www.cagsbulletin.com www.地球学报.com

LA-MC-ICP-MS独居石 微区原位U-Pb同位素年龄测定

崔玉荣,周红英,耿建珍,李怀坤,李惠民

中国地质调查局天津地质矿产研究所, 天津 300170

摘 要: 独居石富含 U、Th,同时具有较低的初始普通 Pb 含量,是 U-Pb 和 Th-Pb 同位素定年的理想对象。 由于普遍存在于多种岩石中,独居石的 U-Th-Pb 定年具有广阔的应用前景。本文报道利用 193 nm ArF 准分 子激光剥蚀系统和 NEPUNE 多接收器电感耦合等离子体质谱仪,对独居石进行微区原位 U-Pb 同位素年龄测 定的新方法。运用这一新方法对独居石样品 AL01、BL02 和 CL03 进行微区原位 U-Pb 同位素年龄测定,获 得 AL01 和 BL02 号样品的 ²⁰⁶Pb/²³⁸U 年龄加权平均值分别为(288.3±1.1) Ma (n=19)和(446.8±2.3) Ma (n=41); CL03 号样品的 U-Pb 等时线年龄为(396.8±8.8) Ma (n=55),取得了令人满意的结果。

关键词: 独居石; 微区原位; LA-MC-ICP-MS; U-Pb 同位素测年 中图分类号: P578.921; P597.2 文献标志码: A **doi**: 10.3975/cagsb.2012.06.04

In Situ LA-MC-ICP-MS U-Pb Isotopic Dating of Monazite

CUI Yu-rong, ZHOU Hong-ying, GENG Jian-zhen, LI Huai-kun, LI Hui-min Tianjin Institute of Geology and Mineral Resources, China Geological Survey, Tianjin 300170

Abstract: Characterized by rich U, Th and low initial Pb content, monazite is an ideal object for U-Pb and Th-Pb isotopic dating. Due to the existence of monazite in a variety of rocks, the U-Th-Pb dating of monazite has a broad application prospect. A new method is reported in this paper. The monazite samples were analyzed by using 193 nm ArF excimer laser ablation system coupled with NEPUNE multi-collector inductively coupled plasma mass spectrometer. The monazite samples AL01, BL02 and CL03 were dated by this method. The weighted average ${}^{206}Pb/{}^{238}U$ ages of AL01 and BL02 were (288.3±1.1) Ma (n=19) and (446.8±2.3) Ma (n=41) respectively, and the isochron age of CL03 was (396.8±8.8) Ma (n=55), showing satisfactory results.

Key words: monazite; in situ; LA-MC-ICP-MS; U-Pb isotopic dating

随着分析技术的迅猛发展,副矿物微区原位测 年方法已经广泛应用于同位素地质年代学研究中, 成为探讨地球演化历史和各类地质作用过程的重要 技术手段。与毫克量级和单颗粒量级的矿物热电离 质谱法(TIMS)比较,矿物微区原位分析技术能够揭 示同一个矿物颗粒不同部位的成分和同位素地质年 代信息,同时避免了繁琐的化学处理过程。目前, U-Pb 同位素地质年代学中最常用的定年矿物是锆 石。但对于某些岩石而言,因为缺少锆石,无法对有 些地质体、地质事件给出时代的约束,这就需要进 行其他副矿物的 U-Pb 同位素测定,以此得到同位素 年龄。斜锆石、钙钛矿、金红石、磷灰石、独居石 等副矿物的 U-Pb 定年技术国内外已有报道(吴昌华 等,1998;李惠民等,2007;周红英等,2007,2008, 2012; Stern et al.,2000; Chamberlain et al.,2010; Wu et al.,2010; Danišík et al.,2010; Li N et al.,2011; Li Q L et al.,2011)。但独居石 U-Pb 同位素测定的重要 性还没有得到广泛认同,应用也较少。随着研究的

收稿日期: 2012-09-20; 改回日期: 2012-10-17。责任编辑: 魏乐军。

本文由国土资源部公益性行业科研专项"非锆石类富铀矿物 U-Pb 同位素定年方法研究"(编号: 200911043-15)资助。

第一作者简介: 崔玉荣, 女, 1984 年生。助理工程师。主要从事同位素地球化学专业研究。E-mail: cyr007@mail.ustc.edu.cn。

不断深入, 独居石微区原位定年将受到越来越多的 关注, 应用也会越来越多。

独居石作为一种较常见的副矿物产于中酸性岩 浆岩和变质岩中,在一些沉积岩中也存在,与锆石、 磷钇矿及磷灰石等伴生。不论岩浆成因或变质成因 的独居石,其同位素年龄的地质意义都较为清楚。 在退变质和流体作用过程中,与锆石相比独居石对 环境条件的变化更为敏感。由于独居石 U、Th 含量 一般较高,对一些很年轻的地质体,独居石更易于 定年研究。在沉积岩成岩过程中也可能有同生独居 石形成,这为确定沉积岩形成时代提供了潜在的可 能(Evans et al., 1996; 宋天锐, 1999; Evans et al., 2002)。因此,独居石同位素年代学研究具有十分重 要的地质意义。

目前,国内外对独居石直接定年的方法主要有: (1)电子探针 U-Th-Pb 化学定年法, 该方法是利用电 子探针来测定独居石中的 U-Th-Pb 含量而进行定年 的方法, 最初是由 Suzuki 和 Adachi 提出的。他们利 用电子探针对日本东南部 Kitakami 地质体中的 Tsubonosawa 副片麻岩中的独居石、锆石和磷钇矿 中的 U-Th-Pb 进行了测定计算,获得了变质事件的 化学年龄以及经历的热事件期次,并成功绘出了变 质事件的等时线(Suzuki et al., 1991, 1996)。但由于 该方法受电子探针检测极限制约、对低 U-Th 含量 的样品难以获得理想的结果。(2)单颗粒独居石同位 素稀释热电离质谱法(ID-TIMS) (Parrish, 1990; Paquette et al., 2004; Peterman et al., 2012), 该方法 的优点是单次测定的精度较高、可测定的独居石年 龄范围较广(从中生代到太古宙),而且不需要相应 的标准独居石作校正,避免了寻找和制备标准的困 难。但是此方法对实验本底要求较高,而且化学前 处理过程较为繁琐,同时一些有复杂演化历史的独 居石内部存在不同的成分域(De Wolf et al., 1993; Zhu et al., 1997; Bingen et al., 1998), 如果它们形成 时代存在明显差异,由 ID-TIMS 得到的单颗粒独居 石测定结果将是地质意义含糊不清的。(3)二次离子 质谱法(SIMS)、利用 SIMS 对独居石进行 U-Pb 同位 素测定,通常得到精度较好的结果(Zhu et al., 1997, 1998; Stern et al., 2000; Rubatto et al., 2001; 万渝生 等, 2004), 但该方法所用仪器价格昂贵, 测定成本 较高, 使得独居石 SIMS 定年方法的推广受到限制。 (4)LA-ICP-MS 微区原位定年方法, Paquette 等(2007) 利用 LA-ICP-MS 对小束斑(5 µm)的独居石样品进行 测试,得到了满意的结果。该方法最大的优点在于 简便快速。然而、其基体效应较为明显、需要相应的 矿物标准来进行校正。近几年迅速发展起来的激光 剥蚀多接收等离子质谱(LA-MC-ICP-MS)定年方法 虽然已经成为锆石 U-Pb 定年分析中的重要工具,然 而对独居石的定年分析还鲜有报道(McFarlane et al., 2007; Paquette et al., 2007),特别是国内还没有该方 面的研究。本研究采用 LA-MC-ICP-MS 技术,对独 居石进行了微区原位 U-Pb 同位素测定,并对测定结 果进行了讨论。

