Xu Tong, Hu Yanli, Wang Min, Wu Jian, Wu Zhensen, Suo Yucheng. Effect of acoustic gravity waves excited by anomalous electric field on ionosphere before strong earthquakes. *Chin. J. Space Sci.*, 2013, **33**(4): 436-440

强震前异常电场激发声重波对电离层的影响

徐 \mathbb{H}^1 胡艳莉¹ 王 敏² 吴 健¹ 吴振森³ 索玉成¹

1(中国电波传播研究所电波环境特性及模化技术重点实验室 青岛 266107)
 2(中国地震局地震预测研究所 北京 100036)
 3(西安电子科技大学理学院 西安 710121)

摘 要 震前地震孕育期地表异常增强的电场,通过大气电导率传输到电离层高度.该异常电场通过非稳态局部 加热,可以在电离层高度激发声重波.基于该理论,利用一维时变中纬电离层物理模型,模拟了该扰动源对电离层 电子密度的影响.结果表明,重力波引起的中性风速度扰动对电离层电子密度分布影响甚微,该机理无法解释震前 电离层异常扰动现象.

关键词 异常电场, 地震, 声重波, 电离层 中图分类号 P 352

Effect of Acoustic Gravity Waves Excited by Anomalous Electric Field on Ionosphere Before Strong Earthquakes

 $\begin{array}{cccc} {\rm XU\ Tong^1} & {\rm HU\ Yanli^1} & {\rm WANG\ Min^2} & {\rm WU\ Jian^1} \\ & {\rm WU\ Zhensen^3} & {\rm SUO\ Yucheng^1} \end{array}$

1(National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation, Qingdao 266107)

2(Institute of Earthquake Science, China Earthquake Administration, Beijing 100036)

3(School of Sciences, Xidian University, Xi'an 710121)

Abstract The study of the ionospheric disturbances prior to the occurrence of large earthquakes has attracted much attention for many years. However, until recently, the physical mechanism of seismo-ionospheric coupling is not fully understood. A strong perturbation of vertical electric field may take place within the epicentral zone a few days before strong earthquakes, which can penetrate into ionosphere through atmospheric conductivity. Acoustic gravity waves may be resulted from the non-stationary Joule heating of a local region above the epicentral zone of an imminent earthquake due to the anomalous electric field. Based on this mechanism and one-dimensional time

^{*} 国家自然科学基金项目 (41004066, 41004065, 41104108) 和地震行业专项项目 (201008007) 共同资助 2012-05-11 收到原稿, 2013-01-06 收到修定稿 E-mail: xutong1104@126.com

Key words Anomalous electric field, Earthquake, Acoustic gravity waves, Ionosphere

0 引言

自从 Barnes^[1] 发现 1964 年阿拉斯加大地震前 电离层异常扰动现象开始, 科学家一直致力于地震电 离层前兆特征及机理研究. 随着强震样本的不断增 加, 人们对震前电离层异常扰动特征的认识逐步深 入^[2-3]. 统计表明, 强震前数天内电离层参数变化 可达 100%^[4]. 然而, 目前地震电离层前兆的物理机 理研究仍然处于初步探索阶段.

对机理的研究有利于进行数据结果分析,建立可 靠的预测和预报模型. 声重波是地震电离层耦合机理 研究中的一个重要假说. 1992 年 Liperovsky 等^[5] 指出, 地震电离层异常扰动可能是由声重波引起的. 由于地壳的块状构造, 地震引起的重力振荡幅度随高 度增加而增加. 震前这些振荡像活塞似地影响到大气 层,产生声重波. 声重波通过中性分子与电离层等离 子体碰撞耦合,将能量传给电离层,使得电离层发生 异常扰动. 随后, 大量研究尝试利用声重波理论定性 或定量地解释震前电离层异常扰动现象 [6-8]. 地震 孕育区声重波源产生机制引起了广泛的质疑. 如果地 表振动产生重力波,那么该振动应该很大,易于记录, 然而其却缺乏观测证据. Pulinets 等 [9] 指出, 声重波 向上传输过程中受到中层顶温度梯度、中性风、热 传导及其他扩散过程的影响,很难传到电离层高度, 且难以解释震前电离层异常扰动的众多特征. 作者 曾利用传输函数方法,分析电离层高度对地震孕育区 地表激发声重波的响应,发现由于粘滞与热传导的影 响,电离层高度声重波扰动幅度仅为 10⁻⁶ 量级 ^[10].

