大豆疫霉甘油醛-3-磷酸脱氢酶基因在病原物植物互作 中诱导表达及其抗氧化作用在酵母遗传互补系统中的 功能验证

曾娟 王源超^{*} 申贵 郑小波

(南京农业大学植物保护学院,南京 210095.* 联系人, E-mail: wangyc@njau.edu.cn)

摘要 甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphate dehydrogenase, GAPDH)是真核生物细胞中-类功能丰富的蛋白质. 采用抑制性差减杂交(suppression subtractive hybridization, SSH)的方法, 筛选到 一个在大豆疫霉侵染早期上调表达的、编码GAPDH的cDNA片段; 克隆了该基因的全长序列, 命名为 *PsGapdh*. Southern杂交结果显示, *PsGapdh*在大豆疫霉基因组中含有 3 个拷贝. 该基因编码的氨基酸序 列具有GAPDH的保守结构域. 在系统发育树中, PsGAPDH与两性绵霉(*Achlya bisexualis*)的GapC1 同源 性最高、与中华盒形藻(*Odontella sinensis*)和三角褐指藻(*Phaeodactylum tricornutum*)的GapC2 同源性较 高, 三者聚类分布于GapC亚族的C- 分支. RT-PCR分析表明, 该基因在大豆疫霉侵染早期转录水平提 高. 该基因可以恢复酵母突变体Δ*tdh*1 对H₂O₂的耐受性. 上述结果提示, 大豆疫霉的甘油醛-3-磷酸脱氢 酶具有与酵母*tdh*1 相似的抗氧化作用, 且参与了大豆疫霉对寄主植物的侵染过程.

关键词 大豆疫霉 甘油醛-3-磷酸脱氢酶 病原物-植物互作 抗氧化

由大豆疫霉(Phytophthora sojae Kaufmann & Gerdemann)引起的大豆根腐病是世界大豆生产中的 毁灭性病害之一^[1].由于具有与丝状真菌相似的生物 学性状,长期以来疫霉菌被划分为真菌的一类;但是 在新的生物分类系统中,疫霉菌所属的卵菌纲、与包 括金藻、褐藻和硅藻在内的多种原生生物(protoctists) 一起,被划分在茸鞭生物界(Stramenopiles)^[2,3].尽管 疫霉菌中的许多种是重要的植物病原菌、具有特殊的 分类地位,但其分子生物学研究进展缓慢.

甘油醛-3-磷酸脱氢酶(glyceraldehyde-3-phosphatedehydrogenase, GAPDH)是一类作用机制复杂、功 能丰富的蛋白.在哺乳动物细胞中,GAPDH 参与了 细胞内吞作用、组蛋白基因的转录调节、细胞核内 tRNA转运、DNA复制和修复过程^[4],并与神经原细胞 凋亡、神经衰退性紊乱、前列腺癌及病毒疾病相关^[5,6]. 最近还发现其具有帮助核膜融合、识别DNA上错配 的核苷酸及维持端粒结构的作用^[7].在微生物中,对 酵母GAPDH (在酵母中被称为"TDH")的研究最为深 入,在酿酒酵母(*Saccharomyces cerevisiae*)中,TDH的 巯基化与细胞对过氧化氢(H₂O₂)的抗性直接相关^[8], 且这种氧化作用受到氧化还原平衡中一个重要的蛋 白——谷氧还蛋白 5 (glutaredoxin 5)的调节^[9]; TDH 同工酶可与Gts1p互作,而该蛋白的表达具有周期 性、并可能参与调节糖酵解的节律振荡^[10].另外, TDH1 还受到由胞质NADH过量而导致的还原压力的 诱导表达^[11].上述研究结果提示,GAPDH可能在多 种不同的生理生化途径中起作用;而其在氧化还原 平衡中的作用暗示,大豆疫霉的GAPDH很有可能参 与包含氧迸发事件的病原物植物互作过程.

然而,对疫霉菌GAPDH的功能还缺乏了解.最 初,以构巢曲霉(*Aspergillus nidulans*)中包含该基因 的片段为探针,在抗菌素DASH基因组文库中筛选到 致病疫霉(*Phytophthora infestans*)GAPDH的编码基因, *gpdA*^[12].随后的研究表明,在多数疫霉种类中, GAPDH与丙糖磷酸异构酶(triose-phosphate isomerase, TPI)融合成一个转录单元—*tigA*^[13];而藻类 中也存在这种TPI-GAPDH融合蛋白,且定位于线粒 体,提示真核生物的糖酵解途径起源于线粒体^[14].最 近的研究发现,烟草疫霉GAPDH基因的转录水平在 萌发的休止孢中显著提高^[15],提示在这种重要的侵 染结构中GAPDH发挥了积极的作用,因而为研究 GAPDH在大豆疫霉侵染过程中的作用提供了参考和 依据.