1 实验方法与仪器

1.1 仪器

本研究是在中国地质调查局天津地质矿产研究 所同位素实验室利用激光烧蚀多接收等离子体质谱 仪(LA-MC-ICP-MS)完成的。采用的激光剥蚀系统为 美国 ESI 公司生产的 NEW WAVE 193 nm FX ArF 准分子激光器,波长 193 nm,脉冲宽度小于 4 ns, 束斑直径为 1、2、5、10、20、25、35、50、75、 76、100 和 150 µm 可调,脉冲频率为 1~200 Hz 连续 可调,激光输出功率为 15 J/cm²。多接收器电感耦合 等离子体质谱仪为美国 Thermo Fisher 公司生产的 NEPUNE,其离子光学通路采用能量聚焦和质量聚 焦的双聚焦设计,并采用动态变焦 Zoom 将质量色 散扩大至 17%,其基本情况已在相关文献中作过详 细报道(李怀坤等, 2009, 2010; 耿建珍等, 2011)。 1.2 实验方法

本文所采用的独居石微区原位 LA-MC-ICP-MS U-Pb 同位素定年方法与锆石的 LA-MC-ICP-MS 定 年方法基本相同。

在双目显微镜下挑选均一、透明的独居石用双 面胶粘于载玻片上,放上 PVC 环,然后将环氧树脂 和固化剂进行充分混合后注入 PVC 环中,放入烘箱 烘干,待树脂充分固化后将样品靶从载玻片上剥 离。将样品靶进行打磨和抛光后进行反射光、透射 光和阴极发光照相,根据独居石样品的显微照片选 择合适的测定区域,尽量避开矿物中对测定有影响 的裂隙、包裹体及其它杂质部位。

利用 193 nm FX 激光器对独居石进行剥蚀, 激 光剥蚀物质以 He 为载气送入 MC-ICP-MS, 通过 Zoom 调节扩大色散使质量数相差很大的 U-Pb 同位 素同时接收。激光剥蚀的束斑直径一般为 20 μm, 能 量密度为 10~11 J/cm², 频率为 5 Hz, 测试采用的接 收器配置及相关仪器参数见表 1。

每测定 5 个未知样品点, 交替测定 2 次标准样 品。数据处理时, 用与未知样品交替测定的独居石

L4 L3 L2	L1	С	H2	H4					
²⁰⁴ Pb ²⁰⁶ Pb ²⁰⁷ Pb	²⁰⁸ Pb	219.26	²³² Th	²³⁸ U					
参数		数	值						
冷却气(Ar)		16 L	/min						
辅助气(Ar)		0.75	L/min						
载气(Ar)		0.968 L/min							
载气(He)	0.86 L/min								
RF 功率		1250 W							
积分时间		0.131 s							
信号采集时间	60 s (20 s 空白)								
激光能量密度	10~11 J/cm ²								
剥蚀斑径		20	μm						
激光频率	5 Hz								

表 1 独居石微区原位 LA-MC-ICP-MS U-Pb 同位素比值测定的接收器配置及相关仪器参数 Table 1 In situ LA-MC-ICP-MS collector configuration and operating parameters for monazite U-Pb Isotopic analysis

注: 表 1 中第一、二两行表示法拉第杯从低杯 L4 到高杯 H4 接收的 U、Th、Pb 质量数, C 表示中心杯, 对应接收的是虚拟质量数 219.26。

标准 44069 来校正 U-Pb 同位素分馏。由 TIMS 给出的独居石标准样品 44069的²⁰⁶Pb/²³⁸U 年龄为 (424.9±0.4) Ma(万渝生等, 2004)。根据不同时间和不 同的仪器状态下用 LA-MC-ICP-MS 所测得的该独居 石标样的²⁰⁶Pb/²³⁸U 年龄加权平均值与用 TIMS 所测 得的²⁰⁶Pb/²³⁸U 年龄值的差距来计算 U-Pb 同位素分 馏系数,其计算公式为:

 $K=t_1/t_2$

式中: K 为用 LA-MC-ICP-MS 测定时的 U-Pb 同位素分馏系数; t_1 为用 LA-MC-ICP-MS 所测得的 该独居石标样的 ²⁰⁶Pb/²³⁸U 年龄加权平均值; t_2 为用 TIMS 所测得的该独居石标样的 ²⁰⁶Pb/²³⁸U 年龄值。

未知样品的²⁰⁶Pb/²³⁸U年龄计算公式为:

 $T=t_1/K$

式中: T 为未知样品的 ²⁰⁶Pb/²³⁸U 年龄值; t₁ 为 用 LA-MC-ICP-MS 测得的该未知样品的 ²⁰⁶Pb/²³⁸U 年龄加权平均值; K 为用 LA-MC-ICP-MS 测定时的 U-Pb 同位素分馏系数。

本文报道的独居石样品采用²⁰⁷Pb 校正法和等 时线法对普通铅进行校正(Andersen, 2002), 作图采 用 Ludwig KR 的 Isoplot 程序(Ludwig, 2001)。

2 实验结果

2.1 独居石标样 44069 测定结果

独居石标样 44069 LA-MC-ICP-MS U-Pb 同位 素测定结果见于表 2,表中数据均是采用 ²⁰⁷Pb 校正 法对普通铅进行扣除后的结果。在 20 μm 剥蚀斑径、 5 Hz 激光频率和 10 J/cm² 输出能量的实验条件下, 独居石标样 44069 可以达到足够测定的灵敏度,其

²⁰⁶Pb、²³⁸U及²³²Th 的强度大约分别为 0.06 V、1.0 V 和 5.0 V, 可以看出独居石的 U、Th 含量比较高。本 研究对独居石标样 44069 进行多次测定的结果表明, 该标样较为均一,但由于测定时不同仪器状态下 U-Pb 同位素分馏系数的不同使测得的结果有一定 的 差 别 。 而 根 据 本 实 验 室 对 各 种 矿 物 的 LA-MC-ICP-MS U-Pb 同位素测定结果的分析、当 LA-MC-ICP-MS U-Pb 同位素测定结果与 TIMS 准确 测定获得的结果的年龄偏差在 20%以内时、由于同 位素分馏系数的不同而导致的误差是很小的。本文 在测定各种独居石样品时对独居石标样 44069 进行 多次测定,并用独居石标样 44069 的测定结果来校 正样品测试的结果。在 3 次不同时间和不同的仪器 状态下, 独居石标样 44069 的²⁰⁶Pb/²³⁸U 年龄加权平 均值分别为(411.7±2.1) Ma (n=15)、(371.9±2.8) Ma (n=20)和(378.9±2.0) Ma (n=24)(图 1)。

对独居石标样 44069 用 LA-MC-ICP-MS 测得的 ²⁰⁶Pb/²³⁸U 年龄加权平均值与 TIMS 法测得的 ²⁰⁶Pb/²³⁸U 年龄结果偏差分别为 3.1%、12.4%和 10.8%,均小于 20%,由于同位素分馏系数的不同而 导致的误差是很小的。因此,本实验室建立的独居 石微区原位 LA-MC-ICP-MS U-Pb 同位素测年方法 是可行的。

