www.cagsbulletin.com www.地球学报.com

磷灰石微区原位LA-MC-ICP-MS U-Pb同位素定年

周红英、耿建珍、崔玉荣、李怀坤、李惠民

中国地质调查局天津地质矿产研究所, 天津 300170

摘 要:利用激光剥蚀多接收器电感耦合等离子体质谱法(LA-MC-ICP-MS),建立了磷灰石微区原位 U-Pb 同位素定年新方法,本文给出了这一新方法的分析流程,报道了利用这一新方法对 5 个磷灰石样品的分析结 果,并应用同位素稀释-热电离质谱法(ID-TIMS)对一些样品定年结果进行了验证。磷灰石工作标样 SDG 的 U-Pb 同位素年龄: (1596±15) Ma (MSWD=1.5, n=7, LA-MC-ICP-MS), (1602±13) Ma (MSWD=0.578, n=5, ID-TIMS);某铁矿石中磷灰石的 LA-MC-ICP-MS U-Pb 同位素年龄: (125±14) Ma (MSWD=0.68, n=25), (124.2±3.5) Ma (MSWD=1.5, n=37);新疆阿尔金地区片麻岩中磷灰石的 LA-MC-ICP-MS U-Pb 同位素年龄: (250.8±3.9) Ma (MSWD=8.6, n=26), (245.4±2.9) Ma (MSWD=2.1, n=39)。

关键词:磷灰石;微区原位 U-Pb 同位素定年;LA-MC-ICP-MS

中图分类号: P578.922; P597 文献标志码: A doi: 10.3975/cagsb.2012.06.03

In Situ U-Pb Dating of Apatite Using LA-MC-ICP-MS

ZHOU Hong-ying, GENG Jian-zhen, CUI Yu-rong, LI Huai-kun, LI Hui-min Tianjin Institute of Geology and Mineral Resources, China Geological Survey, Tianjin 300170

Abstract: A new in situ U-Pb dating method for apatite using LA-MC-ICP-MS has been established, and the experimental process is described in this paper. 5 apatite U-Pb dating results determined by the new method and verified by ID-TIMS method are reported in this paper, with the data obtained being standard qpatite SDG, (1596±15) Ma (MSWD=1.5, n=7, LA-MC-ICP-MS), (1602±13) Ma (n=5, MSWD=0.578, ID-TIMS); apatite samples from an iron deposit, (125±14) Ma (n=25), (124.2±3.5) Ma (MSWD=1.5, n=37); apatite from gneissic rocks in the Altun Mountains of Xinjiang, (250.8±3.9) Ma (MSWD=8.6, n=26), (245.4±2.9) Ma (MSWD=2.1, n=39).

Key words: apatite; in situ U-Pb dating; LA-MC-ICP-MS

磷灰石[Ca₅(PO₄)₃(F,Cl,OH)], 是一种分布广泛 的副矿物,存在于多种不同类型岩石中。磷灰石 U-Th-Pb 同位素封闭温度比锆石相对较低,对于有 过复杂演化历史的变质地体,磷灰石定年可为 PTt 轨迹研究提供相对低温阶段的年龄信息。磷灰石的 同位素稀释-热电离质谱法(ID-TIMS)U-Pb 定年早 年虽有应用,但并不广泛(Oosthuyzen et al., 1973; 叶伯丹等,1984)。ID-TIMS 虽然精度高、准确度好, 但其前处理的化学流程比较繁琐,费时费力,效率 较低。二次离子质谱法(SIMS),可通过准确测定 ²⁰⁴Pb 进行普通铅的校正,但对同类矿物标样的要求 十分严格,而且仪器成本高。激光剥蚀多接收器电 感耦合等离子质谱法(LA-MC-ICP-MS)的优点是直 接测定,简便快速。LA-MC-ICP-MS 和 SIMS 磷灰石 U-Pb 定年虽有原位、快速等优点,但对于普通铅含 量高、U和 Th 含量低的样品,仍存在一定难度。因 此,利用磷灰石定年最为重要的是如何正确扣除普 通铅。提高对低 U、低放射成因铅的精确测定,准 确扣除普通铅往往是能否得到好的分析测试结果的 关键。目前,火成岩、变质岩和矿床中的磷灰石微

收稿日期: 2012-02-23; 改回日期: 2012-10-05。责任编辑: 魏乐军。

本文由国土资源部公益性行业科研专项"非锆石类富铀矿物 U-Pb 同位素定年方法研究"(编号: 200911043-15)资助。

第一作者简介:周红英,女,1966年生。博士,教授级高工。长期从事同位素地质年代学及同位素地球化学研究工作。通讯地址:300170, 天津市河东区大直沽八号路四号。电话:022-24023524。E-mail: zhouhy305@163.com。