为了解大豆疫霉侵染的分子机制,我们采用抑

制性差减杂交(suppression subtractive hybridization, SSH)的方法,筛选在其侵染早期(腐生生长前)特异表 达的基因.在上调表达基因文库中,鉴定出一个编码 GAPDH 的基因,命名为 *PsGapdh* (GenBank 登录号: CX873807).本研究对 *PsGapdh* 进行克隆和序列分 析,检测该基因在亲合互作过程中的转录情况,并利 用酵母遗传互补系统验证该基因的抗氧化功能,研 究结果对深入了解大豆疫霉 GAPDH 的生理功能具 有重要意义.

1 材料与方法

() 大豆疫霉菌株与培养条件. 本研究所用大 豆疫霉菌株为Pmg2, 从中国黑龙江省大豆田土壤中 分离而得, 保存于南京农业大学植物病理学系真菌 实验室. 为提取该菌株的DNA和RNA, 切取菌丝块, 置于 100 mL 10% V8 培养液(10% Campbell's V8 汁, 0.02% CaCO₃)中, 于 25 黑暗轻摇培养 4 d.

() *PsGapdh* 的克隆及蛋白序列分析. 为获取 *PsGapdh* 编码区全长序列,依照 TRIzol Reagent kit (Invitrogen),提取 Pmg2 的总 RNA;再用 M-MLV Reverse Transcriptase (Promega Biosciences, Inc.)合成 体系,将 RNA 反转录为第一链 cDNA. 根据 SSH 筛 选的结果,下载公布在 COGEME (the Functional Genomics of Microbial Eukaryotes)中的大豆疫霉 GAPDH 序列,设计一对引物(sojGap2-F (上游引物), 5'-ATGAGTGAAGTCAAGATCG-3'; sojGap2-R (下游 引物): 5'-CTACTTGTCGACAGTGGC-3').以 cDNA 为模板进行 PCR 扩增.反应程序为:94 预变性 5 min;94 ,30 s, 54, 30 s, 72 ,1 min, 30 个循环;72 延伸 7 min. PCR 产物用 Agarose Gel DNA Purification kit (TaKaRa)切胶回收,并测序.

根据PsGAPDH蛋白序列,在Mega3.0 Beta^[16]中, 与其他生物的 54 个同系物一起进行聚类分析,以揭 示其系统发育地位;并在BioEdit (Version 7.0.5.1) (Tom Hall Copyright C, 1997~2005)中,与致病疫霉 (*Phytophthora infestans*)、酿酒酵母(*Saccharomyces cerevisiae*)、粗糙脉胞霉(*Neurospora crassa*)及稻瘟菌 (*Magnaporthe grisea*)等模式微生物的GAPDH蛋白序 列进行比较,以分析其保守结构域.

 () Southern杂交. 依照DIG DNA Labeling and Detection Kit (Roche Molecular Biochemicals, Germany)的方法,进行Southern杂交分析. 以PsGapdh基
 因中 577 bp大小的片段作为探针,以地高辛标记 25 ng/mL为使用终浓度.依据Cenis^[17]的方法,从Pmg2 冻 干菌丝粉中提取基因组DNA.基因组DNA经*Eco*R 及*Hind* (基因内无酶切位点)消解后,取 10 μ g于 0.8%琼脂糖凝胶中过夜电泳、充分分离酶解片段,然 后转移至带正电的尼龙膜(HybondTM-N⁺, Amersham, Biosciences UK Limited)上,与地高辛标记的探针于 54 杂交过夜(杂交液成分为: 6×SSC; 5×Denhard's试 剂; 0.5% SDS; 100 μ g/mL鲑鱼精DNA).杂交后的尼 龙膜依次用低严紧度洗脱液(2×SSC, 0.1% SDS)及高 严紧度洗脱液(0.5×SSC, 0.1% SDS)于 68 各洗涤 30 min,然后依据试剂盒进行免疫学显色检测.