2.2 独居石样品测定结果

2.2.1 样品AL01 和BL02

独居石样品 AL01 和 BL02 的 LA-MC-ICP-MS U-Pb 同位素测定结果见表 3,表中数据均是采用 ²⁰⁷Pb 校正法对普通铅进行扣除后的结果,其年龄结 果分别用独居石标样 44069 的²⁰⁶Pb/²³⁸U年龄加权平

分析点 -	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ
				A	L01					
44069.01	0.4990	0.0082	0.0658	0.0010	0.0562	0.0001	411	7	411	6
44069.03	0.5049	0.0038	0.0665	0.0003	0.0558	0.0002	415	3	415	2
44069.07	0.4945	0.0096	0.0654	0.0002	0.0554	0.0005	408	8	408	1
44069.08	0.4931	0.0104	0.0651	0.0002	0.0556	0.0006	407	9	406	1
44069.09	0.5034	0.0129	0.0663	0.0003	0.0551	0.0007	414	11	414	2
44069.10	0.5004	0.0097	0.0659	0.0003	0.0558	0.0005	412	8	411	2
44069.11	0.4990	0.0109	0.0658	0.0003	0.0555	0.0006	411	9	411	2
44069.12	0.5064	0.0109	0.0667	0.0004	0.0554	0.0006	416	9	416	2
44069.13	0.5078	0.0108	0.0668	0.0003	0.0548	0.0006	417	9	417	2
44069.15	0.5004	0.0072	0.0660	0.0004	0.0553	0.0004	412	6	412	2
44069.16	0.5064	0.0182	0.0666	0.0003	0.0551	0.0011	416	15	415	2
44069.17	0.5034	0.0062	0.0662	0.0004	0.0559	0.0003	414	5	413	2
44069.18	0.5064	0.0080	0.0667	0.0006	0.0554	0.0005	416	7	416	3
44069.19	0.5049	0.0087	0.0665	0.0004	0.0555	0.0004	415	7	415	3
44069.20	0.5034	0.0095	0.0663	0.0004	0.0556	0.0005	414	8	414	3
				F	3L02					
44069.01	0.4712	0.0113	0.0627	0.0010	0.0557	0.0003	392	9	392	7
44069.02	0.4368	0.0162	0.0587	0.0006	0.0557	0.0005	368	14	368	4
44069.03	0.4354	0.0186	0.0585	0.0009	0.0560	0.0006	367	16	366	6
44069.04	0.4482	0.0186	0.0601	0.0008	0.0545	0.0006	376	16	376	5
44069.05	0.4439	0.0091	0.0594	0.0010	0.0560	0.0002	373	8	372	6
44069.06	0.4425	0.0119	0.0593	0.0003	0.0554	0.0004	372	10	371	2
44069.07	0.4712	0.0734	0.0 <mark>62</mark> 8	0.0015	0.0541	0.0024	392	61	392	9
44069.08	0.4439	0.0257	0.0595	0.0010	0.0552	0.0008	373	22	373	6
44069.09	0.4525	0.0401	0.0603	0.0016	0.0577	0.0014	379	34	378	10
44069.10	0.4453	0.0138	0.0597	0.0007	0.0552	0.0004	374	12	374	4
44069.11	0.4482	0.0436	0.0598	0.0014	0.0580	0.0015	376	37	374	9
44069.12	0.4382	0.0176	0.0588	0.0008	0.0558	0.0006	369	15	368	5
44069.13	0.4269	0.0058	0.0575	0.0005	0.0561	0.0002	361	5	361	3
44069.14	0.4439	0.0259	0.0596	0.0013	0.0553	0.0009	373	22	373	8
44069.15	0.4453	0.0141	0.0596	0.0009	0.0558	0.0004	374	12	373	6
44069.16	0.4568	0.0881	0.0609	0.0024	0.0557	0.0030	382	74	381	15
44069.17	0.4525	0.0108	0.0605	0.0007	0.0552	0.0003	379	9	379	4
44069.18	0.4453	0.0113	0.0596	0.0005	0.0561	0.0003	374	9	373	3
44069.19	0.4453	0.0116	0.0595	0.0004	0.0564	0.0004	374	10	373	3
44069.20	0.4510	0.0148	0.0601	0.0007	0.0596	0.0005	378	12	376	4
				(CL03					
44069.01	0.4639	0.0787	0.0615	0.0003	0.0609	0.0053	387	66	385	2
44069.02	0.4654	0.0048	0.0620	0.0002	0.0558	0.0003	388	4	388	1
44069.03	0.4568	0.0033	0.0609	0.0004	0.0558	0.0002	382	3	381	2
44069.04	0.4539	0.0022	0.0606	0.0002	0.0563	0.0001	380	2	379	1
44069.05	0.4496	0.0053	0.0601	0.0002	0.0561	0.0003	377	4	376	1
44069.06	0.4784	0.0083	0.0632	0.0012	0.0599	0.0006	397	7	395	8
44069.07	0.4553	0.0044	0.0607	0.0003	0.0565	0.0003	381	4	380	2

表 2 独居石标样 44069 LA-MC-ICP-MS U-Pb 测年结果 Table 2 LA-MC-ICP-MS U-Pb isotopic analyses of standard monazite 44069

										续表2
스슈츠			同位素	年龄/Ma						
力们只	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ
44069.08	0.4496	0.0050	0.0602	0.0003	0.0553	0.0003	377	4	377	2
44069.09	0.4568	0.0037	0.0608	0.0004	0.0576	0.0002	382	3	380	2
44069.10	0.4525	0.0047	0.0605	0.0002	0.0557	0.0003	379	4	379	1
44069.11	0.4539	0.0049	0.0605	0.0003	0.0559	0.0003	380	4	379	2
44069.12	0.4568	0.0530	0.0607	0.0004	0.0581	0.0034	382	44	380	2
44069.13	0.4799	0.0066	0.0637	0.0008	0.0553	0.0004	398	5	398	5
44069.14	0.4553	0.0052	0.0607	0.0003	0.0559	0.0003	381	4	380	2
44069.15	0.4482	0.0218	0.0601	0.0003	0.0545	0.0015	376	18	376	2
44069.16	0.4596	0.0042	0.0612	0.0004	0.0559	0.0002	384	4	383	2
44069.17	0.4539	0.0073	0.0605	0.0006	0.0570	0.0004	380	6	378	4
44069.18	0.4625	0.0065	0.0617	0.0009	0.0550	0.0004	386	5	386	5
44069.19	0.4482	0.0042	0.0600	0.0002	0.0555	0.0003	376	4	376	1
44069.20	0.4425	0.0051	0.0593	0.0002	0.0559	0.0003	372	4	371	1
44069.21	0.4553	0.0055	0.0608	0.0002	0.0555	0.0003	381	5	380	2
44069.22	0.4639	0.0047	0.0615	0.0003	0.0585	0.0003	387	4	385	2
44069.23	0.4439	0.0054	0.0594	0.0003	0.0563	0.0003	373	5	372	2
44069.24	0.4496	0.0037	0.0602	0.0004	0.0559	0.0002	377	3	377	2

表 3 独居石样品 AL01 和 BL02 LA-MC-ICP-MS U-Pb 测年结果 Table 3 LA-MC-ICP-MS U-Pb isotopic analyses of monazite samples AL01 and BL02