区原位 U-Pb 同位素定年研究是一个新的测年研究 领域和趋势,有些文献已进行了报道(Kennedy et al., 1997; Sano et al., 1999a, b; Chamberlain et al., 2000; Willigers et al., 2002; Chew et al., 2011; Li et al., 2012; 钟玉芳等, 2006; 周红英等, 2007, 2011; 孙金 凤等, 2009; 李惠民等, 2012),此外,该技术还应用 与其它一些副矿物如独居石的测年(崔玉荣等, 2012)。本文报道了利用 LA-MC-ICP-MS 进行磷灰石 微区原位 U-Pb 同位素定年的研究结果。

1 实验仪器与实验方法

1.1 实验仪器

磷灰石微区原位 LA-MC-ICP-MS U-Pb 同位素 定年工作所使用的多接收器电感耦合等离子体质谱 仪为美国 Thermo Fisher 公司生产的 NEPTUNE, 其 离子光学通路采用能量聚焦和质量聚焦的双聚焦设 计,并采用动态变焦将质量色散扩大至 17%。仪器 配有 9 个法拉第杯接收器和 4 个离子计数器接收器, 除了中心杯和离子计数器外, 其余 8 个法拉第杯配 置在中心杯的两侧(如表1所示),并以马达驱动进行 精确的位置调节,4 个离子计数器捆绑在 L4 法拉第 杯上。激光器为美国 ESI 公司生产的 NEW WAVE 193 nm FX ArF 准分子激光器, 波长 193 nm, 脉冲 宽度小于 4 ns, 束斑直径 2、10、20、35、50、75、 100 和 150 μm 可调, 脉冲频率 1~200 Hz 连续可调, 激光输出功率 15 J/cm²。

ID-TIMS 磷灰石 U-Pb 同位素定年工作所使用 的热电离质谱仪为美国 Thermo Fisher 公司生产的 TRITON 热电离质谱仪,该质谱仪配置的法拉第杯 和离子计数器接收器,与上述的 LA-MC-ICP-MS 相 同,接收器也为 9 个法拉第杯,一个带有正负离子 的电子倍增器;离子计数装置也具有 4 个离子计数 检测器(用于 202~238 质量数),能够进行快速峰切 换,接收器有效接收能力为 17%的相对质量范围, 仪器具有正负离子检测功能。该仪器具有用来提高 丰度灵敏度的能量过滤器;通过动态调焦系统,降 低多接收动态测量中的误差;采用新型质量分析器, 叠层式磁铁,电子聚焦调整装置,减少散射的大尺 度磁铁空隙设计;采用虚拟放大器阵列,不固定接 收器与放大器之间的对应,放大器在接收器之间轮 回旋转,消除放大器之间的误差。

1.2 实验方法

1.2.1 磷灰石LA-MC-ICP-MS U-Pb同位素定年的 实验方法

磷灰石 LA-MC-ICP-MS U-Pb 同位素定年的样 品制靶与微区原位锆石 U-Pb 同位素定年的样品制 靶类似,将磷灰石样品用双面胶粘在载玻片上,放 上 PVC 环、然后将环氧树脂和固化剂进行充分混合 后注入 PVC 环中, 待树脂充分固化后将样品靶从载 玻片上剥离,并对其进行抛光(宋彪等,2002)。对靶 上磷灰石<mark>样品</mark>进行反射光、透射光、阴极发光或电 子背散射等图像分析。根据磷灰石矿物的成像分析, 选择包裹体较少或没有包裹体、避开具有裂隙的部 位进行测定、尽量减少普通铅影响。选择磷灰石矿 物样品的合适区域后,利用 193 nm FX 激光器对磷 灰石矿物进行剥蚀、激光剥蚀物质以 He 为载气送入 MC-ICP-MS、从而进行 U-Pb 同位素测定。采用磷灰 石标准 SDG 对分析过程中的 U、Pb 同位素分馏进 行校正。利用 NIST612 玻璃标样作为外标计算磷灰 石样品的 Pb、U、Th 含量。测试采用的接收器配置 及相关仪器参数见表 1。

L4	L3	L2	L1	С	H1	H2	Н3	H4			
²⁰⁴ Pb	²⁰⁶ Pb	²⁰⁷ Pb	²⁰⁸ Pb	219.26		²³² Th		²³⁸ U			
进样	方式				激光进样						
冷却	≒(Ar)		16 L/min								
辅助	≒(Ar)		0.75 L/min								
载气(Ar)		0.968 L/min									
载气	(He)	0.86 L/min									
RF 3	功率	1250 W									
积分	时间	0.131 s									
样品信号采集时间		60 s									
激光能量密度		10~11 J/cm ²									
剥蚀斑径		50 或 75 µm									
频	率				8~20 Hz						

表1 磷灰石 LA-MC-ICP-MS U-Pb 同位素测定的接收器配置及相关仪器参数 Table 1 Machine conditions and protocols for apatite LA-MC-ICP-MS U-Pb analysis

