www.cagsbulletin.com www.地球学报.com

海水溶解磷酸盐氧同位素组成的测定

卢阳阳¹⁾,郑珍珍¹⁾,尹希杰²⁾,陈志刚^{1)*},蔡毅华¹⁾,刘广山¹⁾,黄奕普¹⁾

1)厦门大学海洋与地球学院,福建厦门 361005;

2)国家海洋局第三海洋研究所,海洋与海岸地质环境开放实验室,福建厦门 361005

摘 要: 生物磷酸盐和水分子间的氧同位素分馏主要受温度和生物活动控制,因此磷酸盐氧同位素组成既 可以测量古温度又可以示踪磷循环。近年来磷酸盐氧同位素研究受到较多关注,除了传统的生物体磷灰石古 温度测量外,这些研究大多是关于磷循环的。磷酸盐的氧同位素组成可以示踪海洋中磷的源区和生物对磷的 利用效率。由于海水的组成十分复杂,测量前必须对样品进行富集、分离和纯化处理。目前,加州大学(Santa Cruz)Paytan 教授和耶鲁大学 Blake 教授的实验室已建立了海水溶解磷酸盐氧同位素的测量方法,二者各有 优缺点。我们结合了这两种方法的优点,并对一些步骤进行了改进,建立了海水溶解磷酸盐氧同位素组成的 测量方法。通过向海水样品中加入 NaOH,形成 $Mg(OH)_2$ 来富集海水中的 PO_4^{3-} ,也可同时除去部分杂质离 子和溶解有机质;通过将 PO_4^{3-} 转化为 $CePO_4$ 沉淀来进一步除去杂质离子,然后用阳离子交换树脂除 Ce^{3+} , 再通过阴离子交换树脂柱来除溶解有机质。最后将磷酸盐转换为 Ag_3PO_4 沉淀,在 1350 裂解 Ag_3PO_4 ,产生 的 O_2 和石墨反应形成 CO 用 IRMS 测定。结果显示富集、分离和纯化过程可以获得纯的 Ag_3PO_4 颗粒,不会 产生 PO_4^{3-} 的氧同位素分馏。测量 Ag_3PO_4 用量仅为 0.3 mg,标准偏差在 ± 0.2‰~±0.3‰之间。 关键词:海水;溶解磷酸盐;氧同位素;方法

中图分类号: P578.92; P597.2 文献标志码: A doi: 10.3975/cagsb.2012.06.16

The Measurement of Oxygen Isotope Composition of Dissolved Inorganic Phosphate in Seawater

LU Yang-yang¹⁾, ZHENG Zhen-zhen¹⁾, YIN Xi-jie²⁾, CHEN Zhi-gang¹⁾, CAI Yi-hua¹⁾, LIU Guang-shan¹⁾, HUANG Yi-pu¹⁾

 College of Oceanography and Earth, Xiamen University, Xiamen, Fujian 361005;
Open Laboratory of Coast & Ocean Environmental Geology, Third Institute of Oceanography, State Oceanic Administration, Xiamen, Fujian 361005

Abstract: The oxygen isotope fractionation between biogenic phosphate and water is primarily controlled by temperature and biological activity, so the oxygen isotope composition of phosphate ($\delta^{18}O_P$) has been used to measure the paleotemperature and trace phosphorus biogeochemical cycles. Recently the study of $\delta^{18}O_P$ has attracted much attention. In addition to traditional biogenic apatite paleotemperature_measurements, the studies are mostly concentrated on the phosphorus cycle. $\delta^{18}O_P$ of dissolved inorganic phosphate (DIP) is an effective proxy for tracing sources and biogeochemical cycle of phosphorus. Seawater composition is very complex, so the seawater sample must be separated and purified before the $\delta^{18}O_P$ measurement. Professor Paytan of University of California (Santa Cruz), and Professor Blake of Yale University have established their respective $\delta^{18}O_P$ measurement methods of seawater DIP, but the two method have their respective advantages and disadvantages. The authors combined the advantages of the two methods and modified some procedures to establish an improved $\delta^{18}O_P$ measurement method of seawater DIP. In this method, DIP in water samples is concentrated through