스뉴츠			同位素	比值					年龄/Ma			
刀机点	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	lσ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ		
AL01.01	0.3304	0.0028	0.0462	0.0001	0.0524	0.0002	290	2	291	1		
AL01.02	0.3277	0.0061	0.0458	0.0001	0.0510	0.0005	288	5	289	1		
AL01.03	0.3304	0.0024	0.0 <mark>46</mark> 1	0.0001	0.0519	0.0002	290	2	291	1		
AL01.04	0.3304	0.0016	0.0462	0.0001	0.0520	0.0001	290	1	291	1		
AL01.05	0.3210	0.0088	0.0451	0.0002	0.0504	0.0007	283	8	284	1		
AL01.06	0.3304	0.0327	0.0462	0.0003	0.0448	0.0022	290	29	291	2		
AL01.07	0.3237	0.0212	0.0453	0.0002	0.0462	0.0014	285	19	286	1		
AL01.08	0.3250	0.0117	0.0455	0.0001	0.0518	0.0009	286	10	287	1		
AL01.09	0.3264	0.0063	0.0456	0.0002	0.0524	0.0005	287	6	288	2		
AL01.10	0.3250	0.0097	0.0455	0.0002	0.0495	0.0007	286	8	287	1		
AL01.11	0.3290	0.0067	0.0460	0.0003	0.0503	0.0005	289	6	290	2		
AL01.12	0.3277	0.0050	0.0454	0.0002	0.0610	0.0004	288	4	286	1		
AL01.13	0.3250	0.0309	0.0454	0.0002	0.0429	0.0021	286	27	286	1		
AL01.14	0.3250	0.0155	0.0455	0.0002	0.0486	0.0011	286	14	287	1		
AL01.15	0.3290	0.0094	0.0458	0.0002	0.0552	0.0007	289	8	289	1		
AL01.16	0.3250	0.0131	0.0455	0.0002	0.0493	0.0010	286	11	287	1		
AL01.17	0.3277	0.0077	0.0457	0.0001	0.0557	0.0007	288	7	288	1		
AL01.18	0.3264	0.0020	0.0453	0.0001	0.0569	0.0002	287	2	286	1		
AL01.19	0.3224	0.0021	0.0451	0.0001	0.0524	0.0001	284	2	284	1		
BL02.01	0.5474	0.0086	0.0726	0.0008	0.0556	0.0017	443	7	454	5		
BL02.02	0.5424	0.1228	0.0698	0.0014	0.0827	0.0376	440	100	437	9		
BL02.03	0.5507	0.0235	0.0730	0.0009	0.0502	0.0040	445	19	456	6		
BL02.04	0.5457	0.0105	0.0725	0.0007	0.0523	0.0019	442	9	453	4		
BL02.05	0.5441	0.1529	0.0723	0.0014	0.0218	0.0123	441	124	452	9		
BL02.06	0.5591	0.0286	0.0740	0.0008	0.0532	0.0051	451	23	462	5		

										续表3
分析点			同位素		年龄	/Ma				
75 HTM	²⁰⁷ Pb/ ²³⁵ U	1σ	²⁰⁶ Pb/ ²³⁸ U	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ	206Pb/238U	1σ
BL02.07	0.5524	0.0574	0.0728	0.0007	0.0611	0.0131	447	46	455	4
BL02.08	0.5408	0.0269	0.0719	0.0009	0.0553	0.0054	439	22	449	6
BL02.09	0.5375	0.0681	0.0716	0.0006	0.0324	0.0080	437	55	447	4
BL02.10	0.5441	0.0078	0.0704	0.0005	0.0774	0.0022	441	6	440	3
BL02.11	0.5276	0.1050	0.0704	0.0006	0.0338	0.0135	430	86	441	3
BL02.12	0.5358	0.0289	0.0704	0.0009	0.0671	0.0080	436	23	441	6
BL02.13	0.5259	0.0076	0.0702	0.0006	0.0558	0.0015	429	6	439	4
BL02.14	0.5259	0.0260	0.0702	0.0005	0.0493	0.0049	429	21	439	3
BL02.15	0.5243	0.0492	0.0700	0.0007	0.0532	0.0095	428	40	438	4
BL02.16	0.5259	0.0112	0.0703	0.0005	0.0572	0.0024	429	9	440	3
BL02.17	0.5243	0.0156	0.0700	0.0007	0.0516	0.0030	428	13	438	4
BL02.18	0.5276	0.0354	0.0704	0.0008	0.0478	0.0062	430	29	440	5
BL02.19	0.5276	0.0208	0.0703	0.0007	0.0457	0.0036	430	17	440	5
BL02.20	0.5259	0.0235	0.0705	0.0007	0.0529	0.0047	429	19	441	5
BL02.21	0.5259	0.0143	0.0702	0.0005	0.0537	0.0029	429	12	439	3
BL02.22	0.5243	0.0060	0.0701	0.0005	0.0552	0.0012	428	5	438	3
BL02.23	0.5474	0.0076	0.0727	0.0006	0.0547	0.0014	443	6	454	4
BL02.24	0.5541	0.1001	0.0734	0.0010	0.0454	0.0163	448	81	459	7
BL02.25	0.5491	0.0311	0.0729	0.0008	0.0552	0.0057	444	25	456	5
BL02.26	0.5524	0.0542	0.0728	0.0007	0.0609	0.0118	447	44	455	4
BL02.27	0.5507	0.0010	0.0728	0.0006	0.0565	0.0001	445	1	455	4
BL02.28	0.5507	0.0035	0.0729	0.0010	0.0576	0.0007	445	3	455	6
BL02.29	0.5557	0.1362	0.0736	0.0009	0.0277	0.0128	449	110	460	5
BL02.30	0.5507	0.0088	0.0726	0.0006	0.0606	0.0019	445	7	454	4
BL02.31	0.5541	0.0186	0.0 <mark>73</mark> 5	0.0008	0.0549	0.0038	448	15	459	5
BL02.32	0.5457	0.0505	0.0712	0.0007	0.0691	0.0120	442	41	445	4
BL02.33	0.5391	0.0246	0.0711	0.0009	0.0627	0.0056	438	20	445	6
BL02.34	0.5491	0.0092	0.0725	0.0008	0.0585	0.0019	444	7	453	5
BL02.35	0.5391	0.0128	0.0716	0.0017	0.0561	0.0026	438	10	447	10
BL02.36	0.5375	0.0174	0.0713	0.0011	0.0573	0.0036	437	14	446	7
BL02.37	0.5457	0.0016	0.0724	0.0005	0.0568	0.0003	442	1	452	3
BL02.38	0.5441	0.0354	0.0717	0.0009	0.0628	0.0090	441	29	448	6
BL02.39	0.5457	0.0363	0.0719	0.0008	0.0620	0.0083	442	29	450	5
BL02.40	0.5457	0.0358	0.0722	0.0008	0.0591	0.0075	442	29	451	5
BL02.41	0.5474	0.0296	0.0714	0.0007	0.0698	0.0077	443	24	446	5

쿢	長4	独居石样品 CL03 LA-MC-ICP-MS U-Pb 分析结果
Table 4	LA	-MC-ICP-MS U-Pb isotopic analyses of monazite sample CL03

分析占														
71/1/T.	²³⁸ U/ ²⁰⁷ Pb	1σ	²⁰⁶ Pb/ ²⁰⁷ Pb	1σ	²⁰⁷ Pb/ ²⁰⁶ Pb	1σ	$^{206}{Pb}/^{238}U$	1σ	²⁰⁷ Pb/ ²³⁵ U	1σ				
	CL03.01	90.98	0.26	7.45	0.02	0.1508	0.0004	0.0819	0.0001	1.5155	0.0040			
	CL03.02	113.60	0.38	8.93	0.02	0.1257	0.0003	0.0787	0.0002	1.2138	0.0046			
	CL03.03	111.25	0.28	8.89	0.02	0.1263	0.0003	0.0799	0.0002	1.2393	0.0034			
	CL03.04	102.21	0.40	8.16	0.01	0.1376	0.0002	0.0799	0.0002	1.3489	0.0054			
	CL03.05	275.00	2.87	19.53	0.19	0.0579	0.0003	0.0711	0.0002	0.5014	0.0144			
	CL03.06	112.00	0.50	8.78	0.01	0.1211	0.0001	0.0774	0.0002	1.2311	0.0062			
	CL03.07	119.91	0.35	9.26	0.01	0.1123	0.0002	0.0757	0.0001	1.1499	0.0040			