注: 表 1 中的 L4、L3、L2、L1、C、H1、H2、H3、H4 为仪器的 9 个法拉第接收杯的编号,而对应的 ²⁰⁴Pb、²⁰⁶Pb、²⁰⁷Pb、²⁰⁸Pb、 ²³²Th、²³⁸U 代表分析测试时接收杯接收的不同质量数的 U、Th、Pb 同位素, 219.26 是在中心杯设置的虚拟质量数。

图 1 磷灰石标准 SDG 阴极发光图像 Fig. 1 Cathodoluminescence images of standard apatite SDG

数据的处理采用 ICPMSDataCal 程序(Liu et al., 2010)和 Isoplot 程序(Ludwig, 2003)进行分析和作图。 通常磷灰石与锆石相比,含普通铅较高,放射成因 铅较低,所以在数据处理上,磷灰石 U-Pb 同位素定 年通常采用 U-Pb 或 Pb-Pb 等时线法,而锆石放射成 因铅较高,锆石 U-Pb 同位素定年则采用 U-Pb 谐和 线、不一致线处理即可。

1.2.2 磷灰石ID-TIMS U-Pb同位素定年的实验 方法

磷灰石微区原位 U-Pb 同位素测年分析测试技 术虽然能提供出空间上可分辨的重要的年龄信息, 但其精度、准确度仍无法与经典的同位素稀释-热电 质谱技术(ID-TIMS)比拟(钟玉芳等, 2006)。把高精 度 ID-TIMS 定年技术与微区原位定年方法结合起来, 研制相应的矿物测年标样,对磷灰石矿物微区原位 U-Pb 同位素定年方法的完善会起到很重要的作用。 利用 LA-MC-ICP-MS 进行年龄的均一性检测,再利 用 ID-TIMS 确定磷灰石矿物标准的准确年龄,减少 不同矿物之间的基体效应。

磷灰石样品溶样及 ID-TIMS 的 U、Pb 化学分离 实验流程条件,可以参考已发表的文献(周红英等, 2008)。ID-TIMS 利用 TRITON 热电离质谱仪测定, 在测定样品前,使用国际上通用的 Pb 标准物质 SRM982、U标准物质 U-500 对仪器进行优化校准。 ID-TIMS 数据处理使用 PBDAT 程序(Ludwig, 1993), 不一致线和平均权重计算及作图使用 Isoplot 程序 (Ludwig, 1997),利用 Stacey-Kramers 模式(Stacey et al., 1975)进行普通铅校正。

2 实验结果与讨论

对实验室磷灰石工作标准 SDG 进行了 ID-TIMS 和 LA-MC-ICP-MS U-Pb 同位素测定,磷灰石标准 SDG 阴极发光图像见图 1a、b, SDG 为灰绿色大晶体 碎块,粒径 500 μm 左右。数据结果见图 2 和图 3 以 及表 2 和表 3。

磷灰石工作标准 SDG, 采用 ID-TIMS 获得 ²⁰⁶Pb/²³⁸U表面年龄加权平均值: (1602±13) Ma(95% 置信度, MSWD=0.58, n=5); 用 LA-MC-ICP-MS 获 得 ²⁰⁶Pb/²³⁸U 等时线年龄: (1596±15) Ma(初始 ²⁰⁶Pb/²⁰⁷Pb=1.290±0.034, MSWD=1.5, n=7); U、Pb、 Th 含量范围分别是: 9~162 μg/g、12~230 μg/g、 81~1361 μg/g。

某铁矿中磷灰石样品 AP、AP-1(AP、AP-1 为采 自同一个矿体的样品,无色、半透明、它形块状)的 LA-MC-ICP-MS²⁰⁶Pb/²³⁸U等时线年龄分别是:

(125±14) Ma (初始²⁰⁶Pb/²⁰⁷Pb=2.4±1.3, MSWD=0.68, n=25), (124.2±3.5) Ma (初始²⁰⁶Pb/²⁰⁷Pb=1.121±0.041, MSWD=1.5, n=37)。该磷灰石样品(AP)的 ID-TIMS ²⁰⁶Pb/²³⁸U 等时线年龄: (124±13) Ma(初始 ²⁰⁶Pb/²⁰⁴Pb=18.9±1.5, MSWD=3.4, n=5), 可见 LA-MC-ICP-MS和 ID-TIMS测得的²⁰⁶Pb/²³⁸U等时 线年龄在误差范围内完全一致。通过进行高精度的 ID-TIMS U-Pb 同位素测定,对LA-MC-ICP-MS U-Pb 同位素测定结果进行了有效的检验,证实了我 们新建立的微区原位 LA-MC-ICP-MS 磷灰石 U-Pb 同位素定年方法的可靠性。