本项目由国家自然科学基金(编号: 11075221, 41006072, 40706033)资助。

收稿日期: 2012-09-03; 改回日期: 2012-10-12。责任编辑: 魏乐军。

第一作者简介: 卢阳阳, 男, 1989 年生。硕士研究生。主要从事同位素海洋化学专业研究。E-mail: luyangyang1826@163.com。

 $Mg(OH)_2$ -PO₄ co-precipitation, which can exclude a portion of the dissolved organic material (DOM) and interfering ions; then the resulting solution is converted to CePO₄ precipitate to further separate Pi from dissolved salts, especially Cl⁻, and subsequently the solution is purified through a batch mode cation resin to remove Ce³⁺ from the solution and through anion resin column treatment to remove the dissolved organic material. Phosphate is converted to silver phosphate ultimately, which is in turn pyrolitically decomposed to CO at 1350 °C and δ^{18} O is analyzed with continuous-flow isotope ration mass spectrometry (IRMS). The results show that this procedure can remove the interfering compounds effectively and preserve the initial oxygen isotope composition. The sample amount needed is 0.3 mg (Ag₃PO₄), with an average standard deviation between 0.2‰ and 0.3‰. **Key words:** seawater; dissolved inorganic phosphate; oxygen isotope; method

对于所有生物来说, 磷都是一个重要的营养元 素。它在基本生化反应中都扮演着关键角色, 包括 遗传物质、能量传递、有机质结构支撑的膜及骨骼 (Ruttenberg, 2003)。磷在许多水生生态系统中都是限 制性营养元素, 因此对初级生产力有着重要的影响 (Karl et al., 2001; Wu et al., 2000; Benitez-Nelson, 2000; Karl et al., 1997)。在地质时间尺度上通常认为 磷是海洋生态系统中最终的限制性营养元素(Tyrrell, 1999; Toggweiler, 1999), 进而影响生物泵的效率 (Föllmi, 1996)。

然而磷只有一个稳定同位素(³¹P),在自然界主 要以正五价正磷酸盐形式存在,因此磷循环的研究 手段相对单一。常用的方法是测量无机磷含量、总 磷含量和有机磷含量(总磷和无机磷之差)。对于沉积 物,也可以用不同提取液将磷分为弱吸附态、氧化 物吸附态、自生磷灰石态、碎屑磷灰石态和有机磷 态(Ruttenberg, 1992)。比较有效的示踪剂是³²P和 ³³P(Benitez-Nelson et al., 1999),然而由于它们的含 量低、半衰期短,限制了它们的应用。

在PO43-中P-O键长处于单键和双键之间,具有 颇高的稳定性(键能为 359.8 kJ·mol⁻¹), 使PO₄³⁻成为 一个很稳定的结构单元。PO43-呈四面体结构, P位于 四面体中心, 四个氧分别位于在四面体的四个顶 点。多种结合形式的P(V)含氧化合物都是以磷氧四 面体为结构基础。研究结果显示,在地表温度和pH 范围内, 若没有生物或酶的作用, PO₄³⁻和水分子不 会发生氧交换(Liang et al., 2007; O'Neil et al., 2003; Lecuyer et al., 1999)。因此, 很多科学家将目标转移 至具有 3 个稳定同位素的氧, 即磷酸盐的氧同位素 组成研究。磷酸盐的氧同位素组成可用来示踪水体 中磷的来源(Young et al., 2009; Elsbury et al., 2009), 同时也可示踪海洋中磷的生物地球化学循环过程 (Goldhammer et al., 2011; Jaisi et al., 2010; Paytan et al., 2007; McLaughlin et al., 2006a, b, c; Colman et al., 2005), 是海洋磷循环研究中一个不可多得的示踪 剂。