() PsGapdh 在亲合互作早期的转录水平变化 的 RT-PCR 检测. 取经 10% V8 培养液培养 4 d 的 Pmg2 菌丝体, 接种于生长 2 周的大豆栽培品种 Hefeng35 叶片上, 于 25 分别孵育 0, 1, 3, 6 和 12 h; 将接种不同时间段的菌丝团同时从叶片上剥离、立 即提取其总 RNA, 并用 DNase (Qiagen)消解、以排 除基因组 DNA 干扰. 统一用 10 µg 总 RNA 进行反转 录合成第一链 cDNA、并以 2 µL 稀释液作为模板在 25 uL 体系中进行 PCR 扩增、以校正模板浓度; 以不 同循环数产物做比较进行优化、以保证扩增过程在 对数期以内.为提高反应效率,设计了靠近基因 3'-poly(A)端的引物(对目的基因 PsGapdh: fGapF (上 游引物), 5'-TGCTGAACGGCAAGCTGACG-3'; fGapR (下游引物), 5'-ACTTGTCGACAGTGGCCATG-3'. 对内标基因 actin: actinRT (上游引物), 5'-GTACTGC-AACATCGTGCTGTCG-3'; actinAD (下游引物), 5'-TTAGAAGCACTTGCGGTGCACG-3'). PCR ∓ MJ-PTC 200 Thermocycler (MJ-Research, Watertown, MA) 中进行.反应程序为: 94 预变性 5 min; 95 , 15 s, 60 (对 PsGapdh) 或 64 (对 actin), 30 s, 72 , 30 s, 28个循环; 72 延伸 7 min. PCR 产物在含有溴化乙锭 的 1.2% 琼脂糖凝胶中电泳, 于凝胶成像系统 Gel Doc 2000 (BIO-RAD, Segrate Italy)中拍摄结果, 用图像分 析软件 Quantity One 4.4.0 (BIO-RAD, Segrate Italy)进 行定量分析.

())酵母菌株与培养条件. 供试酵母菌株为
 Y00000 (MATa; his3Δ1; leu2Δ0; met15Δ0; ura3Δ0)及
 Δ*tdh*1 (MATa; his3Δ1; leu2Δ0; met15Δ0; ura3 Δ0;
 YJL052w::kanM×4),均系 BY4741 的衍生物,从
 EUROSCARF (http://web.uni-frankfurt.de/fb15/mikro/
 euroscarf/)订购.以YPD 培养基 (2%葡萄糖, 2%蛋白
 胨、1%酵母提取物)进行恢复和保存培养;以添加必

需氨基酸(20 mg/L甲硫氨酸, 20 mg/L组氨酸, 20 mg/L 尿嘧啶, 60 mg/L亮氨酸(SD中含亮氨酸, SD-leu⁻中不 含亮氨酸))的SD培养基 (0.17%不含任何氨基酸的酵 母基本氮源, 5%硫酸铵, 2%葡萄糖)进行筛选和验证. 在培养液中添加 2% 琼脂粉制备固体培养基.

()) 重组质粒的构建及酵母突变体的转化.以 带有ADH1 启动子(0.4 kb)和亮氨酸选择标记的穿梭 质粒pGAD424 为载体,在其多克隆位点处插入 *PsGapdh*的全长cDNA序列(插入酶切位点为*Eco*R (上游)和*Bam*H (下游)),以构建表达载体 pGAD424::*PsGapdh*.通过乙酸锂转化法^[18],用 pGAD424 和pGAD424::*PsGapdh*分别转化在生长静 止期对 H₂O₂敏感的突变体 $\Delta tdh1$,得到转化子 $\Delta tdh1+pGAD424$ 和 $\Delta tdh1+pGAD424::PsGapdh.转化$ 子在SD-leu⁻平板上连续筛选2次以上.

()) 斑点测验及细胞存活率测定各酵母菌株对 H₂O₂的耐受性. 依据Grant等人^[19]的方法, 通过斑点 测验来检测各菌株对H₂O₂的耐受性. 在SD(对野生型 Y00000 和初始菌株 $\Delta t dh$ 1)或SD-leu⁻⁽(对转化子 $\Delta t dh$ 1+pGAD424 和 $\Delta t dh$ 1+pGAD424::*PsGapdh*)培养 液中,将待测菌株培养至生长静止期,将菌液分别稀 释至 A_{600} 为1,10⁻¹,10⁻²,10⁻³. 取5 µL稀释液滴至含 有不同浓度H₂O₂(0,4.5,6 mmol/L)的YPD平板上. 为 定量分析酵母细胞存活能力,取各菌株稀释浓度 A_{600} 为1的菌液 5 µL,稀释至 50 µL后,分别涂布于相同 浓度系列的H₂O₂平板上. 平板于 30 恒温培养4 d. 通过各菌株斑点图像及存活率来估测其对H₂O₂的耐 受性.