Hegai 等^[11] 认为, 震前电离层高度的异常电场, 通过非稳态的焦耳局部加热可以在电离层高度激发 声重波, 进而影响电离层电子密度分布.本文利用该 理论, 结合一维时变中纬电离层物理模型, 讨论利用 该机制解释震前电离层异常的可行性.

1 电离层高度异常电场 激发声重波理论

观测表明,强震前地震孕育区地表垂直电场异常 增加,可以达到1000 V·m⁻¹,约为晴空大气电场的10 倍.增强的地表电场可以通过大气电导率传输到电 离层高度.Kim 等^[12]模拟发现,穿透到电离层高 度的异常电场可以达到1mV·m⁻¹左右,与大量的 震前卫星观测资料分析结果相符.穿透到电离层高 度的异常电场可以通过局部非稳态焦耳加热,激发声 重波.

假设地球大气是理想的等温气体,并没有背景风存在.这样理想的情况下,大气可以视为重力场中分层的流体,局部加热可以引起大气扰动.此时有^[13]

$$\frac{D_0\rho}{Dt} + \rho\nabla \cdot \mathbf{V} = 0,$$

$$\rho \frac{D\mathbf{V}}{Dt} - \rho g + \nabla P = 0,$$

$$\frac{D}{Dt}(p\rho^{-\gamma}) = (\gamma - 1)\rho^{(1-\gamma)}S.$$
(1)

其中, $D/Dt = \partial/\partial t + (\mathbf{V} \cdot \nabla)$, ρ 为密度, p 为大气压 强, \mathbf{V} 为速度, g 为重力加速度, $\gamma = 1.4$ 为大气比热. 当无扰动时, 密度和压强 [$\rho_0(z), p_0(z)$] $\propto \exp(-z/H)$, 这里 z 为高度, $H = p_0/(\rho_0 g)$ 为大气标高. 引入扰动 项 $\mathbf{V}', \rho' = (\rho - \rho_0)/\rho_0$ 和 $p' = (p - p_0)/p_0$, 线性化 式 (1) 后, 有

$$\frac{\partial \rho'}{\partial t} - V_z'/H + \nabla \cdot \mathbf{V}' = 0,$$

$$\frac{\partial \mathbf{V}'}{\partial t} + gH\nabla p' + (p' - \rho')g = 0,$$

$$\frac{\partial p'}{\partial t} - V_z'/H + \gamma \nabla \cdot \mathbf{V}' = (\gamma - 1)S/(gH). \quad (2)$$

式中, V'z 为扰动速度垂直分量.

电离层 Pedersen 电导率 $\sigma_{\rm P}$ 随高度分布近似 为 $\sigma_{\rm P} = \sigma_{\rm P0} s(z)$,其中, s(z)分布为

$$\begin{cases} 0, & z \leq z_1; \\ \frac{\exp(-z/2H) - \exp(-z_1/2H)}{\exp(-z_2/2H) - \exp(-z_1/2H)}, & z_1 \leq z \leq z_2; \\ 1, & z_2 \leq z \leq z_3; \\ \frac{\exp(-z/2H) - \exp(-z_4/2H)}{\exp(-z_3/2H) - \exp(-z_4/2H)}, & z_3 \leq z \leq z_4; \\ 0, & z \geq z_4. \end{cases}$$
(3)

此时,局部焦耳加热源 S 可以表示为

$$S = D \exp(-\alpha_r^2 r^2) s(z) / \rho_0(z).$$
 (4)

其中, $D = \sigma_{P0} \cdot E^2$, $1/\alpha_r$ 为加热区域尺度. 电场强度 假设为矩形脉冲形式, 长度为 T. 满足

$$1/(\alpha_r R_L) \ll 1, \quad |z_4 - z_1|/R_L \ll 1,$$

$$(z - z_{1,4})^2/R_L^2 \ll 1, \quad R_L = [r^2 + (z - z_0)^2]^{0.5},$$

$$z_1 \leqslant z_0 \leqslant z_4$$

条件下,方程组有如下解析解形式:

$$p' \approx \begin{cases} P_L(r, z, t), & t_L + T_{\rm err} < t \le t_L + T; \\ P_L(r, z, t) - P_L(r, z, t - T), & t \ge T_{\rm err} + T. \end{cases}$$
(5)

其中, $T_{\text{err}} \approx 2^{1/2} \tau_g / \pi$, $\tau_g = 2\pi / \omega_g$, $P_L(r, z, t)$ 为声重 波引起的相对压强扰动.