	日位表レは											
分析点	回业系CL组 238LT/207DL 1 = 206DL/207DL 1 = 207DL/206DL 1 = 206DL/238LT 1 207DL/235TT											
	²³⁸ U/ ²⁰⁷ Pb	lσ	²⁰⁰ Pb/ ²⁰⁷ Pb	lσ	²⁰⁷ Pb/ ²⁰⁰ Pb	1σ	²⁰⁰ Pb/ ²³⁸ U	lσ	²⁰⁷ Pb/ ²³³ U	1σ		
CL03.08	132.14	0.41	9.99	0.02	0.1291	0.0002	0.0782	0.0002	1.0434	0.0043		
CL03.09	111.46	0.47	8.69	0.01	0.1095	0.0001	0.0757	0.0001	1.2370	0.0058		
CL03.10	135.43	0.34	10.24	0.01	0.1083	0.0001	0.0752	0.0002	1.0181	0.0035		
CL03.11	137.89	0.48	10.36	0.01	0.1217	0.0003	0.0788	0.0002	0.9999	0.0048		
CL03.12	117.39	0.59	9.23	0.02	0.1163	0.0003	0.0764	0.0002	1.1746	0.0069		
CL03.13	126.65	0.59	9.66	0.03	0.1278	0.0002	0.0777	0.0001	1.0886	0.0064		
CL03.14	113.10	0.25	8.78	0.01	0.1194	0.0002	0.0733	0.0002	1.2191	0.0030		
CL03.15	128.40	0.42	9.40	0.01	0.1222	0.0004	0.0760	0.0001	1.0738	0.0045		
CL03.16	121.10	0.49	9.20	0.03	0.1056	0.0001	0.0732	0.0001	1.1386	0.0055		
CL03.17	145.27	0.18	10.63	0.01	0.0771	0.0003	0.0707	0.0001	0.9491	0.0017		
CL03.18	128.50	0.33	9.54	0.02	0.1176	0.0002	0.0743	0.0000	1.0730	0.0036		
CL03 19	278 41	4 23	19 19	0.28	0.0603	0.0007	0.0690	0.0001	0 4952	0.0209		
CL03.20	150.75	0.37	11.48	0.02	0.0005	0.0001	0.0710	0.0001	0.8631	0.0032		
CL03.20	100.99	0.37	0 22	0.02	0.1249	0.0001	0.0759	0.0001	1 25 49	0.0032		
CL03.21	109.88	0.21	0.52	0.01	0.1348	0.0002	0.0751	0.0001	1.2546	0.0020		
CL03.22	109.88	0.21	8.32	0.01	0.1335	0.0005	0.0751	0.0000	1.2548	0.0026		
CL03.23	148.38	0.47	10.78	0.04	0.1042	0.0003	0.0727	0.0002	0.9293	0.0044		
CL03.24	144.31	0.34	10.91	0.01	0.1028	0.0001	0.0757	0.0002	0.9555	0.0032		
CL03.25	113.67	0.64	8.96	0.04	0.1257	0.0006	0.0789	0.0001	1.2130	0.0077		
CL03.26	126.63	0.37	9.75	0.02	0.1151	0.0002	0.0771	0.0001	1.0889	0.0041		
CL03.27	268.22	2.68	19.23	0.19	0.05 <mark>90</mark>	0.0004	0.0718	0.0002	0.5141	0.0138		
CL03.28	127.18	0.69	9.69	0.02	0.1159	0.0003	0.0764	0.0002	1.0841	0.0075		
CL03.29	215.32	2.14	15.34	0.12	0.0737	0.0004	0.0715	0.0002	0.6403	0.0137		
CL03.30	132.91	0.45	9.94	0.01	0.1128	0.0002	0.0749	0.0002	1.0374	0.0046		
CL03.31	137.60	0.23	10.28	0.01	0.1091	0.0001	0.0747	0.0001	1.0021	0.0023		
CL03.32	134.66	0.23	10.07	0.02	0.1114	0.0002	0.0748	0.0001	1.0239	0.0024		
CL03.33	140.29	5.10	10.74	0.46	0.0999	0.0007	0.0772	0.0002	0.9828	0.0502		
CL03.34	124.11	0.38	9.41	0.02	0.1193	0.0003	0.0759	0.0001	1.1110	0.0043		
CL03.35	138.83	0.39	10.32	0.03	0.1088	0.0002	0.0744	0.0001	0.9931	0.0039		
CL03.36	119.46	0.34	9.06	0.03	0.1239	0.0003	0.0759	0.0002	1.1542	0.0039		
CL03.37	129.06	0.31	9.61	0.02	0.1168	0.0003	0.0745	0.0001	1.0683	0.0034		
CL03.38	267.11	16.49	18.37	1.14	0.0584	0.0012	0.0689	0.0001	0.5162	0.0851		
CL03.39	140.76	0.27	10.38	0.01	0.1081	0.0001	0.0738	0.0001	0.9796	0.0027		
CL03.40	183.17	0.33	13.09	0.03	0.0858	0.0002	0.0714	0.0001	0.7527	0.0024		
CL03.41	158.37	3.88	11.53	0.35	0.0941	0.0007	0.0734	0.0002	0.8706	0.0338		
CL03.42	117.26	0.22	8.82	0.01	0.1272	0.0002	0.0752	0.0001	1.1759	0.0026		
CL03.43	281.32	1.95	19.35	0.13	0.0585	0.0004	0.0688	0.0001	0.4901	0.0095		
CL03.44	126.89	0.28	9.38	0.01	0.1196	0.0001	0.0740	0.0001	1.0866	0.0030		
CL03.45	108.43	0.15	7.62	0.01	0.0928	0.0001	0.0/18	0.0001	0.8180	0.0011		
CL03.40	92.94 105.61	1.13	8.53	0.03	0.1474	0.0000	0.0822	0.0002	1.4055	0.0000		
CL03.47	131.87	0.34	9.89	0.10	0.1331	0.0008	0.0303	0.0002	1.0456	0.0035		
CL03.49	74 80	0.12	6.13	0.02	0.1832	0.0002	0.0819	0.0001	1 8434	0.0023		
CL03 50	73.71	0.37	6.04	0.02	0.1861	0,0004	0.0823	0.0005	1.8707	0.0069		
CL03.51	172.78	0.57	12.37	0.03	0.0908	0.0002	0.0716	0.0001	0.7980	0.0045		
CL03.52	135.32	1.43	9.83	0.08	0.1159	0.0012	0.0729	0.0002	1.0190	0.0146		
CL03.53	154.79	0.80	11.02	0.04	0.1020	0.0003	0.0713	0.0001	0.8907	0.0071		
CL03.54	145.16	1.12	10.49	0.06	0.1074	0.0004	0.0724	0.0001	0.9498	0.0106		
CL03.55	164.41	0.71	11.68	0.04	0.0962	0.0003	0.0711	0.0001	0.8386	0.0059		

a, b and c respectively express U-Pb concordia diagram of monazite standard 44069 by determining sample AL01, BL02, CL03