磷酸盐氧同位素测量要求把样品中的PO43-转化 为纯的Ag₃PO₄。海水组成十分复杂,必须对样品进 行富集、分离和纯化,并要求这些处理过程不会产 生氧同位素分馏。目前,国内万德芳等(2001)建立了 地质样品磷酸盐氧同位素组成的氟化测量方法,周 爱国等(2008)和甘义群等(2005)建立了硫酸盐氧同 位素的测量方法,还尚未看到海水溶解磷酸盐氧同 位素组成的测量方法(林继军等, 2010; 陈志刚等, 2010)。国际上只有加州大学(Santa Cruz)Paytan和耶 鲁大学Blake的实验室建立了海水溶解磷酸盐氧同 位素的测量方法(McLaughlin et al., 2004; Colman, 2002)。Paytan实验室的方法是先用氢氧化镁共沉淀 法(magnesium-induced co-precipitation, 简称MAGIC) (Karl et al., 1992; Thomson-Bulldis et al., 1998)来富 集海水中的溶解磷酸盐,同时也可以去除一些杂质, 然后用 PO_4^{3-} 的特征沉淀CePO₄进一步纯化PO₄³⁻, 最 后用阳离子交换树脂除Ce³⁺,并将PO₄³⁻转化成Ag₃PO₄ 后,用同位素比值质谱(Isotope-ratio mass spectrometry IRMS)测定同位素组成。而Blake实验室则 通过多次MAGIC来去除杂质离子(特别是Cl⁻),然后 用阴离子交换树脂来除溶解有机质,最后用阳离子 交换树脂除Na和HCO3²⁻,并将PO4³⁻转化成Ag3PO4 用IRMS测定。Paytan方法的优点是用PO₄³⁻的特征沉 c_{ePO_4} 对除其他杂质离子具有较好的效果, 缺点 是没有专门除溶解有机质的步骤; Blake教授方法的 优点是通过阴离子交换树脂能有效地去除海水中大 部分溶解有机质、缺点是多次MAGIC会降低磷的回 收率,也可能会造成有机磷的水解。本研究结合了 两个实验室方法的优点,即用阴离子树脂除溶解有 机质,用CePO₄去除杂质离子,并对一些步骤进行 了改进、建立了海水溶解磷酸盐氧同位素的准确测 量方法。

1 实验方法

1.1 试剂与仪器

器皿: 250 mL 聚乙烯塑料瓶, 100 mL, 50 mL

聚碳酸酯离心管, 50 mL 玻璃烧杯,带砂芯的层析柱, 所用器皿均在 10%(体积分数)的硝酸中浸泡, 使用 前用 Milli-Q 水洗涤干净;

试剂: BIO-RAD AG-50X8 阳离子交换树脂 (Biotechnology Grade, H⁺型, 100~200 目); BIO-RAD AG1-X8 阴离子交换树脂(Biotechnology Grade, OH⁻ 型, 200~400 目); KH₂PO₄(AR); AgNO₃(AR); Ag₃PO₄; 高纯氮气; Milli-Q 水;

仪器: 多管架自动平衡离心机(XiangYi L-530); pH 计(Thermo orion Model 868); 百万分之一电子天 平 (Sartorius ME36S); 热燃烧/元素分析仪 (Thermo-Chemical Element Analyzer TC/EA) (Thermo Finnigan); 连续流系统(Thermo Finnigan ConFlo); 同位素比值质谱仪 IRMS(Thermo Finnigan Delta V)。

1.2 方法与步骤

1.2.1 海水中PO4³⁻的富集和纯化

采用 MAGIC 法富集海水中的溶解无机磷 (Dissolved Inorganic Phosphate, 简称 DIP), 流程见 图 1。按与海水体积比为 1%的比例向海水样品中加 入 1 mol/L 的 NaOH 溶液, 形成 Mg(OH)₂ 白色沉淀, 充分搅拌后静置 6 h。虹吸弃去上清液,将沉淀转移 至 100 mL 聚碳酸酯离心管中, 以 3500 r/min 的转 速离心 5 min, 弃去上清液。

用 5 mL 冰醋酸和 15~20 mL 3mol/L 的 HNO₃ 溶液,将离心后的 Mg(OH)₂ 沉淀全部溶解,接着加 入 1 mol/L 的 CH₃COONa 溶液,调节 pH 到 5.5~6 之间。加入 3 mL 0.4 mol/L 的 Ce(NO₃)₃ 溶液,搅拌 混匀后静置 5 h。离心分离 CePO₄ 磷酸铈沉淀 (3500 r/min, 5 min)。用 0.5 mol/L 的 CH₃COONa 溶 液,反复洗涤沉淀并离心,直至完全去除上清液中 的 Cl⁻(Cl⁻会干扰 Ag₃PO₄ 沉淀的形成)。用 1 mol/L 的 HNO₃ 溶解 CePO₄ 沉淀,加入 4 mL BIO-RAD AG-50 ×8 阳离子交换树脂,在摇床上振荡 10 h,用带砂芯 的层析柱将溶液与树脂分离。该步骤未采用传统的 离子交换树脂柱,是因为实际海水样品处理中, CePO₄ 沉淀加酸不会马上完全溶解,采用摇床的物 理振荡破碎,以及阳离子交换树脂在吸附交换 Ce³⁺ 的同时会释放出 H⁺,都会促进沉淀的溶解。