相对压强扰动 $P_L(r, z, t)$ 为

$$P_L(r, z, t) = \frac{A}{t_L} \frac{\exp(z/2H)}{(x^2 - 1)^{1/2}} \cdot \left[\alpha_{zd} \int_{d_1}^{d_2} J_0(y) dy + \alpha_{zu} \int_{u_1}^{u_2} J_0(y) dy \right].$$
(6)

其中, J₀ 为零阶 Bessel 函数,

$$A = -\frac{D}{\alpha_r^2 H^2} \frac{1}{8g^2} \frac{\exp(z_0/H)}{\rho_0(z_0)},$$

$$\alpha_{zd} = 1/[\exp(-z_2/2H) - \exp(-z_1/2H)],$$

$$\alpha_{zu} = 1/[\exp(-z_3/2H) - \exp(-z_4/2H)],$$

$$d_1 = \omega_g (x^2 - 1)^{1/2} (z - z_2)/c_L,$$

$$d_2 = \omega_g (x^2 - 1)^{1/2} (z - z_1)/c_L,$$

$$u_1 = \omega_g (x^2 - 1)^{1/2} (z - z_4)/c_L,$$

$$u_2 = \omega_g (x^2 - 1)^{1/2} (z - z_3)/c_L,$$

$$x = t/t_L, \quad t_L = R_L/c_L, \quad c_L = \omega_g c/\omega_a,$$

这里, $\omega_g = [(\gamma - 1)g/(\gamma H)]^{0.5}$ 为 Brunt-Väisälä 频率, $c = (\gamma g H)^{0.5}$ 为声速, $\omega_a = \gamma g/2c$ 为截止声频.

假设电场强度 $E = 1.0 \text{ mV} \cdot \text{m}^{-1}$, T = 60 min.焦耳局部加热电离层尺度 $1/\alpha = 200 \text{ km.}$ Pedersen 电导率取 $\sigma_{P0} = 2 \times 10^5 \text{ S} \cdot \text{m}^{-1}$, $z_0 = 280 \text{ km}$, $z_1 = 230 \text{ km}$, $z_2 = z_3 = z_0$, $z_4 = 350 \text{ km.}$ 图 1 给出 了 r 为 500 km, 1000 km 及 3000 km, z = 400 km 高 度处,相对压强 P_L 的变化. 可以看出相对压强 P_L 随着距离的增加周期变大,强度减弱. r = 500 km 时, 扰动周期约为 50 min; r = 1000 km 时, 扰动周期约 为 120 min; r = 500 km 和 1000 km 时, 相对压强扰 动最大超过 0.2%.

2 激发的声重波对电离层的影响

模拟声重波对电离层电子密度分布影响时,可以 借助作者所建立的一维时变中纬电离层物理模型.该 模型主要参考文献 [14],考虑更加复杂的光化学和离 子化学过程,同时可以给出 O⁺, O⁺₂, NO⁺, N⁺₂, N⁺, He⁺ 六种离子和电子的密度剖面.利用该模型可以 对磁暴期间热层大气温度、成分和中性风扰动对电 离层电子密度剖面结构,特别是对峰值密度和高度变 化的影响进行详细讨论 ^[15].图 2 给出了某时刻背景 电离层各成分离子与电子的密度分布,可以看出,电 离层的分子离子是构成低电离层的主要成分, O⁺ 离 子是 F₂ 层离子的主要成分.

图 1 高度为 400 km 处不同距离 r 条件下相对 压强扰动 PL 变化

Fig. 1 Oscillations of the relative pressure at the height of 400 km at different distance r

电场 E 在电离层高度激发声重波,产生大气压强扰动,造成中性粒子运动,形成中性风扰动分量. 中性成分速度水平分量和垂直分量分别为^[16]

$$U_r = -gH\frac{\partial}{\partial r} \left[\int_{t_L}^t P_L(r, z, \tau) \mathrm{d}\tau \right], \tag{7}$$

$$U_z = H \frac{\partial P_L}{\partial t} - g H \left(\frac{1}{\omega_g}\right)^2 \frac{\partial^2 P_L}{\partial t \partial z}.$$
 (8)

图 3 给出了某时刻电离层电子密度剖面和声重 波传到 r = 500 km 处持续不同时间的电离层电子密 度剖面. 从图 3 可以看出,电离层电子密度剖面变化 幅度很小,峰值最大相对扰动仅约为 5%, f₀F₂ 绝对 扰动约为 0.2 MHz. 实际监测中,如此小幅度的扰动 淹没在电离层瞬时震荡的噪声中,不易被察觉.