2 结果

2.1 PsGapdh 基因的克隆与序列分析

由于SSH筛选证明GAPDH基因在大豆疫霉侵染 大豆早期表达量提高,推测该基因可能参与了大豆 疫霉与寄主互作早期的侵染过程.本研究克隆了该 基因的可读框,其全长序列为 1020 bp,并命名为 *PsGapdh*.与以基因组为模板扩增的产物比较,发现二 者的序列完全一致,说明该基因没有内含子.这与致病 疫霉的GAPDH基因^[12]及卵菌中其他大多数基因^[20]的 情况相吻合.同时,其核酸序列与COGEME, Phytopathogenic Fungi EST Database version1.5 (http://cbrrbc.nrc-cnrc.gc.ca./service/cogeme)和 the *Phytophthora sojae* Genome Database release version 1.0 (http://genome.jgi-psf.org/sojae1/sojae1.home.html)数据库中的 相应序列完全相同. Southern杂交结果显示,用基因内 无酶切位点的限制性内切酶(*Eco*R , *Hind*)酶切后, 都检测出 3 条杂交条带,推定*PsGapdh* 在大豆疫霉 基因中有 3 个拷贝(图 1(a)).

由于不同亚类的GAPDH具有不同的细胞定位及 相应的功能[14],而其序列上的保守性又能反映生物 界之间基因的水平转移,因此其同系物被划分为2个 亚族: Gap1-GapC (类似真核生物的胞质 gapC)和 Gap2-GapA/B(类似藻青菌和细胞质遗传细菌的 gap3)^[21].为预测大豆疫霉GAPDH的生物学功能、将 PsGapdh的氨基酸序列与其他不同物种的 54 个同源 序列进行比较(图 1(b)). 在系统发育树中, PsGAPDH 与两性绵霉(Achlya bisexualis)的GapC1 同源性最高, 与中华盒形藻(Odontella sinensis)和三角褐指藻(Phaeodactylum tricornutum)的GapC2 相邻, 三者同属 GapC亚族的C- 分支,提示PsGAPDH可能定位于细 胞质;而其他已报道的卵菌GAPDH的同系物,如致 病疫霉(P. infestans)的GPDA, 棕榈疫霉(P. palmivora) 的GAPDH及两性绵霉(Achlya bisexualis)的GapC2 (TigA),则聚集在C- 分支处、定位于线粒体. 这表 明尽管疫霉属的多数种存在TPI-GAPDH融合的现象 [13]、但PsGAPDH的蛋白结构却与此不同.

将大豆疫霉的PsGAPDH与系统发育地位相隔较 远的几个模式真菌的GAPDH,进行蛋白序列对比, 以预测其功能域(图 2).结果表明,PsGAPDH具有保 守的NAD⁺结合位点(150 位点)和催化活性位点(177 位点),且具有与酿酒酵母的 3 个同工酶同源的 "conflict"区域(248,287 和 329 位点).

2.2 亲合互作早期 PsGapdh 转录水平提高

以 actin 基因为内标,用 RT-PCR 检测了大豆疫 霉侵染早期 PsGapdh 的转录情况.结果表明(图 3), 大豆疫霉与感病大豆接触后的 12 h 内, PsGapdh 转录 水平显著提高,提示该基因与大豆疫霉对大豆的侵 入和定殖有关.

2.3 PsGapdh同源互补酵母突变体的H2O2耐受性

由于缺乏高效稳定的大豆疫霉转化体系,而 *PsGapdh*具有与酵母同系物相同的保守功能域,采用 酵母遗传互补系统来验证其抗氧化功能.通过构建 *PsGapdh*的组成性表达载体,转化具有H₂O₂敏感性

的酵母突变体 $\Delta t dh1$,得到了功能互补的转化子.在 菌液浓度一致的情况下, H_2O_2 浓度为 4.5 和 6 mmol/L 的YPD平板上, *PsGapdh*转化子生长能力比初始的突 变体菌株高一个数量级,其存活率恢复到野生型菌 株的 60%(图 4),表明大豆疫霉GAPDH具有与酵母 TDH1 相似的抗氧化功能,从而间接印证了*PsGapdh* 对于大豆疫霉在氧化压力中的生存具有重要作用.

3 讨论

系统发育分析对推测和进一步研究 PsGAPDH的 功能具有重要意义.大豆疫霉的 GAPDH 与两性绵霉 (Achlya bisexualis)的 GapC1,中华盒形藻(Odontella sinensis)和三角褐指藻(Phaeodactylum tricornutum)的 GapC2 遗传距离较近,与致病疫霉(P. infestans)的 GPDA,棕榈疫霉(P. palmivora)的 GAPDH 及两性绵霉(Achlya bisexualis)的 GapC2 (TigA)相距较远且属 不同分支,与几种模式真菌(如玉蜀黍黑粉菌 (Ustilago maydis)、粗糙脉胞霉(Neurospora crassa)和 稻瘟菌(Magnaporthe grisea))相距更远. PsGAPDH 在 系统发育树中的位置进一步证明了大豆疫霉与藻类 具有紧密的亲缘关系,而与其他真菌的亲缘关系较

