  | 540           | 5.73                 | 21.5                  | 141                            | 1019  |
| A7  | 310           | 2.67                 | 6.00                  | 34.1                           | 487   |
| A8  | 271           | 3.75                 | 11.8                  | 117                            | 1002  |
| A9  | 120           | 1.69                 | 4.94                  | 63.7                           | 1003  |

表 1 大气沉降重金属元素含量/(mg·kg<sup>-1</sup>)

注: 表中元素含量由吉林大学测试中心同位素室 ICP-MS 测定。

# 2.2 铅同位素分析

铅有 4 种同位素: <sup>208</sup>Pb(约 52%)、<sup>206</sup>Pb(约 24%)、 <sup>207</sup>Pb(约 23%)、<sup>204</sup>Pb(约 1%)。其中,<sup>206</sup>Pb、<sup>207</sup>Pb 和 <sup>208</sup>Pb 是放射成因的产物,<sup>204</sup>Pb 是非放射成因同位 素。在铅同位素测定方面,电感耦合等离子质谱 (ICP-MS)分析简单快速,虽然精度不如热电离质谱 (TIMS),但其测定精度已能满足大部分环境样品的 分析要求(Søndergaard et al., 2010)。在铅同位素比值 指示来源方面,Ellam(2010)分析指出,如果测定精 度 较高,<sup>204</sup>Pb 能准确测出,那么<sup>206</sup>Pb/<sup>204</sup>Pb, <sup>207</sup>Pb/<sup>204</sup>Pb,<sup>208</sup>Pb/<sup>204</sup>Pb 的比值图可以反映多元来源; 如果<sup>204</sup>Pb 测定精度不够好,那么可用<sup>207</sup>Pb/<sup>206</sup>Pb 和 <sup>208</sup>Pb/<sup>206</sup>Pb 作图反映铅的来源。由于本文数据是由 ICP-MS 测定,分析精度为 2‰,故采用<sup>207</sup>Pb/<sup>206</sup>Pb 和<sup>208</sup>Pb/<sup>206</sup>Pb 的比值图来分析污染来源。

# 2.2.1 大气沉降是污染传播途经之一

大气沉降是污染物传播的主要要途经之一、重 金属可依附大气沉降直接进入土壤、水和植物中 (Sabin et al., 2008; Soriano et al., 2011; Hu et al., 2011)。本文研究了大气沉降的铅同位素分布特征(图 2)、从图中可以看出大气沉降样品 A1 至 A6 靠近矿 石铅同位素分布, A7、A8、A9 铅同位素分布明显不 同于矿石(矿山主要矿石菱锰矿、方铅矿、闪锌矿和 黄铁矿)铅同位素分布特征,这与图1采样点 A1至 A9 位置同选矿厂的远近有一定相关性, 离选矿厂越 近的大气沉降样品铅同位素越接近矿石铅同位素分 布,特别是 A1、A2 两处大气沉降的铅同位素几乎重 叠矿石和选矿厂土壤铅同位素所在区域、这说明大 气沉降是矿区污染传播的主要方式之一。另外, A7 离选矿厂位置不足1 km, 同 A5 到选矿厂距离相似, 但是 A7 与 A5 铅同位素相差较大, A7 铅同位素既不 同于矿石铅同位素组成,也不同于汽油灰和柴油灰



图 2 大气沉降铅同位素分布特征 Fig. 2 Lead isotope in atmospheric deposition

铅同位素组成,这是由于 A7 为栖霞山山顶电视台 所收集的大气沉降样品,地势较高(海拔 282 m), 污染较少。另外,从南京市气象局获知 2007 年 11月—2008 年 1月主风向为东北风,2008 年 1月到 2008 年 4月主风向为东南偏东方(此两个时间段正好 覆盖了大气沉降样品收集时间)。A7 点属于上风向 位置,受污染程度影响较小,A1 至 A6 属于下风向位 置,受污染程度大。

#### 2.2.2 土壤和植物铅同位素组成差异明显

采集了菜园 1、2、3 及参考区的植物及其表层 土壤,分析了铅元素的含量如表 2 所示,结果表明 3 个菜园土壤中铅含量非常高,均超过了土壤环境 质量(GB15618—1995)二级标准(保障农业生产、维 护人类健康的土壤限值),是参考区土壤铅含量的