另外, 用 LA-MC-ICP-MS 获得新疆阿尔金地区 片 麻 岩 中 磷 灰 石 AQ10-12-1 、 AQ10-12-2 (AQ10-12-1、AQ10-12-2 为采自同一个岩体的样品, 无 色 、 半 透 明 、 它 形 柱 状) 的 LA-MC-ICP-MS ²⁰⁶Pb/²³⁸U 等时线年龄分别是: (250.8±3.9) Ma (初始 ²⁰⁶Pb/²⁰⁷Pb=1.0935±0.0089, MSWD=8.6, n=26), (245.4±2.9) Ma (初始 ²⁰⁶Pb/²⁰⁷Pb=1.0355±0.0046, MSWD=2.1, n=39)。

上述数据结果见图 4 至图 8 和表 4 和表 5,测试结 果误差皆为 2 σ 。图 4b 显示的是磷灰石样品 AP 的误差 比较小的 4 个点的 ID-TIMS 等时线放大图。对于年轻 的样品,在进行 ID-TIMS U-Pb 同位素测年时,由于放 射成因铅偏低,²⁰⁶Pb/²⁰⁴Pb 同位素比值相对小些, ²⁰⁷Pb/²⁰⁶Pb 的表面年龄测不准,误差会很大,但能获得 准确的 ²⁰⁶Pb/²³⁸U 表面年龄,所以只给出了 ²⁰⁶Pb/²³⁸U 表面年龄(如表 4 所示),反之,而对于年老的样品,放 射成因铅相对高,可获得很好的 ²⁰⁶Pb/²³⁸U、²⁰⁷Pb/²³⁵U、 ²⁰⁷Pb/²⁰⁶Pb 三组表面年龄(如表 2 所示)。

对于上述比较年轻的样品,²⁰⁷Pb 大部分为普通 铅,通过²⁰⁴Pb、²⁰⁷Pb 校正的 U-Pb 等时线(图 4 至图 8)年龄结果基本吻合。磷灰石具有较低的 U 含量, 尤其对于年轻的磷灰石样品,由于 U 含量低,放射 成因铅含量较低,所以 U-Pb 定年误差较大。普通铅

表 2	磷 <mark>灰石 SDG ID-T</mark> IMS U-Pb 同位素年龄测定结果
Table 2	ID-TIMS U-Pb isotopic dating results of apatite SDG

点	重	含	量			同位素原子比率(±2σ)			表 面 年 龄/Ma (±2σ)			
号	量 (mg)	U/ (µg/g)	Pb/ (µg/g)	$\frac{206}{204}$ Pb	$\frac{208}{206}$ Pb	$\frac{206}{238}$ Pb	$\frac{207 \text{Pb}}{235 \text{U}}$	$\frac{\frac{207}{Pb}}{\frac{206}{Pb}}$	$\frac{206 \text{Pb}}{238 \text{U}}$	$\frac{{}^{207}\text{Pb}}{{}^{235}\text{U}}$	$\frac{207}{206}$ Pb	
1	3.1	52	78	79	3.995	0.2840(0.0056)	3.996(0.147)	0.1021(0.0029)	1612(32)	1634(60)	1662(53)	
2	3.3	51	89	89	3.927	0.2835(0.0103)	4.016(0.182)	0.1027(0.0025)	1609(59)	1637(74)	1674(45)	
3	4.0	50	72	101	3.945	0.2853(0.0058)	4.006(0.123)	0.1018(0.0021)	1618(33)	1636(50)	1658(39)	
4	5.2	52	70	104	3.702	0.2795(0.0102)	3.835(0.165)	0.0995(0.0021)	1589(58)	1600(69)	1615(39)	
5	3.3	52	76	86	3.887	0.2805(0.0033)	3.858(0.120)	0.0998(0.0026)	1594(19)	1605(50)	1620(49)	

注: 括号内的数字为 2σ 绝对误差, 例如: 0.2840(0.0056)表示 0.2840±0.0056 (2σ)。

表 3 磷灰石 SDG LA-MC-ICP-MS U-Pb 同位素测定结果

Table 3	LA-MC-ICP-MS U-Pb isotopic data
	for Apatite SDG

点号	$^{238}\text{U}/^{207}\text{Pb}$	误差/%	$^{206}{\rm Pb}/^{207}{\rm Pb}$	误差/%
SDG.01	10.53	0.093	4.250	0.065
SDG.02	10.21	0.15	4.162	0.059
SDG.03	13.64	0.15	5.117	0.072
SDG.04	11.50	0.17	4.507	0.073
SDG.05	11.75	0.12	4.596	0.092
SDG.06	13.38	0.12	5.050	0.062
SDG.07	13.80	0.15	5.176	0.069

含量越高,造成年龄的误差越大,反之,影响不大, 采用²⁰⁷Pb的校正年龄比较合适。而有的磷灰石中的 Th 含量相对较高,一般不宜选用²⁰⁸Pb的校正方法。

从以上数据可以看出,由于样品中普通铅含量的 不同,测试点均匀地分布在等时线上,线性很好(图 4 至图 8),进而得到高精度的 U-Pb 等时线年龄。越靠近 等时线下方的样品点,其普通铅含量相对高些,越靠 近等时线上方的数据点,其放射成因铅含量相对高 些。而对于编号为 AP 的磷灰石样品,其 ID-TIMS 测 定中的 1 号点,尽管单个点误差稍大,但它对最终确 定 U-Pb 等时线年龄起了很重要的作用。