论文

Ps Pi Mg Nc Sc1 Sc2 Sc3	MSEVKICINGFGRIGR MNVRINGFGRIGR MVKCCINGFGRIGR -MVKVGINGFGRIGR MIRINGFGRIGR MIRINGFGRIGR MVRVRINGFGRIGR MVRVRINGFGRIGR	LUCRAATENPK LULRASAKNPL TVERNATEHDD LULRLALQRKD LURRTALQRKD LUMRTALSRPN	TKVVAINDPF INIVAINDPF CEIVAVNDPF IHIVAVNDPF IEVVAVNDPF VEVVAINDPF VEVVAINDPF	MOLEYMAYLF VSTYGORGOL IEPNYARYOL ISNYARYOL ISNYARYOL ISNYARYOF ITNDYARYOF	KYDSTHGKED EYDTVHGKED EYDSTHGREK RYDTTHGNEK KYDSTHGRYK KYDSTHGRYA KYDSTHGRYA	GSVETKDGNLI GSLSHDETHTI GTVEVSGSDLI GTIEVDGADLI GEVSHDDKHTI GEVSHDDKHTI	VNNEVIHVE SVNEXPIRVE VNNEXVXFY VNNEXVXFY LID VXIATY LVD PHKIATY	AARNPSEIPW NEMNPENIRW TERDPANIPW TDADPAAIPW QERDPANLPW QERDPANLPW QERDPANLPW	GKAGATYVCES GEEQUQYVVES SETGAEYVVES SSLTDVAVDS ASLNIDIAIDS GSSNVDIAIDS	TGVETTTEKAK TGRETTLEKAS' TGVETTTDKAS' TGVETTTEKAS' TGVEKELDTAQ TGVEKELDTAQ TGVEKELDTAQ	SHIIDGC THUKNG AHUKGC AHUKGG KHUDAG KHUDAG KHUDAG
	130	140	150	160	170	180	190	200	210	220 2	30
Ps Pi Mg Nc Sc1 Sc2 Sc3	I SAPPKDDTPMYDAGU I SAPS-SDAPMYDAGU I SAPS-ADAPMYDAGU I SAPS-ADAPMYDAGU I SAPS-SAPMGUGU I TAPS-STAPMGUAGU I TAPS-STAPMGUAGU	NHKEYNGSRHV NHELYBENNOR NEEKSYDGSRSV NHETYDGSRDV NHTNYTPDKKT NEERYTSDLKT NEERYTSDLKT	VSNASCTTNC VSNASCTTNC ISNASCTTNC SNASCTTNC VSNASCTTNC VSNASCTTNC VSNASCTTNC *	LAPLAKVIND LAPLAKVIND LAPLAKVIND LAPLAKVIND LAPLAKVIND LAPLAKVIND LAPLAKVIND	OFCIVEGLMT KFCIXEGLMT KFCIVEGLMT NFTIVEGLMT AFCIBEGLMT AFCIBEGLMT AFCIBEGLMT *	TVHATTATOM TVHAVTATOX TVHSYTATOX TVHSYTATOX TVHSYTATOX TVHSMTATOX TVHSLTATOX	VDGPAKGG VDGPSK	DWRGGRGCCQ DWRGGRGACF DWRGGRGAAQ DWRGGRTAAQ DWRGGRTASG DWRGGRTASG DWRGGRTASG	NIIPSSTGARK NIIPSSTGARK NIIPSSTGARK NIIPSSTGARK NIIPSSTGARK NIIPSSTGARK NIIPSSTGARK	AVGKVUPVLNG AVGKVUPSLNG AVGKVUPALNG AVGKVUPBLNG AVGKVUPBLQG AVGKVUPBLQG AVGKVUPBLQG	KLTGMA KLTGMS KLTGMS KLTGMA KLTGMA KLTGMA
	259	260	270	280	290	300	310	320	330	340	
Ps Pi Mg Nc Sc1 Sc2 Sc3	PDVSVVDLTCRLEKPA RDVSVVDLTARLVNPA ANVSVVDLTCRLEKGA RNVSVVDLTRREKGA VDVSVVDLTVKLEKEA VDVSVVDLTVKLNKET VDVSVVDLTVKLNKET	SMDATI KARVINA SYDETI KARTINS SYBETI KARTINE TYDETI KEVTINK TYDETI KKVVINA TYDETI KKVVINA	asegelagil Asenemkgil Ardgplkgil Ardgplkgil Aregplkgvi Aregklkgvi Aregklkgvi	CYTEDQVVSN CYTERRVVSS RYTEDDVVSS RYTEDEVVSS CYTEDRVVSS CYTEDRVVSS CYTEDRVVSS	DFLHDKRSST DFIGDSHSSI DAIGNNASSI DANGNPASSI DFLGDTHASI DFLGDSNSSI DFLGDSHSSI	edadacialni Edabacialni Edagacialni Edagacialni Edagaciglisi Edagaciglisi Edagaciglisi Edagaciglisi	DTEVKLVAWY DDEVKLVSWY DKEVKLVSWY KNEVKLVSWY PKEVKLISWY PKEVKLVSWY	DNEWGY SNRI DNEWGY SSRU DNEWGY SRRU DNEWGY SRRU DNEYGY SRRU DNEYGY SRRU DNEYGY STRU DNEYGY STRU	VDLVL HUAT VD LDLIEHNVKNE IDLVIYI SKVD LDLI SYI SKVD VDLIEYVAKA- VDLVEHVAKA- VDLVEHVAKA-	K 339 GGK- 336 AKKA 338 332 332	