用 1 mol/L 的 NaOH 溶液调节溶液 pH 值至 4~6, 将溶液通过 BIO-RAD AG1-X8 阴离子交换树脂柱, 流速控制在 0.5 mL/min。用 35 mL 0.2 mol/L 的 NaHCO₃ 溶液洗脱,控制流速 0.5 mL/min。将洗脱液 接在 50 mL 的带盖玻璃管中,加入 2 mL 7 mol/L 的 HNO₃ 溶液来除 HCO₃⁻。

加入 2 滴溴百里酚蓝指示剂和 1 mL 浓氨水, 溶 液由亮黄色变为蓝色, 再用 3 mol/L 的 HNO₃ 调节溶 液至蓝绿色, 此时溶液 pH 值约为 8.0。加入 2 mL 2 mol/L 的 AgNO₃ 溶液, 形成亮黄色的 Ag₃PO₄ 沉淀, 静置过夜。分离 Ag₃PO₄ 沉淀并在 60 烘干待测。 1.2.2 测量

样品采用 IRMS 测量。将 Ag₃PO₄ 样品(300 μg) 包入银舟(3.5 mm, Thermo), 通过自动进样器进入 TC/EA。Ag₃PO₄在1350 的条件下裂解,释放的氧 和石墨反应形成 CO。CO 气体样品通过水阱(H₂O trap)和 GC(气相色谱)柱纯化后,通过连续流系统载 入质谱测量。用仪器所带软件(Isodat NT version 3.0) 对 数 据 进 行 处 理 , δ^{18} O 值 均 是 相 对 于 VSMOW(Vienna Standard Mean Ocean Water 维也 纳标准平均海水)。实验室标准用美国地质调查局提 供的 Ag₃PO₄标准(MR-2, δ^{18} O=1.6‰)刻度。

2 结果与讨论

2.1 试剂空白

向无磷含镁溶液中加入实际样品处理过程中所 用到的试剂, 然后采用 2 次 MAGIC 方法对磷进行浓 缩, 测其磷含量。无磷含镁溶液为向 1 L Milli-Q 水 中加入 20 g MgCl₂·6H₂O 配成。试剂的加入量都数倍 于实际样品处理时的用量: NH₄NO₃(AR, 4 倍), CH₃COONa(AR, 2 倍), NaOH(AR, 3 倍), 乙酸(AR, 10 倍), 氨水(AR, 10 倍)。试剂用量及结果见表 1。

Table 1 Regent amount and corresponding phosphorus blank								
样品号	无磷含镁溶液	NH ₄ NO ₃	CH ₃ COONa	乙酸体积 V	氨水体积 V	第一次	第二次	含磷量 n
	体积 V/mL	质量/g	质量/g	/mL	/mL	NaOH 质量/g	NaOH 质量/g	/µmol
1	1000	1.0	20	10	10	12	1.40	0.053
2	1000	1.0	22	10	10	12	1.52	0.049
3	1000	1.0	33*	10	10	12	1.20	0.043
4	1000	1.0	33*	10	10	12	1.20	0.040
5	1000	1.0	33*	10	10	12	1.20	0.045
6	1000	1.0	33*	10	10	12	1.20	0.034
7	1000	1.0	20	10	10	12	1.12	0.043

表 1 试剂量及其磷空白值 1 Regent amount and corresponding phosphorus b

注:带^{*}号的为 CH₃COONa•3H₂O,其余皆为 CH₃COONa。

结果显示磷含量在 0.034 ~ 0.053 μmol 之间。这 些 试 剂 的 加 入 量 是 实 际 样 品 处 理 时 用 量 的 2 ~ 10 倍。实际样品磷含量一般大于 30 μmol, 因此 可认为该实验所用试剂造成的影响可以忽略不计。