图 4 给出了 400 km 高度处, 中性风水平分量 U_r 和垂直分量 U_z 随扰动随电场 E 的变化. 可以看出,

Fig. 3 Ionospheric electron distributions affected by acoustic gravity wave

由扰动电场 E 引起的中性风扰动幅度是很小的,这 是因为声重波引起的相对压强扰动 P. 幅度很小,最 大在 0.1% 量级. 在电场 E 达到 3 mV·m⁻¹ 时, U_r 仅约为 14 m·s^{-1} , U_z 绝对值小于 1 m·s^{-1} . 如此低幅 度的风速扰动,难以对电离层电子密度剖面产生明显 的影响. 中性风能够改变电离层峰值高度, 但对电离 层电子密度的影响不明显. Zhang 等^[17]模拟发现, 当水平风速度达到 300 m·s⁻¹ 强度时, 电离层峰值密 度变化仅约为 10⁵ cm⁻³ (< 1.0 MHz). 强震前, 电 离层 f₀F₂ 异常增加能达到几 MHz (例如汶川地震 前, 重庆站 5 月 9 日 17:00 (北京时间) f_0F_2 超过背 景值 5.0 MHz 以上^[18]).因此, 1 mV·m⁻¹ 强度的电 场激发的声重波无法定量解释强震前电离层电子密 度异常明显的扰动. Hegai 等^[16] 假设电离层高度异 常电场 $E = 20 \, \mathrm{mV \cdot m^{-1}}$ 时,利用该理论计算得到夜 间电离层 F₂ 层电子峰值密度最大扰动约为 20%. 目 前,大部分理论分析异常电场取 mV·m⁻¹ 量级,异常 电场是否能达到 20 mV·m⁻¹ 有待证实. 该强度的电 场也远远超过了卫星观测结果. 作者曾利用中国汶 川地震前电离层垂测数据反推电离层高度异常电场 强度, 也得到 mV·m⁻¹ 量级的电场强度^[2]. 另外, 由

图 4 t = 60 min, r = 500 km, z = 400 km 高度处中性风
随扰动电场的变化. (a) 水平分量 U_r, (b) 垂直分量 U_z
Fig. 4 Variations of horizontal neutral speed with electric field under the condition of t = 60 min, r = 500 km and z = 400 km. (a) horizontal component U_r, (b) vertical component U_z

于夜间背景电离层电子密度低, 20% 的相对扰动对 应的 f₀F₂ 绝对变化非常小. 白天电离层背景密度显 著增大, 在同样电场条件下电离层扰动幅度可能远小 于 20%. 可见异常电场在电离层高度激发声重波理 论, 无法解释地震前电离层电子密度异常扰动现象.

3 总结与讨论

地震电离层前兆研究目前仍处于现象认识及规 律归纳阶段,成因探索难度大.声重波是地震电离层 前兆机理研究的一个重要假说.利用一维时变中纬 电离层物理模型,考察了强震前异常电场激发重力波 改变电离层状态的机制.模拟结果表明,该机制不足 以解释强震前电离层电子密度峰值异常明显的扰动.

需要指出的是, 异常电场也可以通过欧姆加热 使低电离层 (如 D 区) 电子温度升高, 改变低电离 层电子密度. 强度为 V·m⁻¹ 量级的强电场可以使得 低电离层电子密度显著改变, 幅度可以达到 50% 以 上^[19]. 然而, 震前异常电场幅度仅为mV·m⁻¹ 量 级. 利用文献 [20] 建立的低电离层加热模型, 模拟 发现 1mV·m⁻¹ 电场引起的低电离层电子密度变化 小于 1%. 因此, 本文没有考虑震前异常电场对低电 离层的影响.

Pulinet^[21] 指出,强震前电离层高度的异常电场 可以叠加到电离层背景电场,通过等离子体 *E* × *B* 漂移作用,改变电离层电子密度分布.因此,综合考 虑电场的双重作用是我们进一步研究工作的重点.