均值为(411.7±2.1) Ma、(371.9±2.8) Ma 进行校正, 独 居石样品的实验条件与标样一致。对独居石样品 AL01 进行 19 次 U-Pb 同位素测定表明,这些点均位 于谐和线上,其²⁰⁶Pb/²³⁸U 年龄加权平均值为 (288.3±1.1) Ma (n=19)(图 2a)。对样品 BL02 进行 41 次 U-Pb 同位素分析,在谐和图上可以看到,这些数 据点均位于谐和线上,对²⁰⁶Pb/²³⁸U 年龄进行加权平 均的结果为(446.8±2.3) Ma (n=41)(图 2b)。这两个样 品的测定结果都有较好的精度。

2.2.2 样品CL03

独居石样品 CL03 的 LA-MC-ICP-MS U-Pb 同位 素测定结果见表 4。表中数据均没有扣除普通铅,但 数据结果用独居石标样 44069 的²⁰⁶Pb/²³⁸U 年龄加权 平均值为(378.9±2.0) Ma 进行了 U-Pb 同位素分馏的 校正。该样品由于普通铅含量高,采用²⁰⁷Pb 法扣除 普通铅时,在谐和图上大多数分析点偏离谐和线, 比较离散,得不到很好的年龄结果(图 3b),可见该 样品采用²⁰⁷Pb 法扣除普通铅并不准确,所以我们采 用等时线法来扣除普通铅。等时线法要满足的 3 个 基本条件就是同时、同源、封闭体系,对于独居石 样品 CL03,由于样品颗粒之间存在着 U、Pb 含量和 普通铅含量的不同,因此等时线可以拉开,得到的 等时线年龄为(396.8±8.8) Ma(n=55)(图 3a)。

通过以上三个独居石样品的分析,表明独居石 微区原位 LA-MC-ICP-MS U-Pb 同位素测定方法是可行的。

3 讨论

3.1 基体效应

基体效应是指在给定的工作条件下,由于样品 和标样之间基质成分和晶体结构的差异所导致的元 素/质量分馏。不同矿物之间基体成分存在很大的差 别, 在用 LA-MC-ICP-MS 测定时应采用相应的矿物 标样来进行U-Pb同位素分馏的校正、以减少不同矿 物的基体效应所导致的 ²⁰⁶Pb/²³⁸U 和 ²⁰⁷Pb/²³⁵U 表面 年龄的误差。因此在分析过程中我们采用独居石标 样来校正U-Pb同位素分馏、然而目前国内还没有合 适的独居石标样、寻找和制备相应的独居石标样成 为首要任务,这也是我们以后研究的重点,我们将 结合 ID-TIMS 来确定独居石矿物标样、为微区原位 分析方法打好基石。另外, Li 等(2001)的研究表明采 用线扫描技术可以降低元素之间的分馏进而抑制基 体效应的影响、但对于一些颗粒较小的独居石样品 只能采用单点剥蚀的方式。因此、为了减小基体效 应的影响, 还是要用相应的矿物标样来进行校正。

3.2 普通铅的扣除

普通铅的扣除方法有 ²⁰⁴Pb、²⁰⁸Pb、²⁰⁷Pb 校正 和等时线法(Andersen et al., 2002; 万渝生等, 2004; Paquette et al., 2004; Storey et al., 2006; Li et al., 2012), 对于普通铅含量不同的样品应合理选择不同 的普通铅扣除方法。对于独居石样品而言, 其 U、 Th 含量较高, 特别是 Th 的含量变化较大, 由 ²³²Th

衰变产生的放射成因²⁰⁸Pb 较高,因此不能采用 ²⁰⁸Pb 来扣除普通铅的方法。在用 LA-MC-ICP-MS 进行 U-Pb 同位素测定时, 使用的载气 He 气中含有 Hg, 即使通过测 ²⁰²Hg 来扣除 ²⁰⁴Hg 对 ²⁰⁴Pb 的干扰, 结果仍不理想,所以一般不测²⁰⁴Pb。综上所述,用 LA-MC-ICP-MS 对独居石进行 U-Pb 同位素测定时, 一般采用²⁰⁷Pb 校正和等时线的方法来扣除普通铅。 本文中、独居石标样 44069 和样品 AL01、BL02 均 是采用²⁰⁷Pb 校正来扣除普通铅的,因为这些样品测 得的结果不扣除普通铅、在²⁰⁷Pb/²³⁵U-²⁰⁶Pb/²³⁸U 谐 和图中、比较集中、但是稍稍偏离谐和线、主要是 没扣除普通铅使 207 Pb/ 235 U 的比值偏高造成的, 通过 ²⁰⁷Pb 校正后,数据投影点皆位于谐和线或谐和线附 近,得到的²⁰⁶Pb/²³⁸U年龄很一致;校正时普通铅的 组成由 Stacey 等(1975)模式给出(图 1、图 2)。从样 品 CL03 测得的结果可以看出,普通铅成分变化较 大,²⁰⁶Pb/²⁰⁷Pb 为 6.04~19.53, 而普通铅的同位素组 成²⁰⁶Pb/²⁰⁷Pb 大约在 1.04(Catanzaro, 1967)。对于这 种普通铅成分变化大的样品不适宜采用²⁰⁷Pb 校正 方法,而采用等时线法可以得到较好的等时线年 龄。所以,应该根据不同的样品合理地选择普通铅 的扣除方法,进而得到准确的年龄结果。

3.3 独居石U-Pb定年的优势及存在的问题

独居石本身的特性决定了它是 U-Pb 定年的重 要矿物,主要体现在以下几个方面:(1)独居石通常 具有较高的 U、Th 含量,同时具有较低的初始普通 Pb含量,可以较好地给出 U-Pb 和 Th-Pb 两个体系的 年龄(Stern et al., 2000; Paquette et al., 2007),但对于 这两个体系年龄的意义还有待于进一步的研究。 (2)普通铅相对较低。自然界中 U 含量较高的副矿物 主要有榍石、磷灰石、金红石、褐帘石等,但磷灰 石、金红石等矿物通常具有 U、Pb 含量低和普通铅 高的不足,目前发现的低普通铅组成矿物只有锆 石、斜锆石、钛锆钍矿、钙锆钛矿、独居石和磷钇 矿 6 种矿物。故独居石是适合进行 U-Pb 定年的矿物。 (3)独居石的 U-Pb 体系封闭温度稍低于锆石,但明 显高于磷灰石、榍石等副矿物,可以结合同一岩体 中不同矿物的封闭温度来研究岩体的冷却史。(4)独 居石广泛存在于中酸性岩浆岩和变质岩中,在一些 沉积岩中也存在,不论岩浆成因或变质成因的独居 石,其同位素年龄的地质意义都较为清楚(Ksienzyk et al., 2012; Ondrejka et al., 2012; Wawrzenitz et al., 2012)。因此独居石 U-Pb 定年方法具有广泛的应用 前景。同时,独居石还是 Sm/Nd 同位素体系定年方 法的重要对象(Evans et al., 1996; 刘玉龙等, 2005; McFarlane et al., 2007)。