图 8 磷灰石 AQ10-12-2 LA-MC-ICP-MS U-Pb 等时线 Fig. 8 U-Pb isochron diagram for apatite AQ10-12-2

表 4 磷灰石 AP ID-TIMS U-Pb 同位素年龄测定结果 Table 4 ID-TIMS U-Pb isotopic dating data of apatite AP

点 质 号 /m	质量	含	量		同	〕位素原子比	表面年龄/Ma(±2σ)		
	/mg	U/ (µg/g)	Pb/ (µg/g)	$\frac{\frac{206}{Pb}}{\frac{204}{Pb}}$	$\frac{2^{38}U}{2^{04}Pb}$	$\frac{206 \text{Pb}}{238 \text{U}}$	$\frac{207 \text{Pb}}{235 \text{U}}$	$\frac{\frac{207}{Pb}}{\frac{206}{Pb}}$	$\frac{\frac{206}{238}}{100}$
1	6.9	342	10	161.6(1.9)	8297(100)	0.0172(0.0001)	0.1143(0.0080)	0.0481(0.0033)	110.2(0.8)
2	5.6	687	48	45.62(0.04)	1414(4)	0.0192(0.0004)	0.1321(0.0489)	0.0500(0.0177)	122.4(4.6)
3	6.3	675	62	37.87(0.03)	967(1)	0.0200(0.0002)	0.1342(0.0282)	0.0486(0.0099)	127.7(2.6)
4	2.1	680	121	26.95(0.02)	415(1)	0.0203(0.0005)	0.0788(0.0670)	0.0281(0.0232)	129.7(6.2)
5	3.1	887	171	24.72(0.01)	369(6)	0.0168(0.0006)	0.0594(0.0748)	0.0256(0.0315)	107.4(7.8)

注: 括号内的数字为绝对误差 2g, 例如: 161.6(1.9)表示 161.6±1.9 (2g)。

表 5 磷灰石 LA-MC-ICP-MS U-Pb 同位素测定结果 Table 5 LA-MC-ICP-MS U-Pb isotopic data of apatite

点号	$^{238}U/^{207}Pb$	误差/%	$^{206}{\rm Pb}/^{207}{\rm Pb}$	误差/%	点号	$^{238}U/^{207}Pb$	误差/%	$^{206}{\rm Pb}/^{207}{\rm Pb}$	误差/%		
		AP			AQ10-12-1						
AP.01	570.7	0.49	13.12	0.49	AQ10-12-1.01	2.775	2.0	1.207	0.17		
AP.02	555.0	0.35	12.60	0.34	AQ10-12-1.02	7.226	0.44	1.382	0.35		
AP.03	567.4	0.37	13.31	0.34	AQ10-12-1.03	6.326	1.2	1.345	0.40		
AP.04	511.3	0.39	12.19	0.36	AQ10-12-1.04	4.995	0.83	1.284	0.29		
AP.05	534.0	0.37	12.66	0.35	AQ10-12-1.05	50.59	0.44	3.126	0.40		
AP.06	536.8	0.36	12.92	0.37	AQ10-12-1.0 <mark>6</mark>	3.922	1.5	1.199	0.63		
AP.07	578.2	0.26	13.63	0.25	AQ10-12-1.07	8.300	0.60	1.425	0.37		
AP.08	558.9	0.30	13.40	0.26	AQ10-12-1.08	3.362	2.8	1.230	0.44		
AP.09	577.4	0.24	13.56	0.23	AQ10-12-1.09	3.480	2.9	1.271	1.3		
AP.10	584.1	0.27	13.81	0.25	AQ10-12-1.10	11.07	0.73	1.537	0.27		
AP.11	598.2	0.34	13.97	0.30	AQ10-12-1.11	52.40	1.0	3.187	0.57		
AP.12	587.8	0.24	13.87	0.22	AQ10-12-1.12	8.126	1.4	1.419	0.53		
AP.13	480.6	0.35	11.79	0.34	AQ10-12-1.13	5.971	0.91	1.341	0.49		
AP.14	618.4	0.35	14.51	0.32	AQ10-12-1.14	5.661	0.65	1.325	0.53		
AP.15	498.9	0.29	12.34	0.27	AQ10-12-1.15	4.576	2.7	1.273	0.39		
AP.16	571.7	0.28	13.90	0.24	AQ10-12-1.16	4.357	1.6	1.293	1.0		
AP.17	543.2	0.34	13.33	0.26	AQ10-12-1.17	34.65	0.49	2.420	0.26		
AP.18	526.5	0.30	12.98	0.29	AQ10-12-1.19	5.069	0.52	1.294	0.14		
AP.19	514.8	0.36	12.69	0.35	AQ10-12-1.20	0.894	0.55	1.137	0.04		
AP.20	649.0	0.33	15.32	0.31	AQ10-12-1.21	6.113	0.97	1.342	0.38		
AP.21	461.0	0.56	11.16	0.51	AQ10-12-1.22	5.093	0.54	1.287	0.16		
AP.22	529.6	0.31	12.76	0.27	AQ10-12-1.23	2.421	0.69	1.196	0.09		
AP.23	550.6	0.30	13.12	0.25	AQ10-12-1.24	2.224	0.87	1.174	0.13		
AP.24	688.3	0.56	15.67	0.56	AQ10-12-1.25	6.070	1.7	1.331	0.42		
AP.25	748.4	0.41	16.92	0.38	AQ10-12-1.26	6.190	0.94	1.336	0.29		
		AP-1			AQ10-12-1.27	35.11	0.57	2.499	0.28		
AP-1.01	89.55	2.0	2.891	1.9		AQ	210-12-2				
AP-1.02	134.8	4.4	3.917	3.9	AQ10-12-2.01	4.063	0.85	1.20	0.91		
AP-1.03	61.77	1.1	2.271	0.6	AQ10-12-2.02	4.310	0.90	1.19	0.73		
AP-1.04	92.51	1.2	2.890	1.0	AQ10-12-2.03	15.35	0.69	1.63	0.59		
AP-1.05	101.5	1.7	3.118	1.4	AQ10-12-2.04	6.769	0.44	1.29	0.46		
AP-1.06	55.24	0.6	2.206	0.5	AQ10-12-2.05	19.24	0.68	1.77	0.49		
AP-1.07	59.66	1.3	2.165	1.3	AQ10-12-2.06	4.569	0.77	1.21	0.63		
AP-1.08	73.48	5.6	2.797	5.0	AQ10-12-2.07	23.99	0.50	1.97	0.53		
AP-1.09	137.7	2.4	3.812	2.1	AQ10-12-2.08	3.922	1.5	1.20	0.63		