|             | iparison of leau concent                 | ration between son and p     | ation between son and plants in vegetable garden and reference area |      |  |  |
|-------------|------------------------------------------|------------------------------|---------------------------------------------------------------------|------|--|--|
| 采样位置        | 采样点 ———————————————————————————————————— | Pb 含量/(mg·kg <sup>-1</sup> ) |                                                                     |      |  |  |
|             |                                          | 土壤                           | 植物                                                                  | 植物名称 |  |  |
| 菜园 1        | V11                                      | 971                          | 141                                                                 | 蚕豆茎  |  |  |
|             |                                          | 871                          | 358                                                                 | 蚕豆叶  |  |  |
|             | V12                                      | 787                          | 42.4                                                                | 莴苣叶  |  |  |
|             |                                          |                              | 25.5                                                                | 莴苣茎  |  |  |
|             | V21                                      | 365                          | 47.8                                                                | 韭菜   |  |  |
| 菜园 2        | V22                                      | 346                          | 101                                                                 | 水萝卜叶 |  |  |
|             | V23                                      | 464                          | 33.5                                                                | 菠菜   |  |  |
| <b>共同</b> 2 | V31                                      | 745                          | 71.1                                                                | 茼蒿茎  |  |  |
|             |                                          | /45                          | 85.9                                                                | 茼蒿叶  |  |  |
| 米四 3        | V32                                      | 703                          | 16.7                                                                | 芹菜茎  |  |  |
|             |                                          |                              | 50.9                                                                | 芹菜叶  |  |  |
|             | C1                                       | 45.5                         | 4.84                                                                | 油菜茎  |  |  |
| 参考区         |                                          |                              | 15.7                                                                | 油菜叶  |  |  |
|             | C2                                       | 64.7                         | 7.87                                                                | 茼蒿叶  |  |  |
|             | C3                                       | 63.3                         | 14.5                                                                | 生菜   |  |  |
|             | C4                                       | 52.6                         | 14.7                                                                | 莴苣叶  |  |  |
|             | C5                                       | 40.8                         | 13.2                                                                | 芹菜叶  |  |  |

表 2 菜园及参考区土壤和植物中铅含量比较

5~19 倍,并且含量由高到低为菜园 1>菜园 3> 菜园 2,这与用 EDXRF 所测结果相同(储彬彬等, 2010)。3 个菜园植物样品中铅含量均超过了参考区 植物中的铅,污染较严重。另外,铅在植物不同部位 富集差别较大,从表 2 明显可以看出铅在植物叶中 含量远高于茎中,这与 Hu 等(2011)、王晓芳等(2009) 研究结果相同。



土壤铅同位素组成可从图 3 看出。首先,选矿

图 3 土壤铅同位素分布特征 Fig. 3 Lead isotope in soil

厂土壤和矿石铅同位素组成相当,这说明选矿过程 中矿石铅可以进入土壤。另外,虽然 3 个菜园土壤 铅含量均较高,但铅同位素组成差异较大。其中只 有菜园 1 土壤铅同位素组成接近矿石铅同位素组成, 土壤铅含量也是最高的,这与紧邻运输矿石的公路 有一定关系。菜园 2 由于离公路还隔着一些房屋,其 铅的含量在三个菜园中最低,铅同位素组成也不同 于菜园 1。菜园 3 位于马路和铁路之间,其铅同位素 组成差异较大。虽然 3 个菜园铅同位素组成并未全 部落在矿石铅同位素组成范围,但其与参考区菜园 土壤铅同位素组成明显不同,与炼油厂和加油站铅 同位素组成亦有所不同,并且与大气沉降铅同位素 也无明显相关性,这在一定程度上反映了土壤铅的 来源多样化。

不同于土壤铅同位素,植物铅同位素分布特征 明显。从图 4 中可以看出,选矿厂植物铅同位素组 成落在矿石铅同位素组成范围内,3 个菜园植物样品 除一点(菜园 1 蚕豆叶,其铅含量异常高,达 358 mg·kg<sup>-1</sup>)异常以外,其余样品的铅同位素均落在 矿石铅同位素组成之内,并且与参考区菜园植物、 炼油厂植物、加油站植物铅同位素组成有明显不同, 这直接表明了菜园植物中铅污染来自矿山。另外, 所测植物样品主要为叶菜类蔬菜,由于植物叶片可 直接从大气沉降颗粒物中累积重金属(Tomašević et al., 2005; Uzu et al., 2010; Hu et al., 2011),故当地菜



图 4 植物铅同位素分布特征 Fig. 4 Lead isotope in plants

园植物不仅铅含量高,并且其铅同位素组成与污染 源和大气沉降的铅同位素组成相似。这也进一步证 实了大气沉降为污染传播方式之一。

2.2.3 水铅为混合来源

水中铅同位素分布特征如图 5 所示,首先,地 表水和矿井排污水中铅同位素组成相当,反映了两 者具有一定相关性;另外,以矿石铅同位素组成为 污染端元,以参考区地表水和栖霞区地下水铅同位 素组成为背景端元,菜园地表水和矿井排污水正好 落在两端元之间,并且相关性良好(R<sup>2</sup>=0.9243),这 说明菜园地表水和矿井排污水中铅为混合来源,来