2.2 纯化效果

对分离纯化后形成的 Ag_3PO_4 用 X'pert PRO X 射线衍射(X-ray diffraction XRD)进行测定。一份样 品是用 20 L 厦门湾表层海水按图 1 流程处理后得到 的 Ag_3PO_4 沉淀(厦门湾表层海水)(见图 2a)。第二份 样品是 5 L 海水经 MAGIC 共沉淀后的上清液(无磷 海水)外加 KH₂PO₄ 溶液按图 1 流程处理后得到的 Ag_3PO_4 沉淀(无磷海水+KH₂PO₄)(见图 2b)。第三份 样品是用 KH₂PO₄ 溶液和 AgNO₃ 溶液直接形成 Ag_3PO_4 沉淀(去离子水+KH₂PO₄)(见图 2c)。

图 2 Ag₃PO₄的 XRD 谱图 Fig. 2 XRD patterns of Ag₃PO₄ a-厦门湾表层海水合成; b-磷空白海水加 KH₂PO₄ 试剂合成; c-Milli-Q 水加 KH₂PO₄ 试剂合成

a-synthesized from Xiamen bay surface seawater; b-synthesized from KH₂PO₄ regent in phosphate blank seawater; c-synthesized from KH₂PO₄ regent in Milli-Q water 图 2 显示 3 个图谱吻合得十分好,和 Ag_3PO_4 标 准图谱(JCPDS, card no.: 6-505)也吻合得很好,说明 分离纯化效果很好。

2.3 判断由PO₄³·形成Ag₃PO₄时氧同位素是否分馏

称取 16 mg Ag₃PO₄试剂,用 2 mL 1 mol/L 的 HNO₃ 溶解,然后再用溴百里酚蓝指示剂调节 pH 值 至 8.0 左右,加入过量 AgNO₃ 溶液,形成 Ag₃PO₄ 沉 淀,洗涤后烘干测量其 δ^{18} O(Ag₃PO₄ 试剂溶解再沉 淀)。同时也用相同的 Ag₃PO₄ 试剂不经处理直接测 其 δ^{18} O(Ag₃PO₄ 试剂)。结果如图 3 所示。

结果显示, Ag_3PO_4 试剂直接测量 $\delta^{18}O$ 的平均值 为 8.7‰,标准偏差为±0.2‰(n=15);将 Ag_3PO_4 试剂 溶解加入过量 $AgNO_3$ 溶液重新形成 Ag_3PO_4 的 $\delta^{18}O$ 测量平均值为 8.8‰,标准偏差为±0.2‰(n=7)。二 者在误差范围内一致,说明在由 PO_4^3 ·形成 Ag_3PO_4 时不会产生氧同位素分馏。

and dissolved and reprecipitated Ag_3PO_4

2.4 判断全流程氧同位素是否分馏

用移液枪移取 5 mL 8000 μ mol/L 的 KH₂PO₄ 溶 液,调 pH 为 8.0 左右,加入过量 AgNO₃ 形成 Ag₃PO₄ 沉淀,洗涤、烘干后测量其 $\delta^{18}O(KH_2PO_4$ 直接形成 Ag₃PO₄ 沉淀)。由本文 2.3 节可知 PO₄³⁻形成 Ag₃PO₄ 时不会产生氧同位素分馏,因此该值即为 KH₂PO₄ 试剂的 $\delta^{18}O_{\circ}$

用移液枪移取 5 mL 相同的 KH₂PO₄ 溶液, 按 图 1 的流程处理后形成 Ag₃PO₄ 沉淀, 洗涤、烘干后 测量其 δ^{18} O(KH₂PO₄ 经过全流程后形成 Ag₃PO₄ 沉 淀)。测量结果如图 4 所示。

结果显示 KH₂PO₄ 溶液加 AgNO₃ 直接形成 Ag₃PO₄ 的 δ^{18} O 平均值为 13.3‰,标准偏差为 ±0.3‰(n=8); KH₂PO₄ 经过全流程形成 Ag₃PO₄ 的 δ^{18} O 平均值为 13.3‰,标准偏差为±0.2‰(n=10)。可 以看出二者在误差范围内一致,说明本研究所采用 的富集、分离流程不会产生 PO₄³⁻的氧同位素分馏。

3 结论

本研究建立了海水中溶解磷酸盐氧同位素的测量方法。XRD 结果显示所采用的分离、纯化流程可以获得纯的 Ag₃PO₄ 沉淀。用 KH₂PO₄ 试剂经过全流程处理,结果显示整个富集、分离和纯化流程不会产生氧同位素分馏。测量 Ag₃PO₄ 用量仅为 0.3 mg,标准偏差在±0.2‰~±0.3‰之间。

参考文献:

陈志刚, 黄奕普, 刘广山, 蔡毅华, 卢阳阳, 刘润. 2010. 磷酸盐

氧同位素组成的测定方法及分馏机理研究进展[J]. 地球科 学进展, 25(10): 1040-1050.