									织衣 5
点号	$^{238}U/^{207}Pb$	误差/%	$^{206}{\rm Pb}/^{207}{\rm Pb}$	误差/%	点号	$^{238}U/^{207}Pb$	误差/%	206Pb/207Pb	误差/%
AP-1.10	77.10	2.3	2.716	1.7	AQ10-12-2.09	17.81	0.55	1.74	0.41
AP-1.11	165.5	3.7	4.457	3.3	AQ10-12-2.10	13.76	0.63	1.58	0.51
AP-1.12	256.6	1.4	6.111	1.3	AQ10-12-2.11	7.871	0.86	1.34	0.45
AP-1.13	57.33	1.7	2.207	1.3	AQ10-12-2.12	8.158	0.40	1.34	0.21
AP-1.14	59.76	1.4	2.278	1.2	AQ10-12-2.13	1.964	0.44	1.10	0.32
AP-1.15	74.84	2.1	2.592	1.6	AQ10-12-2.14	6.961	0.55	1.30	0.42
AP-1.16	53.67	1.7	2.209	0.9	AQ10-12-2.15	13.51	0.42	1.56	0.36
AP-1.17	51.45	1.4	2.149	1.4	AQ10-12-2.16	9.955	0.65	1.42	0.42
AP-1.18	76.64	2.3	2.594	1.4	AQ10-12-2.17	6.485	0.72	1.29	0.47
AP-1.19	294.8	3.5	6.961	3.2	AQ10-12-2.18	5.582	0.57	1.26	0.36
AP-1.20	98.93	5.5	3.109	3.3	AQ10-12-2.19	1.727	0.61	1.11	0.36
AP-1.21	62.57	2.3	2.342	1.4	AQ10-12-2.20	14.01	0.57	1.58	0.40
AP-1.22	193.8	4.3	4.908	3.8	AQ10-12-2.21	4.049	0.53	1.20	0.31
AP-1.23	91.48	1.7	2.942	1.5	AQ10-12-2.22	16.28	0.59	1.66	0.51
AP-1.24	62.55	3.5	2.483	2.5	AQ10-12-2.23	15.87	0.37	1.64	0.34
AP-1.25	157.7	4.7	4.280	4.5	AQ10-12-2.24	7.010	0.50	1.32	0.46
AP-1.26	102.8	2.3	3.211	2.1	AQ10-12-2.25	12.55	0.46	1.50	0.37
AP-1.27	181.4	3.2	4.492	2.2	AQ10-12-2. <mark>26</mark>	3.700	0.48	1.17	0.46
AP-1.28	182.3	2.7	4.600	2.4	AQ10-12-2.27	5.763	0.59	1.26	0.45
AP-1.29	123.7	1.3	3.542	1.2	AQ10-12-2.28	12.72	1.01	1.53	0.71
AP-1.30	292.0	4.3	6.524	4.1	AQ10-12-2.29	6.159	0.47	1.28	0.38
AP-1.31	99.70	8.3	2.906	5.5	AQ10-12-2.30	2.184	0.56	1.12	0.32
AP-1.32	113.1	2.5	3.365	2.3	AQ10-12-2.31	3.525	0.33	1.18	0.26
AP-1.33	32.74	0.5	1.778	0.2	AQ10-12-2.32	25.18	0.60	2.03	0.42
AP-1.34	126.0	3.2	3.636	2.3	AQ10-12-2.33	28.25	0.34	2.12	0.30
AP-1.35	122.1	1.7	3.545	1.4	AQ10-12-2.34	8.727	0.57	1.37	0.47
AP-1.36	122.7	2.5	3.362	1.4	AQ10-12-2.35	9.821	0.42	1.42	0.37
AP-1.37	56.88	0.7	2.207	0.5	AQ10-12-2.36	3.587	0.52	1.18	0.46
					AQ10-12-2.37	5.905	0.45	1.26	0.44
					AQ10-12-2.38	6.599	0.45	1.30	0.36
					AQ10-12-2.39	6.628	0.52	1.29	0.43