但独居石 U-Pb 定年也存在一些难题: (1)普通铅 的扣除,如果设法用离子计数器准确测定²⁰⁴Pb,则 可以有效地扣除普通铅,减少普通铅的干扰。(2)一 些具有复杂演化历史的独居石存在不同的成分区域, 只能通过微区原位测定技术对其进行 U-Pb 定年,但 它所要求的小束斑定年技术对微区原位测定方法提 出了较高要求(Zhu et al., 1997; Bingen et al., 1998)。 (3)缺乏合适的独居石标样一直是制约独居石微区原 位定年技术发展的最直接因素。目前,国际上已开 发出的比较理想的独居石标样除本文前面讨论的 44069 外,其他都是实验室内部标样(Zhu et al., 1998; Paquette et al., 2007),许多标样难以满足大量的测 试需求。因此,开发令人满意的标样是未来独居石 微区原位 U-Pb 定年的重要任务。

4 结论

1)独居石微区原位 LA-MC-ICP-MS U-Pb 同位 素测年方法可以给出较高精度的准确年龄信息,而 且此方法测定过程简便快速,所需的仪器设备比 SIMS 法要简单、便宜得多,运行成本也低得多。 对独居石样品 AL01、BL02 测得的 ²⁰⁶Pb/²³⁸U 年 龄加权平均值分别为(288.3±1.1) Ma (n=19)、 (446.8±2.3) Ma (n=41); CL03 样品的 U-Pb 等时线年 龄(396.8±8.8) Ma (n=55),得到了很好的年龄结果。

2)对于不同的独居石样品,要合理地选择普通 铅的扣除方法。对普通铅含量低的样品可以采用 ²⁰⁷Pb 校正法来扣除普通铅,而对普通铅含量稍高的 样品采用等时线法扣除普通铅效果较好。

3)为了降低基体效应的影响,应选择与基体匹 配的外部标准。寻找和制备合适的独居石标样是独 居石微区原位定年的重要保障。

参考文献:

耿建珍,李怀坤,张健,周红英,李惠民. 2011. 锆石 Hf 同位素组成的 LA-MC-ICP-MS 测定 [J]. 地质通报, 30(10):

1508-1513.

- 李怀坤, 耿建珍, 郝爽, 张永清, 李惠民. 2009. 用激光烧蚀多接 收器等离子体质谱仪(LA-MC-ICPMS)测定锆石 U-Pb 同位 素年龄的研究[J]. 矿物岩石地球化学通报, 28(S1): 77.
- 李怀坤,朱士兴,相振群,苏文博,陆松年,周红英,耿建珍,李 生,杨锋杰.2010.北京延庆高于庄组凝灰岩的锆石 U-Pb 定 年研究及其对华北北部中元古界划分新方案的进一步 约束[J].岩石学报,26(7):2131-2140.
- 李惠民,李怀坤,陈志宏,相振群,陆松年,周红英,宋彪.2007. 基性岩斜锆石 U-Pb 同位素定年3种方法之比较[J].地质通 报,26(2):128-135.
- 刘玉龙,陈江峰,李惠民,钱卉,肖国望,张台荣. 2005. 白云鄂 博矿床白云石型矿石中独居石单颗粒 U-Th-Pb-Sm-Nd 定年[J]. 岩石学报,21(3):881-888.
- 宋天锐. 1999. 大连地区前寒武纪沉积岩中发现自生独居石及其 意义[J]。沉积学报, 17(增刊): 663-667.
- 万渝生,刘敦一,简平.2004. 独居石和锆石 SHRIMP U-Pb 定年 对比[J]. 科学通报,49(12):1185-1190.
- 吴昌华,李惠民,钟长汀,陈强安. 1998. 内蒙古黄土窑孔兹岩 系的锆石与金红石年龄研究[J]. 地质论评,44(6):618-626.
- 周红英, 耿建珍, 崔玉荣, 李怀坤, 李惠民. 2012. 磷灰石微区原 位 LA-MC-ICP-MS U-Pb 同位素定年[J]. 地球学报, 33(6): 857-864.
- 周红英,李惠民.2008. 金红石 U-Pb 同位素稀释法定年技术的改进[J]. 岩石矿物学杂志,27(1):77-80.
- 周红英,刘敦一,NEMCHIM A,万渝生.2007. 鞍山地区 3.8 Ga 变质石英闪长岩遭受 3.0 Ga 构造热事件叠加——来自磷灰 石 SHRIMP U-Th-Pb 定年证据[J]. 地质论评,53(1):120-125.

References:

- ANDERSEN T. 2002. Correction of common lead in U-Pb analyses that do not report ²⁰⁴Pb[J]. Chemical Geology, 192(1-2): 59-79.
- BINGEN B, VAN BREEMEN O. 1998. U-Pb monazite ages in amphibolite to granulite-facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway[J]. Contributions to Mineralogy and Petrology, 132(4): 336-353.
- CATANZARO E J. 1967. Absolute isotopic abundance ratios of three common lead reference samples[J]. Earth and Planetary Science Letters, 3: 343-346.
- CHAMBERLAIN K R, SCHMITT A K, SWAPP S M, HARRISON T M, SWOBODA-COLBERG N, BLEEKER W, PETERSON T D, JEFFERSON C W, KHUDOLEY A K. 2010. In situ U-Pb

SIMS (IN-SIMS) micro-baddeleyite daing of mafic rocks:

Method with examples[J]. Precambrian Research, 183(3): 379-387.

- DANIŠÍK M, PFAFF K, EVANS N J, MANOLOUKOS C, STAUDE S, MCDONALD B J, MARKL G. 2010. Tectonothermal history of the Schwarzwald Ore District (Germany): An apatite triple dating approach[J]. Chemical Geology, 278(1-2): 58-69.
- DEWOLF C P, BELSHAW N, O'NIONS R K. 1993. A metamorphic history from micron-scale ²⁰⁷Pb-²⁰⁶Pb chronometry of Archean monazite[J]. Earth and Planetary Science Letters, 120(3-4): 207-220.
- EVANS J, ZALASIEWICZ J, FLETCHER I, RASMUSSEN B, PEARCE N. 2002. Dating diagenetic monazite in mudrocks: Constraining the oil window?[J] Journal of the Geological Society, 159: 619-622.
- EVANS J, ZALASIEWICZ J. 1996. U-Pb, Pb-Pb and Sm-Nd dating of Authigenic monazite: Implications for the diagenetic evolution of the Welsh Basin[J]. Earth and Planetary Science Letters, 144(3-4): 421-433.
- GENG Jian-zhen, LI Huai-kun, ZHANG Jian, ZHOU Hong-ying, LI Hui-min. 2011. Zircon Hf isotope analysis by means of LA-MC-ICP-MS. Geological Bulletin of China[J]. 30(10): 1508-1513(in Chinese with English abstract).
- KSIENZYKA A K, JACOBS J, BOGERB S D, KOŠLER J, SIRCOMBE K N, WHITEHOUSE M J. 2012. U-Pb ages of metamorphic monazite and detrital zircon from the Northampton Complex: evidence of two orogenic cycles in Western Australia[J]. Precambrian Research, 198-199: 37-50.
- LI Huai-kun, GENG Jian-zhen, HAO Shuang, ZHANG Yong-qing, LI Hui-min. 2009. Zircon U-Pb dating technique using LA-MC-ICPMS[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 28(S1): 77(in Chinese).
- LI Huai-kun, ZHU Shi-xing, XIANG Zhen-qun, SU Wen-bo, LU Song-nian, ZHOU Hong-ying, GENG Jian-zhen, LI Sheng, YANG Feng-jie. 2010. Zircon U-Pb dating on tuff bed from Gaoyuzhuang Formation in Yanqing, Beijing: Further constraints on the new subdivision of the Mesoproterozoic stratigraphy in the northern North China Craton[J]. Acta Petrologica Sinica, 26(7): 2131-2140(in Chinese with English abstract).
- LI Hui-min, LI Huai-kun, CHEN Zhi-hong, XIANG Zhen-qun, LU

Song-nian, ZHOU Hong-ying, SONG Biao. 2007. Comparison of three methods for baddeleyite U- Pb isotope dating of basic rocks[J]. Geological Bulletin of China, 26(2): 128-135(in Chinese with English abstract).