- 甘义群,周爱国,刘存富.2006. 硫酸盐 δ¹⁷O 和 δ¹⁸O 同时测试新 技术: CO₂-激光氟化法[J]. 地球学报,26(SI):48-50.
- 林继军,陈志刚,刘广山. 2010. 应用于磷酸盐氧同位素测定的 海水中溶解态磷酸盐的富集,分离与纯化[J]. 厦门大学学 报(自然科学版),49(2):238-241.
- 万德芳,丁悌平.2001. 磷酸盐中的氧同位素测定[J]. 矿物岩石 地球化学通报,20(4):448-450.
- 周爱国,刘存富,蔡鹤生,甘义群,李小倩,余婷婷,刘运德. 2008. 硫酸盐三氧同位素测试制样新技术——Ag₂SO₄ 热解 法[J]. 地球学报,29(6): 673-676.

References:

- BENITEZ-NELSON C R, BUESSELER K O. 1999. Variability of inorganic and organic phosphorus turnover rates in the coastal ocean[J]. Nature, 398(6727): 502-505.
- BENITEZ-NELSON C R. 2000. The biogeochemical cycling of phosphorus in marine systems[J]. Earth-Science Reviews, 51(1-4): 109-135.
- CHEN Zhi-gang, HUANG Yi-pu, LIU Guang-shan, CAI Yi-hua, LU Yang-yang, LIU Run. 2010. Advances in the measurement methods and fractionation mechanism of the oxygen isotope composition of phosphate[J]. Advances in Earth Science, 25(10): 1040-1050(in Chinese with English abstract).
- COLMAN A S, BLAKE R E, KARL D M, FOGEL M L, TUREKIAN K K. 2005. Marine phosphate oxygen isotopes and organic matter remineralization in the oceans[J]. Proceedings of the National Academy of Sciences of the United States of America, 102(37): 13023-13028.
- COLMAN A S. 2002. The oxygen isotope composition of dissolved inorganic phosphate and the marine phosphorus cycle[D]. Connecticut: Yale University.
- ELSBURY K E, PAYTAN A, OSTROM N E, KENDALL C, YOUNG M B, MCLAUGHLIN K, ROLLOG M E, WATSON S. 2009. Using oxygen isotopes of phosphate to trace phosphorus sources and cycling in Lake Erie[J]. Environmental Science & Technology, 43(9): 3108-3114.
- FÖLLMI K. 1996. The phosphorus cycle, phosphogenesis and marine phosphate-rich deposits[J]. Earth-Science Reviews, 40(1-2): 55-124.
- GAN Yi-qun, ZHOU Ai-guo, LIU Cun-fu. 2006. The CO₂-Laser Fluorination Method: A New Technique for Simultaneous Determination of δ^{17} O and δ^{18} O in Sulfates[J]. Acta Geoscientica Sinica, 26(Sl): 48-50(in Chinese with English abstract).

GOLDHAMMER T, BRUNNER B, BERNASCONI S M,

FERDELMAN T G, ZABEL M. 2011. Phosphate oxygen isotopes: Insights into sedimentary phosphorus cycling from the Benguela upwelling system[J]. Geochimica et Cosmochimica Acta, 75(13): 3741-3756.

