乙烯四聚高选择性制备 1-辛烯

姜 涛 陈洪侠 宁英男 陈 伟

(大庆石油学院化学化工学院,大庆 163318; 中石化北京化工研究院,北京 100013. E-mail: jiangtao@dqpi.net)

摘要 合成了两种新型桥联的PNP配体,利用核磁共振氢谱、元素分析及质谱表征了配体的结构,并把 该配体与Cr()和助催化剂甲基铝氧烷(MAO)组成催化体系用于乙烯四聚制备 1-辛烯. 实验结果表明: 该催化体系用于乙烯四聚,催化活性可达 0.89×10⁶ g/(mol·h),产物中C₈组分的选择性达到 72.52%,其 中 1-辛烯的纯度达到 97.87%.

关键词 乙烯四聚 1-辛烯 Cr() MAO

1-辛烯是重要的化工产品和中间体,主要用于聚 乙烯的共聚单体、增塑剂、脂肪酸、洗涤剂用醇类和 润滑油添加剂的中间体^[1].以1-辛烯为共聚单体制得 聚乙烯的机械性能和光学性能比用 1-丁烯和 1-己烯 为共聚单体的更佳,其抗撕强度和抗冲击强度都优 于以1-丁烯和1-己烯为共聚单体得到的聚乙烯^[2].目 前国内外都没有专门生产 1-辛烯的工业装置,国外 1-辛烯是乙烯齐聚或萃取分离工艺的副产品.除专门 用于乙烯三聚的铬催化剂外,其余的催化剂催化乙 烯齐聚产物α-烯烃符合Schulz-Flory分布,1-辛烯只是 其产物中的一部分,一般为10%~20%左右^[2-4].

最近, Annette等^[5-7]发现了以PNP为配体的Cr()</sub>催化剂在助催化剂烷基铝氧烷的活化下,可以高选择性催化乙烯四聚制 1-辛烯,打破了前人^[8-10]对乙烯不能通过成环机理高选择性制备 1-辛烯的论断.本 文通过烷基桥联,合成了两种新型双核的PNP配体 1, 2,其结构如图 1 所示.以甲基铝氧烷(MAO)为助催 化剂,考查了反应条件对Cr()/PNP(1,2)/MAO体系 用于乙烯四聚制 1-辛烯性能的影响.

- 1 实验
- 1.1 试剂与仪器

二苯基氯化膦、CrCl₃(THF)₃, Aldrich公司, 未经 处理直接使用.聚合级乙烯和高纯氮气, 大庆石化公 司提供, 未经处理直接使用.甲基铝氧烷(MAO),

www.scichina.com

Albemarle公司产品, 1.4 mol/L的甲苯溶液.甲苯、二 氯甲烷、三乙胺、乙二胺、1, 6-己二胺,化学纯,经 分子筛脱水处理后使用.10%盐酸乙醇溶液,自配. 500 mL高压釜, KCF-0.5, 烟台科立自控设备研究所.

1.2 实验方法

(1) 催化剂的制备. 配体 1, 2 参照文献的类似 方法合成^[5].

配体 1 的¹H NMR(CDCl₃)δ 7.29~ 7.17(t, Ar-H), 3.18(d, CH₂). 元素分析结果, 理论值(%): C, 75.37; H, 5.57; N, 3.52; 测定值(%): C, 74.92; H, 5.38; N, 3.58. EI-MS (70eV): *m/z* = 796.

配体 2 的¹H NMR (CDCl₃) *δ*7.36~7.26(t, Ar-H), 3.14~3.02(t, CH₂), 0.89 (m, CH₂), 0.56 (m, CH₂). 元素 分析结果,理论值(%): C, 76.04; H, 6.15; N, 3.28; 测 定值(%): C, 75.89; H, 6.28; N, 3.19. EI-MS (70eV): *m/z* = 853.

催化体系的制备是把配体、CrCl₃(THF)₃和MAO 按一定配比加入到反应釜内原位合成.