参考文献

- Bannes R A, Leonard R S. Observations of ionospheric disturbances following the Alaska earthquake [J]. J. Geophys. Res., 1965, 70:1250-1253
- [2] Xu Tong, Hu Yanli, Wu Jian, et al. Anomalous enhancement of electric field derived from ionosonde data before the great Wenchuan earthquake [J]. Adv. Space Res., 2011, 47(6):1001-1005
- [3] Zhao B Q, Wang M, Yu T, et al. Is an unusual large enhancement of ionospheric electron density linked with the great Wenchuan earthquake [J]. J. Geophys. Res., 2008, 113, doi:10.1029/2008JA013613
- [4] Pulinets S A, Legen'ka A D, Gaivoronskaya T V, et al. Main phenomenological features of ionospheric precursors of strong earthquakes [J]. J. Atmos. Solar-Terr. Phys., 2003, 65(16/17/18):1337-1347
- [5] Liperrovsky V A, Pokhotelov O A, Shalimov S L. Ionospheric Precursor of Earthquakes [M]. Moscow: Nauka

Press, 1992. 304

- [6] Korepanov V V, Hayakawa M, Yampolski Y, et al. AGW as a seismo-ionospheric coupling responsible agent [J]. *Phys. Chem. Earth*, 2009, **34**(6/7):485-495
- [7] Meister C W, Mayer B, Dziendziel P, et al. On the acoustic model of lithosphere-atmosphere-ionosphere coupling before earthquakes [J]. Nat. Hazards Earth Sci., 2011, 11:1011-1017
- [8] Rapopart Y G, Hayakawa M, Gotynyan O E, et al. Stable and unstable plasma perturbations in the ionosphere F region, caused by spatial packet of atmospheric gravity waves [J]. Phys. Chem. Earth, 2009, 34:508-515
- [9] Pulinets S A, Boyarchuk K A. Ionospheric Precursors of Earthquakes [M]. Springer: Verlag Publisher, 2004
- [10] Xu Tong, Wu Jian, Wu Zhensen, et al. Preliminary studies on ionospheric precursors of earthquake: atmospheric gravity wave [J]. Chin. J. Radio Sci., 2011, 26:190-193
- [11] Hegai V V, Kim V P, Nikiforova L I. A possilbe generation mechanism of acoustic-gravity waves in the ionosphere before strong earthquake [J]. J. Earthq. Pre. Res., 1997, 6:584-589
- [12] Kim V P, Khegai V V, Illich-Svitych P V. On one possible ionospheric precursor of earthquakes [J]. Phys. Solid Earth., 1994, **30**(3):223-226
- [13] Chimonas G, Heines G O. Atmospheric gravity waves launched by auroral currents [J]. Planet. Space Sci., 1970, 18(4):565-582
- [14] Lei Jiuhou. Modeling and Statistic Studies of Mid-latitude Ionosphere [D]. Beijing: Chinese Academy of Sciences, 2005.
- [15] Xu Tong. Study on Modeling of Mid/Low-latitude Ionosphere and its Relative Anomalous Phenomenon [D]. Xi'an: Xidian University, 2009.
- [16] Hegai V V, Kim V P, Liu J Y. The ionospheric effect of atmospheric gravity waves excited prior to strong earthquakes [J]. Adv. Space Res., 2006, 37:653-659
- [17] Zhang Qiwei, Guo Jianshan, Zhang Gongliang. Model study of mid-latitude ionospheric density profile variation during geomagnetic storms [J]. *Chin. J. Space Res.*, 1994, 14(1):39-47
- [18] Xu Tong, Hu Yanli, Wu Jian, et al. Giant disturbance in the ionospheric F₂ region prior to the M8.0 Wenchuan earthquake on 12 May 2008 [J]. Ann. Geophys., 2010, 28(8):1533-1538
- [19] Huang Wengeng, Gu Shifen. Interaction between the powerful high-frequency radio wave and the lower terrestrial ionosphere [J]. *Chin. J. Space Res.*, 2003, 23(3):191-188
- [20] Xu Bin, Wu Jian, Wu Zhensen, et al. Temperature enhancement induced by ionosphere heating in low altitude region [J]. Progress Nat. Sci., 2008, 18:1339-1343
- [21] Pulinets S A. Physical mechanism of the electric field generation over active tectonic fault [J]. Adv. Space Res., 2009, 44(6):767-773