- JAISI D P, BLAKE R E. 2010. Tracing sources and cycling of phosphorus in Peru Margin sediments using oxygen isotopes in authigenic and detrital phosphates[J]. Geochimica et Cosmochimica Acta, 74(11): 3199-3212.
- KARL D M, BIDIGARE R R, LIDIGARE R M. 2001. Long-term changes in plankton community structure and productivity in the North Pacific Subtropical Gyre: the domain shift hypothesis[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 48(8-9): 1449-1470.
- KARL D M, TIEN G. 1992. MAGIC: A sensitive and precise method for measuring dissolved phosphorus in aquatic environments[J]. Limnology and Oceanography, 37(1): 105-116.
- KARL D M, TIEN G. 1997. Temporal variability in dissolved phosphorus concentrations in the subtropical North Pacific Ocean[J]. Marine Chemistry, 56(1-2): 77-96.
- LECUYER C, GRANDJEAN P, SHEPPARD S M F. 1999. Oxygen isotope exchange between dissolved phosphate and water at temperatures≤135°C: inorganic versus biological fractionations[J]. Geochimica et Cosmochimica Acta, 63(6): 855-862.
- LIANG Y H, BLAKE R E. 2007. Oxygen isotope fractionation between apatite and aqueous-phase phosphate: 20–45°C[J]. Chemical Geology, 238(1-2): 121-133.
- LIN Ji-jun, CHEN Zhi-gang, LIU Guang-shan. 2010. The Preconcentration, Separation and Purification of Phosphate for the Seawater Dissolved Phosphate Oxygen Isotope Composition Analysis[J]. Journal of Xiamen University (Natural Science), 49(2): 238-241(in Chinese with English abstract).
- MCLAUGHLIN K, CADE-MENUN B J, PAYTAN A. 2006a. The oxygen isotopic composition of phosphate in Elkhorn Slough, California: A tracer for phosphate sources[J]. Estuarine, Coastal and Shelf Science, 70(3): 499-506.
- MCLAUGHLIN K, CHAVEZ F, PENNINGTON J T, PAYTAN A. 2006b. A time series investigation of the oxygen isotopic composition of dissolved inorganic phosphate in Monterey Bay, California[J]. Limnology and oceanography, 51(5): 2370-2379.
- MCLAUGHLIN K, KENDALL C, SILVA S R, YOUNG M, PAYTAN A. 2006c. Phosphate oxygen isotope ratios as a tracer for sources and cycling of phosphate in North San

Francisco Bay, California[J]. Journal of Geophysical Research, 111: G03003, doi: 10.1029/2005JG000079.

- MCLAUGHLIN K, SILVA S, KENDALL C, STUART-WILLIAMS H, PAYTAN A. 2004. A precise method for the analysis of δ18O of dissolved inorganic phosphate in seawater[J]. Limnol Oceanogr: Methods, 2: 202-212.
- O'NEIL J R, VENNEMANN T W, MCKENZIE W F. 2003. Effects of speciation on equilibrium fractionations and rates of oxygen isotope exchange between (PO4)_{aq} and H₂O[J]. Geochimica et Cosmochimica Acta, 67(17): 3135-3144.
- PAYTAN A, MCLAUGHLIN K. 2007. The oceanic phosphorus cycle[J]. Chemical Reviews, 107(2): 563-576.
- RUTTENBERG K C. 1992. Development of a sequential extraction method for different forms of phosphorus in marine sediments[J]. Limnology and Oceanography, 37(7): 1460-1482.
- RUTTENBERG K C. 2003. The Global Phosphorus Cycle[M]// HEINRICH D H, KARL K T, eds. Treatise on geochemistry[M]. Oxford: Pergamon.
- THOMSON-BULLDIS A, KARL D. 1998. Application of a novel method for phosphorus determinations in the oligotrophic North Pacific Ocean[J]. Limnology and Oceanography, 43(7): 1565-1577.
- TOGGWEILER J R. 1999. An ultimate limiting nutrient[J]. Nature, 400(6744): 511-512.
- TYRRELL T. 1999. The relative influences of nitrogen and phosphorus on oceanic primary production[J]. Nature, 400(6744): 525-531.
- WAN De-fang, DING Ti-ping. 2001. Determination of Oxygen Isotopes in the Phosphate[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 20(4): 448-450(in Chinese with English abstract).
- WU J F, SUNDA W, BOYLE E A, KARL D M. 2000. Phosphate depletion in the western North Atlantic Ocean[J]. Science, 289(5480): 759-762.
- YOUNG M B, MCLAUGHLIN K, KENDALL C, STRINGFELLOW W, ROLLOG M, ELSBURY K, DONALD E, PAYTAN A. 2009. Characterizing the oxygen isotopic composition of phosphate sources to aquatic ecosystems[J]. Environmental Science & Technology, 43(14): 5190-5196.
- ZHOU Ai-guo, LIU Cun-fu, CAI He-sheng, GAN Yi-qun, LI Xiao-qian, YU Ting-ting, LIU Yun-de. 2008. A New Sample Preparation Technology for Determining Tri-oxygen Isotopes in Sulfate by Ag₂SO₄ Pyrolysis[J]. Acta Geoscientica Sinica, 29(6): 673-676(in Chinese with English abstract).