图 2 PsGAPDH 与其他模式微生物同系物的序列比较

Ps,大豆疫霉(Phytophthora sojae); Pi,致病疫霉(Phytophthora infestans); Mg,稻瘟菌(Magnaporthe grisea); Nc,粗糙脉胞霉(Neurospora crassa); Sc1~3,酿酒酵母(Saccharomyces cerevisiae) TDH1~3.蛋白序列中,完全相同的氨基酸残基用黑底高亮显示,具有70%同源性的用灰色背景显示. 星号示 150 位的天冬酰胺(具有NAD⁺结合活性)和177 位的苏氨酸(具有糖酵解催化活性),均为7 种GAPDH所共有

(a) PCR 产物琼脂糖凝胶电泳分析. 鉴于目的基因与内标基因引物在 同一体系内相互干扰,因此分开扩增;但同一处理的 cDNA 模板用量 及 PCR 产物电泳加样量均保持一致.0,1,3,6,12,接种时间分别为 0, 1,3,6,12 h; M,分子量标记,示 250 bp 的条带.(b)电泳条带亮度的 定量分析.在 Quantity One 4.4.0 中,将电泳条带的亮度转换为单位容 积内的光密度.目标基因的相对表达量,以同一处理 PsGapdh与 actin 条带光密度的比值显示

可能定位于细胞质内. 近来发现, 在哺乳动物及酵母 中GAPDH具有除糖酵解以外的其他功能, 而且这些 功能都与相应的细胞定位有关^[22-25,26]. 鉴于蛋白的 功能与其亚细胞定位密切相关, 依据系统发育树分 析结果, PsGAPDH可能在细胞质执行功能. 关于为何在大豆疫霉侵染早期筛选到上调表达 的GAPDH基因, 有不同的解释. 一般认为, GAPDH 是糖酵解途径中的关键酶, 大豆疫霉可能通过增强

远、该结果与前人的研究相似[14,21].此外、由于

PsGAPDH聚类于GapC亚族的C- 分支,预示该蛋白

NGAPDH基因,有不同的解释.一般认为,GAPDH 是糖酵解途径中的关键酶,大豆疫霉可能通过增强 侵染早期的糖酵解代谢过程,获得足够的能量,保证 其成功侵染.然而,本研究前期SSH筛选到总共 487 个差异表达基因,在正向扣除文库中并未出现其他 的糖酵解酶基因.因此,推测*PsGapdh*可能在大豆疫 霉侵染早期执行了其他功能.酿酒酵母的GAPDH (TDH)与抗氧化及氧化还原平衡相关^[8,9],且TDH1受 胞质中过量NADH的诱导表达^[111].尽管氧迸发是病 原物与植物互作早期的一个重要事件^[27],但目前的 研究只是证明了氧迸发能诱导植物的程序化细胞死 亡(programmed cell death, PCD)并产生防卫反应^[28], 而关于病原物如何克服侵染过程中所遇到的这种氧 化压力则缺少了解.本实验对于*PsGAPDH* 的功能

验证、正是对大豆疫霉侵染早期抵抗寄主植物氧迸 发机制的初步探索.

大豆疫霉与寄主叶片接触12h内, PsGapdh 转录 水平显著提高,尽管长期以来GAPDH被作为组成型 表达的持家基因、但是有研究证明、玉米的GAPDH 基因受不同的非生物胁迫因素调节[29.30];而马铃薯 的GAPDH基因受病原物侵染诱导表达^[31],在致病疫 霉侵染过程中、整体植株的GAPDH mRNA积累水平 可以提高 2~3 倍^[32];烟草疫霉萌发的休止胞中GAPDH 表达量上升幅度为 6.3 倍[15]. 本研究中大豆疫霉的 PsGapdh在病原菌侵染早期转录水平提高了3倍、表明 该蛋白可能参与了大豆疫霉的早期侵染过程.