图 6 生物、血液和地下水铅同位素分布特征 Fig. 6 Lead isotope in groundwater, human blood and biological samples



图 7 铅同位素综合分析

Fig. 7 Comprehensive analyses of lead isotope in different kinds of samples

源之一为矿石铅。

2.2.4 生物和人血中铅的来源跟矿石和地下水有一 定关系

生物样品和人血中铅同位素分布特征如图 6 所 示。从图中可以看出,有两个生物样品接近矿石铅 同位素组成,其余生物样品铅同位素组成与矿石铅 同位素组成有一定差别;人血铅同位素没有重叠矿 石铅同位素组成,但部分重合了栖霞区地下水铅同 位素,指示两者具有一定相关性,高铅的饮用水必 然会带来血铅浓度的升高。另外,生物和血液的铅 同位素同地下水和矿石的铅同位素数据之间具有一 定相关性,矿石-生物-地下水的相关系数 R<sup>2</sup>=0.7096, 矿石-血液-地下水的相关系数 R<sup>2</sup>=0.773,这表明生 物和人血中铅的来源跟矿石和地下水有一定关系, 栖霞区矿石的铅污染已影响到当地的生物和人。 2.2.5 铅同位素综合分析

结合上文和铅同位素综合分析图(图 7)可以看 出、矿区附近的大气沉降、植物和部分生物样品铅 同位素组成与矿石铅同位素组成相当;水铅为混合 来源,来源之一为矿石;人血铅同位素与栖霞区地 下水铅同位素组成有部分重合、并且血铅同位素与 矿石和地下水同位素数据有一定相关性、指示血铅 来源与矿石有一定关系;土壤铅同位素组成差异较 大, 只有菜园 1 土壤铅同位素接近矿石铅同位素组 成,指示土壤铅来源的多样性。总之,铅同位素综合 分析表明,矿区矿石的开采已经对当地的水、土、 植物、大气沉降、生物和人造成了一定影响、污染 源为矿山。另外,大气沉降与植物样品铅含量高且 它们的铅同位素组成相当,反映了大气沉降是污染 传播方式之一。因此, 在矿山开采、冶炼和运输过 程中、需控制矿石粉末扬起和减少大气沉降的传 播。笔者建议在运输矿石的马路边多植树,以吸 收沉降物、减少污染传播。

#### 3 结论

从重金属元素的空间分布特征和重金属元素相 关性分析,初步反映了污染与矿山有关。一方面,南 京栖霞山地区土壤、植物、大气沉降等样品重金属 污染严重,且重金属元素含量随着靠近矿区而逐渐 加重;另一方面,土壤重金属元素 Cd-Zn、Pb-As、 Cu-Zn、Cd-Cu 相关系数均大于 0.8,可能与矿区主 要矿石中这些元素相互伴生有关。

铅同位素分析显示, 矿区大气沉降样品、大部 分植物样品、部分土壤和部分生物样品铅同位素组 成与矿石铅同位素组成相似,与参考区样品的铅同 位素明显不同,反映了污染来自矿山;另外,大气 沉降与植物样品铅含量高且它们的铅同位素组成相 当,反映了大气沉降是污染传播方式之一。

# 参考文献:

- 常向阳,陈永亨,刘敬勇,陈南,吴颖娟,付善明. 2008. 粤西云 浮含铊硫化物矿产利用对环境的影响:元素-铅同位素示踪 研究[J].地球学报,29(6):765-768.
- 储彬彬, 罗立强. 2010. 南京栖霞山铅锌矿地区土壤重金属污染 评价[J]. 岩矿测试, 29(1): 5-18, 13.
- 褚桂堂. 1986. 南京栖霞山环境地质问题的研究[J]. 江苏地质, 10(4): 38-42.
- 刘颖,罗立强. 2008. 南京栖霞矿区居民血铅水平及相关因素分析[J]. 中国公共卫生, 24: 20-21.
- 王铁夫,周燕,张延洁,郑培玺. 2005. 用铅同位素示踪长春环 境铅污染的来源[J]. 地球学报,26(z1): 230-232.
- 王晓芳,罗立强. 2009. 铅锌银矿区蔬菜中重金属吸收特征及分 布规律[J]. 生态环境学报, 19(1): 143-148.
- 国家环境保护局, 1995. GB15618—1995 土壤环境质量标准[S]. 北京:中国标准出版社.