3 结论

对磷灰石进行微区原位 LA-MC-ICP-MS U-Pb 同位素年龄测定是完全可行的。对于低 U 的样品, 通过增大剥蚀束斑、增加激光频率和能量提高灵敏 度;利用多接收和线扫描技术,可以有效地提高测 定灵敏度,降低元素分馏,通过合理的校正方法, 获得精确的磷灰石 U-Pb 同位素年龄。

采取合理的数据处理方式,准确扣除普通铅是 磷灰石 U-Pb 同位素定年的重要条件。当样品普通铅 含量高时,最好用等时线法扣除普通铅以获得可靠 的年龄结果。

在磷灰石 U-Pb 同位素定年过程中,不同的年 龄范围最好有对应的年龄区间的不同的标样。应该 用相应的标样进行同位素分馏校正,而寻找和确定

标样不是一个简单的过程。

每个定年方法都有其优点和局限性。根据所选 择的分析方法、磷灰石样品的具体情况来选择合适 的数据处理方法,是磷灰石 U-Pb 同位素测年方法中 很关键的环节。

致谢:非常感谢中国地质大学(武汉)宗克清博士、 曾令高硕士以及中国地质科学院地质研究所张建新 研究员提供了相关的磷灰石样品。

参考文献:

- 崔 玉 荣, 周 红 英, 耿 建 珍, 李 怀 坤, 李 惠 民. 2012. LA-MC-ICP-MS 独居石微区原位 U-Pb 同位素年龄测定[J]. 地球学报, 33(6): 865-876.
- 李惠民,周红英. 2012. 对白云鄂博矿床 U-Pb 同位素年代学工 作的几点思考[J]. 地质学报,86(5):793-800.

- 宋彪, 张玉海, 万渝生, 简平. 2002. 锆石 SHRIMP 样品靶制作、 年龄测定及有关现象讨论[J]. 地质论评, 48(S1): 26-30.
- 孙金凤,杨进辉. 2009. 含 U 副矿物的原位微区 U-Pb 定年 方法[J]. 吉林大学学报(地球科学版), 39(4): 630-649.
- 叶伯丹,龙文萱,刘焰. 1984. 河北元古代层状磷矿中磷灰石
 U-Pb 年龄测定及其地质意义[M]//前寒武纪地质,第2号.
 北京:地质出版社: 89-97.
- 钟玉芳, 马昌前. 2006. 含 U 副矿物的地质年代学研究综述[J]. 地球科学进展, 21(4): 372-382.
- 周红英,李惠民. 2008. 金红石 U-Pb 同位素稀释法定年技术的 改进[J]. 岩石矿物学杂志, 27(1): 77-80.
- 周红英, 李惠民. 2011. U-Pb 同位素定年技术及其地质应用 潜力[J]. 地质调查与研究, 34(1): 63-70.
- 周红英,刘敦一,NEMCHIM A,万渝生.2007. 鞍山地区 3.8 Ga 变质石英闪长岩遭受 3.0 Ga 构造热事件叠加——来自磷灰 石 SHRIMP U-Th-Pb 定年证据 [J]. 地质论评,53(1): 120-125.