(2) 乙烯四聚. 500 mL的高压釜加热到 120 抽真空 2 h, 经氮气置换数次后充入乙烯, 循环水冷 却降温到预定温度, 依次加入定量的甲苯、MAO, 搅 拌 2 min后迅速加入配体和CrCl₃(THF)₃, 在一定的温 度和压力下进行四聚反应, 反应结束后用冰浴降温、 卸压, 用质量分数为 10%的酸化乙醇终止反应. 催化 剂的活性通过产物的增重求得.

(3) 四聚产物分析. 四聚产物经水洗数次除去 乙醇、MAO、盐酸, 用无水Na₂CO₃干燥后, 经GC/MS 对产物α-烯烃进行定量和定性分析, 其定性结果如 图 2 所示. 气相色谱/质谱联用仪为惠普公司HP-5890/HP-5971型产品, HP-1型色谱柱, 柱长 25 m, 内 径 0.22 mm. 载气为氦气, FID检测器. 色谱的升温程

图 2 乙烯四聚产物的气相色谱图

1, 乙烯; 2, 1-丁烯; 3, 1-己烯; 4, n-己烷; 5, 甲基环戊烷; 6, 亚甲基环戊烷; 7, 甲苯; 8, 1-辛烯; 9, 1-辛烷; 10, 辛二烯; 11, 2-辛烯; 12, 1-癸烯; 13, 1-十二烯; 14, 1-十四烯; 15, 1-十六烯; 16, 1-十八烯; 17, 1-二十烯; 18, 1-二十二烯

序如下: 起始温度为 35 , 停留 10 min, 然后以 10 /min 升温至 220 , 停留 10 min.

2 结果与讨论

2.1 配体结构对催化体系性能的影响

配体的结构对催化体系性能的影响见表 1. 由表 1 实验结果可以看出: 催化剂 1, 2 在适宜的条件下催 化乙烯四聚都可以高选择性制备 1-辛烯. 在相同的 反应条件下, 配体 2 组成的催化体系具有较高的乙烯 四聚活性, 这可能是因为配体 2 的己基桥比配体 1 的 乙基桥具有更长的结构, 使配体的两个核更分离, 更 容易使乙烯分子的插入, 导致其具有较高的活性. 配体 2 组成的催化体系具有更高的 1-C₆⁻, 1-C₈⁻选择性, 这

表1 配体结构对催化体系性能的影响

配体	催化活性 ^{a)}	$C_6^{\ b)}(\%)$	$1 - C_6^{= c)}(\%)$	$C_8^{(d)}(\%)$	$1-C_8^{=e)}(\%)$
1	0.53	22.10	83.27	65.62	96.68
2	1.65	27.47	87.06	63.12	99.33

a) 10⁶ g/(mol·h). b) 产物中C₆组分的含量. c) C₆组分中α-烯烃 的含量. d) 产物中C₈组分的含量. e) C₈组分中α-烯烃的含量. 溶剂, 甲苯. 反应时间, 30 min. Al/Cr摩尔比, 540. 反应温度, 60 . 反应压 力, 3.0 MPa. 1-C₆⁼: 1-己烯. 1-C₈⁼: 1-辛烯 表明催化体系配体的结构对其性能有着重要的影响.

2.2 反应温度对催化体系性能的影响

反应温度对乙烯四聚催化剂性能的影响如表 2 所示. 由表 2 可以看出: 随着反应温度的升高, 催化 剂的活性升高, 产物中C₈组分的选择性下降, 1-C₈=的 纯度下降, C₆组分的选择性升高, 1-C₆=的纯度升高. 这表明随着反应温度的升高, 链转移反应相对于链 增长反应加快幅度更大, 导致产物向低碳数方向移 动.