由于在植物与病原菌互作过程的早期、氧迸发 是最重要的事件之一、推测PsGAPDH可能参与了大 豆疫霉对氧化压力的抵抗过程. 酵母遗传互补系统 被广泛应用于一些难以进行遗传转化的生物的基因 功能分析,如致病疫霉(P. infestans)的picdc14基因[33], 里氏木霉(Trichoderma reesei)的vpt1 基因^[34]

及三角褐指藻(Phaeodactylum tricornutum)和隐甲藻 (Crypthecodinium cohnii)的两个与氨基酸合成相关的 基因^[35].本研究中,大豆疫霉的PsGapdh能恢复酵母 突变体 $\Delta t dh1$ 的H₂O₂耐受性,表明其具有与t dh1相似 的抗氧化能力.

本研究克隆了大豆疫霉的 PsGapdh 基因, 证明 该基因可能参与了病原物与寄主植物的早期亲合互 作、并利用酵母遗传互补系统验证了该基因具有抗 氧化功能、从而为进一步揭示大豆疫霉中 GAPDH 的 功能提供了帮助.随着大豆疫霉遗传转化体系的逐 步完善以及 TILLING 等基因干涉技术的发展, 大豆 疫霉 PsGapdh 基因的生理功能以及其在大豆疫霉致 病过程中的作用将得到进一步验证.

本工作为国家重点基础研究发展计划(编号: 致 谢 2002CB111400)、国家自然科学基金(批准号: 30471124)及 教育部新世纪人才计划(批准号: NCET -04-0503)资助项目.

```
1 Erwin D C, Ribeiro O K. Phytophthora Diseases Worldwide. St.
Paul: APS Press, 1996
```

论文

- 2 Sogin M L, Silberman J D. Evolution of the protests and protistan parasites from the perspective of molecular systematic. Int J Parasital, 1998, 28: 11–20 [DOI]
- 3 Baldauf S L, Roger A J, Wenk-Siefert I, et al. A kingdom-level phylogeny of eukaryotes based on combined protein data. Science, 2000, 290: 972–977 [DOI]
- 4 Sirover M A. Emerging new functions of the glycolytic protein, glyceraldehydes-3-phosphate dehydrogenase, in mammalian cells. Life Sci, 1996, 58: 2271–2277 [DOI]
- 5 Sirover M A. Role of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in normal cell function and in cell pathology. J Cell Biochem, 1997, 66(2): 133-140 [DOI]
- 6 Sirover M A. New insights into an old protein: The functional diversity of mammalian glyceraldehyde-3-phosphate dehydrogenase. Biochim Biophys Acta, 1999, 1432(2): 159–184
- 7 Sirover M A. New nuclear functions of the glycolytic protein, glyceraldehyde-3-phosphate dehydrogenase, in mammalian cells. J Cell Biochem, 2005, 95(1): 45—52 [DOI]
- 8 Grant C M, Quinn K A, Dawes I W. Differential protein S-thiolation of glyceraldehyde-3-phosphate dehydrogenase isoenzymes influences sensitivity to oxidative stress. Mol Cell Biol, 1999, 19: 2650-2656
- 9 Shenton D, Perrone G, Quinn K A, et al. Regulation of protein S-thiolation by glutaredoxin 5 in the yeast Saccharomyces cerevisiae. J Biol Chem, 2002, 277(19): 16853—16859 [DOI]
- 10 Liu W D, Wang J Q, Mitsui K, et al. Interaction of the GTS1gene product with glyceraldehyde-3-phosphate dehydrogenase 1 required for the maintenance of the metabolic oscillations of the yeast Saccharomyces cerevisiae. Eur J Biochem, 2002, 269: 3560 -3569 [DO1]
- 11 Valadi H, Valadi A, Ansell R, et al. NADH-reductive stress in Saccharomyces cerevisiae induces the expression of the minor isoform of glyceraldehyde-3-phosphate dehydrogenase (TDH1). Curr Genet, 2004, 45: 90-95 [DOI]
- 12 Moon R P, Unkles S E, Duncan J M, et al. Sequence of the *Phy-tophthora infestans* glyceraldehyde-3-phosphate dehydrogenaseencoding gene (*gpdA*). Plant Mol Biol, 1992, 18: 1209—1211 [DOI]
- 13 Unkles S E, Logsdon J M, Robison Jr K, et al. The tigA gene is a transcriptional fusion of glycolytic genes encoding triose-phosphate isomerase and glyceraldehyde-3-phosphate dehydrogenase in oomycota. J Bacteriol, 1997, 179: 6816-6823
- 14 Liaud M F, Lichtle C, Apt K, et al. Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: Evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway. Mol Biol Evol, 2000, 17(2): 213-223
- 15 Shan W, Marshall J S, Hardham A R. Gene expression in germinated cysts of *Phytophthora nicotianae*. Mol Plant Pathol, 2004, 5: 317–330 [DOI]
- 16 Kumer S, Tamura K, Nei M. MEGA: Integrated software for molecular evolutionary genetics analysis and sequence alignment briefings in bioinformatics. Brief Bioinform, 2004, 5(2): 150– 163 [DOI]
- 17 Cenis J L. Rapid extraction of fungal DNA for PCR amplication. Nucleic Acids Res, 1992, 20: 2380
- 18 Ito H, Fukuda Y, Murata K, et al. Transformations of intact yeast cells treated with alkali cations. J Bact, 1983, 153: 163-168