- LI N, CHEN Y J, FLETCHER I R, ZENG Q T. 2011. Triassic mineralization with Cretaceous overprint in the Dahu Au-Mo deposit, Xiaoqinling gold province: Constraints from SHRIMP monazite U-Th-Pb geochronology[J]. Gondwana Research, 20(2-3): 543-552.
- LI Q L, LI X H, WU F Y, YIN Q Z, YE H M, LIU Y, TANG G Q, ZHANG C L. 2012. In-situ SIMS U-Pb dating of phanerozoic apatite with low U and high common Pb[J]. Gondwana Research, 21(4): 745-756.
- LI Q L, LIN W, SU W, LI X H, SHI Y H, LIU Y, TANG G Q. 2011. SIMS U-Pb rutile age of low-temperature eclogites from southwestern Chinese Tianshan, NW China[J]. Lithos, 122(1-2): 76-86.
- LI X H, LIANG X R, SUN M, GUAN H, MALPAS J G. 2001. Precise ²⁰⁶Pb-²³⁸U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation[J]. Chemical Geology, 175(3-4): 209-219.
- LIU Yu-long, CHEN Jiang-feng, LI Hui-min, QIAN Hui, XIAO Guo-wang, ZHANG Tai-rong. 2005. Single-grain U-Th-Pb-Sm-Nd dating of monazite from dolomite type ore of the Bayan Obo deposit[J]. Acta Petrologia Sinica, 21(3): 881-888(in Chinese with English abstract).
- LUDWIG K R. 2001. User's Manual for Isoplot /Ex (rev. 2.49): A Geochronological Toolkit for Microsoft Excel[M]. Berkely: Geochronology CenterSpecial Publication: 1-55.
- MCFARLANE C R M, MCCULLOCH M T. 2007. Coupling of in-situ Sm-Nd systematics and U-Pb dating of monazite and allanite with applications to crustal evolution studies[J]. Chemical Geology, 245(1-2): 45-60.
- ONDREJKA M, UHEr P, PUTIŠ M, BROSKA I, BAČÍK P, KONEČNÝ P, SCHMIEDT I. 2012. Two-stage breakdown of monazite by post-magmatic and metamorphic fluids: An example from the Veporic orthogneiss, Western Carpathians, Slovakia[J]. Lithos, 142-143: 245-255.
- PAQUETTE J L, GONCALVES P, DEVOUARD B, NICOLLET C.2004. Micro-drilling ID-TIMS U-Pb dating of single monazites: A new method to unravel complex poly-metamorphic

evolutions. Application to the UHT granulites of Andriamena (North-Central Madagascar)[J]. Contributions to Mineralogy and Petrology, 147(1): 110-122.

- PAQUETTE J L, TIEPOLO M. 2007. High resolution (5 μm) U-Th-Pb isotope dating of monazite with excimer laser ablation (ELA)-ICPMS[J]. Chemical Geology, 240(3-4): 222-237.
- PARRISH R R. 1990. U-Pb dating of monazite and its application to geological problems[J]. Canada Journal of Earth Science[J]. 27(11): 1431-1450.
- PETERMAN E M, MATTINSON J M, HACKER B R. 2012. Multi-step TIMS and CA-TIMS monazite U-Pb geochronology[J]. Chemical Geology, 312-313: 58-73.
- RUBATTO D, WILLIAMS I S, BUICK I S. 2001. Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia[J]. Contributions to Mineralogy and Petrology, 140(4): 458-468.
- SONG Tian-rui. 1999. Discovery of authigenic rare earth mineral-monazite in Precambrian sedimentary rock of Dalian area and its significance[J]. Acta Sedimentologica Sinica, 17(S1): 663-667(in Chinese with English abstract).
- STACEY J S, KRAMERS J D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 26(2): 207-221.
- STERN R A, BERMAN R G. 2000. Monazite U-Pb and Th-Pb geochronology by ion microprobe, with an application to in situ dating of an Archean metasedimentary rock[J]. Chemical Geology, 172: 113-130.
- STOREY C D, JEFFRIES T E, SMITH M. 2006. Common lead-corrected laser ablation ICP-MS U-Pb systematics and geochronology of titanite[J]. Chemical Geology, 227(1-2): 37-52.
- SUZUKI K, ADACHI M, NURAKI T. 1996. CHIME ahe dating of monazites from metamorphic rocks and granitic rocks of the Ryoke belt in the Iwakwni are, Southwest Japan[J]. Island Arc, 5(1): 43-55.
- SUZUKI K, ADACHI M, TANAKA T. 1991. Middle Precambrian provenance of Jurassic sandstone in the Mino Terrane, central

Japan: Th-U-total Pb evidence from an electron microprobe monazite study[J]. Sediment Geology, 75(1-2): 141-147.

- WAN Yu-sheng, LIU Dun-yi, JIAN Ping. 2004. SHRIMP U-Pb dating of monazite and zircon[J]. Chinese Science Bulletin, 49(12): 1185-1190(in Chinese).
- WAWRZENITZ N, KROHE A, RHEDE D, ROMER R L. 2012. Dating rock deformation with monazite: The impact of dissolution recipitation creep[J]. Lithos, (134-135): 52-74.
- WU Chang-hua, LI Hui-min, ZHONG Chang-ting, CHEN Qiang-an.
 1998. The ages of zircon and rutile (cooling) from khondalite in Huangtuyao, Inner Mongolia[J]. Geological Review, 44(6): 618-626(in Chinese with English abstract).
- WU F Y, YANG Y H, MITCHELL R H, LI Q L, YANG J H, ZHANG Y B. 2010. In situ U-Pb age determination and Nd isotopic analysis of perovskites from kimberlites in southern Africa and Somerset Island, Canada[J]. Lithos, 115(1-4): 205-222.
- ZHOU Hong-ying, GENG Jian-zhen, CUI Yu-rong, LI Huai-kun, LI Hui-min. 2012. In Situ U-Pb Dating of Apatite Using LA-MC-ICP-MS [J]. Acta Geoscientica Sinica, 33(6): 857-864(in Chinese with English abstract).
- ZHOU Hong-ying, LI Hui-min. 2008. The improvement of the rutile isotope dilution U-Pb dating methodology[J]. Acta Petrologica and Mineralogica, 27(1): 77-80(in Chinese with English abstract).
- ZHOU Hong-ying, LIU Dun-yi, NEMCHIM A, WAN Yu-sheng. 2007. 3.0 Ga thermo-tectonic events suffered by the 3.8 Ga meta-quartz-diorite in the Anshan area: constraints from apatite SHRIMP U-Pb dating[J]. Geological Review, 53(1): 120-125(in Chinese with English abstract).
- ZHU X K, O'NIONS R K, BELSHAW N S, GIBB A J. 1997. Significance of in situ SIMS chronometry of zoned monazite from the Lewisian granulites, northwest Scotland[J]. Chemical Geology, 135(1-2): 35-53.
- ZHU X K, O'NIONS R K, GIBB A J. 1998. SIMS analysis of U-Pb isotopes in monazite: matrix effects[J]. Chemical Geology, 144(3-4): 305-312.