#### **References:**

- BOLLHÖFER A, ROSMAN K J R. 2000. Isotopic source signatures for atmospheric lead: the Southern Hemisphere[J]. Geochimica et Cosmochimica Acta, 64(19): 3251-3262.
- CHANG Xiang-yang, CHEN Yong-heng, LIU Jing-yong, CHEN Nan, WU Ying-juan, FU Shan-ming. 2008. The Environmental Impact of Thallium Sulfide Resource Exploitation in Western Guangdong: An Element and Lead Isotopic Tracing Study[J]. Acta Geoscientica Sinica, 29(6): 765-768(in Chinese with English abstract).
- CHU Bin-bin, LUO Li-qiang. 2010. Evaluation of heavy metal pollution in soils from Nanjing Qixiashang Lead-Zinc Mines[J]. Rock and Mineral Analysis, 29(1): 5-8, 13(in Chinese with English abstract).
- CHU Gui-tang. 1986. Environmental geology research on Nanjing Qixiashan[J]. Jiangsu Geology, 10(4): 38-42(in Chinese).
- ELLAM R M. 2010. The graphical presentation of lead isotope data for environmental source apportionment[J]. Science of the Total Environment, 408(16): 3490-3492.

HOSONO T, SU C C, OKAMURA K, TANIGUCHI M. 2010. His-

torical record of heavy metal pollution deduced by lead isotope ratios in core sediments from the Osaka Bay, Japan[J]. Journal of Geochemical Exploration, 107(1): 1-8.

- HU X, ZHANG Y, LUO J, XIE M J, WANG T J, LIAN H Z. 2011. Accumulation and quantitative estimates of airborne lead for a wild plant (Aster subulatus)[J]. Chemosphere, 82(10): 1351-1357.
- KOMÁREK M, ETTLER V, CHRASTNÝ V, MIHALJEVIČ M. 2007. Lead Isotopes in Environmental Sciences: A Review[J]. Environment International, 34(4): 562-577.
- LIU Ying, LUO Li-qiang. 2008. Study on blood lead level and related factors in residents living near Qixia mountain Pb-Zn-polymetallic deposit[J]. Chinese Journal of Public Health, 24: 20-21(in Chinese with English abstract).
- National Environmental Protection Agency. 1995. GB15618—1995 Environmental quality standard for soil[S]. Beijing: Standards Press of China(in Chinese).
- NOTTEN M J M, WALRAVEN N, BEETS C J, CROON P, ROZEMA J, AERTS R. 2008. Investigating the origin of Pb pollution in a terrestrial soil-plant-snail food chain by means of Pb isotope ratios[J]. Applied Geochemistry, 23(6): 1581-1593.
- SABIN L D, SCHIFF K C. 2008. Dry atmospheric deposition rates of metals along a coastal transect in southern California[J]. Atmospheric Environment, 42(27): 6606-6613.
- SØNDERGAARD J, ASMUND G, JOHANSEN P, ELBERLING B. 2010. Pb isotopes as tracers of mining-related Pb in lichens,

seaweed and mussels near a former Pb-Zn mine in West Greenland[J]. Environmental Pollution, 158(5): 1319-1326.

- SORIANO A, PALLARÉS S, PARDO F, VICENTE A B, SANFELIU T, BECH J. 2011. Deposition of heavy metals from particulate settleable matter in soils of an industrialised area[J]. Journal of Geochemical Exploration, 113: 36-44.
- TOMAŠEVIĆ M, VUKMIROVIĆ Z, RAJŠIĆ S, TASIĆ M, STEVANOVIĆ B. 2005. Characterization of trace metal particles deposited on some deciduous tree leaves in an urban area[J]. Chemosphere, 61(6): 753-760.
- UZU G, SOBANSKA S, SARRET G, MUÑOZ M, DUMAT C. 2010. Foliar lead uptake by lettuce exposed to atmospheric fallouts[J]. Environmental Science and Technology, 44(3): 1036-1042.
- VEYSSEYRE A M, BOLLHÖFER A F, ROSMAN K J R, FERRARI C P, BOUTRON C F. 2001. Tracing the origin of pollution in French Alpine snow and aerosols using lead isotopic ratios[J]. Environmental Science and Technology, 35(22): 4463-4469.
- WANG Tie-fu, ZHOU Yan, ZHANG Yan-jie, ZHEN Pei-xi. 2005.
  Environment lead pollution in Changchun and its harmful effect on human health[J]. Acta Geoscientica Sinica, 26(z1): 230-232(in Chinese with English abstract).
- WANG Xiao-fang, LUO Li-qiang. 2009. Uptake of heavy metal in vegetables grown in Pb-Zn-Ag mine, Nanjing[J]. Ecology and Environmental Sciences, 19(1): 143-148(in Chinese with English abstract).