- 19 Grant C M, MacIver F H, Dawes I W. Glutathione synthetase is dispensable for growth under both normal and oxidative stress conditions in the yeast *Saccharomyces cerevisiae* due to an accumulation of the dipeptide gamma-glutamylcysteine. Mol Biol Cell, 1997, 8: 1699–1707
- 20 Kamoun S. Molecular genetics of pathogenic oomycetes. Eukartotic Cell, 2003, 2: 191—199 [DOI]
- 21 Qian Q, Keeling P J. Diplonemid glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and prokaryote-to-eukaryote lateral gene transfer. Protist, 2001, 152: 193-201 [DOI]
- 22 Mazzola J L, Sirover M A. Subcellular alteration of glyceraldehyde-3-phosphate dehydrogenase in Alzheimer's disease fibroblasts. J Neurosci Res, 2003, 71(2): 279-85 [DOI]
- 23 Mazzola J L, Sirover M A. Subcellular localization of human glyceraldehyde-3-phosphate dehydrogenase is independent of its glycolytic function. Biochim Biophys Acta, 2003, 1622(1): 50– 56
- 24 Mazzola J L, Sirover M A. Subcellular analysis of aberrant protein structure in age-related neurodegenerative disorders. J Neurosci Methods, 2004, 137(2): 241—246 [DOI]
- 25 Mazzola J L, Sirover M A. Aging of human glyceraldehyde-3-phosphate dehydrogenase is dependent on its subcellular localization. Biochim Biophys Acta, 2005, 1722(2): 168—74
- 26 Delgado M L, O'Connor J E, Azorin I, et al. The glyceraldehyde-3-phosphate dehydrogenase polypeptides encoded by the *Saccharomyces cerevisiae TDH1*, *TDH2* and *TDH3* genes are also cell wall proteins. Microbiology, 2001, 147: 411–417
- 27 Neill S, Desikan R, Hancock J. Hydrogen peroxide signaling. Curr Opin Plant Biol, 2002, 5: 388—395 [DOI]
- 28 Gara L, Pinto M C, Tommasi F. The antioxidant systems vis-à-vis reactive oxygen species during plant-pathogen interaction. Plant Physiol Biochem, 2003, 41: 863—870 [DOI]
- 29 Brinkmann H, Martinez P, Quigley F, et al. Endosymbiotic origin and codon bias at the nuclear gene for chloroplast glyceraldehyde-3-phosphate dehydrogenase for maize. J Mol Evol, 1987, 26: 24—33 [DOI]
- 30 Russell D A, Sachs M M. Differential expression and sequence analysis of the maize cytosolic glyceraldehyde-3-phosphate dehydrogenase gene family. Plant Cell, 1989, 1: 793—803 [DOI]
- 31 Laxalt A M, Cassia R O, Sanllorenti P M, et al. Accumulation of cytosolic glyceraldehyde-3-phosphate dehydrogenase RNA under biological stress conditions and elicitor treatments in potato. Plant Mol Biol, 1996, 30: 961—972 [DOI]
- 32 Beligni M V, Laxalt A M, Lamattina L. Temporal and spatial patterns of GAPDHc mRNA accumulation during an incompatible potato-*Phytophthora infestans* interaction. Comparison with a compatible interaction. Physiol Plant, 1999, 105: 280–287 [DOI]
- 33 Audrey M V, Fong A, Judelson H S. Cell cycle regulator Cdc14 is expressed during sporulation but not hyphal growth in the fungus-like oomycete *Phytophthora infestans*. Mol Microbiol, 2003, 50(2): 487–494 [DOI]
- 34 Saloheimo K, Wang H M, Valkonen M, et al. Characterization of secretory genes ypt1/yptA and nsf1/nsfA from two filamentous fungi: Induction of secretory pathway genes of Trichoderma reesei under secretion stress conditions. Appl Environ Microbiol, 2004, 70(1): 1459—467
- Lippmeier J C, Brown A M, Apt K E. Isolation of algal genes by functional complementation of yeast. J Phycol, 2002, 38: 529– 533 [DOI]