References:

- CHAMBERLAIN K R, BOWRING S A. 2000. Apatite-feldspar U-Pb thermochronometer: a reliable, mid-range (~450°C), diffusion-controlled system[J]. Chemical Geology, 172: 173-200.
- CHEW D M, SYLVESTER P J, TUBRETT M N. 2011. U-Pb and Th-Pb dating of apatite by LA-ICPMS[J]. Chemical Geology, 280(1-2): 200-216.
- CUI Yu-rong, ZHOU Hong-ying, GENG Jian-zhen, LI Huai-kun, LI Hui-min. 2012. In Situ LA-MC-ICP-MS U-Pb Isotopic Dating of Monazite [J]. Acta Geoscientica Sinica, 33(6): 865-876(in Chinese with English abstract).
- KENNEDY A K, DANTE K. 1997. SHRIMP measurement of U-Th-Pb ages of apatites from the Acropolis find ore prospect, South Australia[C]//GAC-MAC Annual Meeting. Ottawa, Canada: A-77.
- LI Hui-min, ZHOU Hong-ying. 2012. Several Thoughts about U-Pb Isotope Geochronology of the Bayan Obo Ore Deposit[J]. Acta Geologica Sinica, 86(5): 793-800(in Chinese with English abstract).
- LI Qiu-li, LI Xian-hua, WU Fu-yuan, YIN Qing-zhu, YE Hai-min, LIU Yu, TANG Guo-qiang, ZHANG Chuan-lin. 2012. In-situ SIMS U-Pb dating of phanerozoic apatite with low U and high common Pb[J]. Gondwana Research, 21(4): 745-756.
- LIU Yong-sheng, GAO Shan, HU Zhao-chu, GAO Chang-gui, ZONG Ke-qing, WANG Dong-bing. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths[J]. Journal of Petrology, 51(1-2): 537-571.
- LUDWIG K R. 1993. PBDAT for MS-DOS. A computer program for processing Pb-U-Th isotope data, version 1.24[R]. United States Geological Survey Open-File Report 88-542: 40.
- LUDWIG K R. 1997. ISOPLOT-a plotting and regression program for radiogenic-isotope data, version 2.95[R]. United

States Geological Survey Open-File Report 91-445: 47.

- LUDWIG K R. 2003. User's manual for Isoplot/Ex, version 3. 00[C]//A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center: Special Publication, 4: 1-70.
- OOSTHUYZEN E J, BURGER A J. 1973. The suitability of apatite as an age indicator by the uranium-lead isotope method[J]. Earth and Planetary Science Letters, 18(1): 29-36.
- SANO Y, OYAMA T, TERADA K, HIDAKA H. 1999a. Ion microprobe U-Pb dating of apatite[J]. Chemical Geology, 153(1-4): 249-258.
- SANO Y, TERADA K, HIDAKA H, YOKOYAMA K, NUTMAN A P. 1999b. Palaeoproterozoic thermal event s recorded in the ~4.0 Ga Acasta gnesis, Canada: evidence from SHRIMP U-Pb dating of apatite and zircon[J]. Geochimica et Cosmochimica Acta, 63(6): 899-905.
- SONG Biao, ZHANG Yu-hai, WAN Yu-sheng, JIAN Ping. 2002. Mount Making and Procedure of the SHRIMP Dating[J]. Geological Review, 48(S1): 26-30(in Chinese with English abstract).
- STACEY J S, KRAMERS J D. 1975. Approximation of terrestrial lead isotope evolution by a two-stage model[J]. Earth and Planetary Science Letters, 26(2): 207-221.
- SUN Jin-feng, YANG Jin-hui. 2009. A Review of In-situ U-Pb Dating Methods for the Accessory U-Bearing Minerals[J]. Journal of Jilin University (Earth Science Edition), 39(4): 630-649(in Chinese with English abstract).
- WILLIGERS B J A, BAKER J A, KROGSTAD E J, PEATE D W. 2002. Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser, ablationmultiple-collector ICP-MS[J]. Geochimica et Cosmochimica Acta, 66(6): 1051-1066.
- YE Bo-dan, LONG Wen-xuan, LIU Yan. 1984. Apatite U-Pb dating and its geological significance of the Mesoproterozoic stratiform phosphorus ore in the Hebei Province[M]//Precambrian Geology, No.2. Beijing: Geological Publishing House: 89-97(in Chinese).
- ZHONG Yu-fang, MA Chang-qian. 2006. A review of geochronology of U-bearing accessory minerals[J]. Advances in Earth Science, 21(4): 372-282(in Chinese with English abstract).
- ZHOU Hong-ying, LI Hui-min. 2008. The improvement of the rutile isotope dilution U-Pb dating methodology[J]. Acta Petrologica et Mineralogica, 27(1): 77-80(in Chinese with English abstract).
- ZHOU Hong-ying, LI Hui-min. 2011. U-Pb Isotope Dating Technique and Potential Prospects for Applying in Geology[J]. Geological Survey and Research, 34(1): 63-70(in Chinese with English abstract).
- ZHOU Hong-ying, LIU Dun-yi, NEMCHIM A, WAN Yu-sheng. 2007. 3.0 Ga Thermo-tectonic Events Suffered by the 3.8 Ga Meta-quartz-diorite in the Anshan Area: Constraints from Apatite SHRIMP U-Th-Pb Dating[J]. Geological Review, 53(1): 120-125(in Chinese with English abstract).