2.3 反应压力对催化体系性能的影响

反应压力对催化剂性能的影响如表 3 所示. 由表 3 可以看出: 随着反应压力的增加, 催化剂的活性升 高, 产物中C₆, C₈的选择性变化不大, 但 1-C₈⁼的纯度 升高. 这可能是因为随着反应压力的升高, 溶液中乙 烯单体的浓度增大^[11], 导致链增长反应速率增加, 使 催化剂的活性增加, 产物中 1-C₈⁼的纯度升高.

2.4 Al/Cr 对催化体系性能的影响

Al/Cr 摩尔比对乙烯四聚催化剂性能的影响见表 4. 由表 4 可以看出: 随着 Al/Cr 摩尔比的增加, 催化

祝之一次应应及为世 行 体况住他引於柯							
配体	温度/	Al/Cr	催化活性	$C_6^{b)}(\%)$	$1 - C_6^{= c}(\%)$	$C_8^{(d)}(\%)$	$1-C_8^{=e}(\%)$
1	60	180	0.89	17.17	79.71	72.52	97.87
1	70	180	1.12	29.93	90.31	57.20	93.59
2	60	540	1.65	27.47	87.06	63.12	99.33
2	80	540	2.11	39.12	93.98	24.28	90.11
a)~e) 同表 1	1						

表 2 反应温度对催化体系性能的影响

a)~e) 同表 1

表 3	反应压力对催化体系性能的影响
-----	----------------

配体	压力/MPa	催化活性 ^{a)}	$C_6^{b}(\%)$	$1 - C_6^{= c}(\%)$	$C_8^{(d)}(\%)$	$1-C_8^{(=e)}(\%)$
1	3.0	1.12	29.93	90.31	57.20	93.59
1	4.0	1.44	29.94	88.55	61.69	99.54

a)~e) 同表 1

表 4 Al/Cr 摩尔比对催化体系性能的影响							
配体	Al/Cr	催化活性 a)	$C_6^{b}(\%)$	$1 - C_6^{= c} (\%)$	$C_{8}^{d}(\%)$	$1 - C_8^{=e}$ (%)	
1	180	0.89	17.17	79.71	72.52	97.87	
1	540	0.53	22.10	83.27	65.62	96.68	

a)~e) 同表 1

剂的活性下降,产物中 C_8 的选择性下降, $1-C_8$ =的纯度 下降.这可能是因为随着反应体系中的Al/Cr摩尔比 的增加,对活性中心造成过度还原导致催化剂活性 下降,而活性中心向Al的转移增加使产物中 C_8 的选 择性下降, C_6 的选择性升高^[12].

3 结论

新型双核的PNP配体/CrCl₃(THF)₃/MAO组成的 催化体系用于乙烯四聚制 1-辛烯具有高活性和高选 择性. 配体的结构、反应温度、反应压力、Al/Cr摩尔 比等因素对催化体系的性能有着重要的影响. 在本 实验条件下主要得到以下结论:

(1)随着烷基桥长度的增加,催化剂的活性增加,目的产物的选择性和纯度变化不大.

(2) 随着反应温度的增加,催化剂活性增加,目 的产物 1-辛烯的选择性及纯度下降.

(3)随着反应压力的增加,催化剂的活性增加,目的产物 1-辛烯的选择性及纯度增加.

(4) 随着 Al/Cr 摩尔比的增加, 催化剂的活性下降, 目的产物 1-辛烯的选择性及纯度下降.

(5) 产物中含有少量的聚乙烯,通过控制反应体 系的杂质含量可使产物中聚乙烯的含量控制在 1%以 下.

参考 文献

- 程曾越.通用树脂实用技术手册.北京:中国石化出版社,1999. 106~131
- 2 Speiser F, Braunstein P. New nickel ethylene oligomerization catalysts bearing bidentate P, N-phosphinopyridine ligands with different substituents to phosphorus. Organometallics, 2004, 23(11): 2625~2632[DOI]

- 3 Wang M, Zhu H J, Jin K, et al. Ethylene oligomerization by salen-type zirconium complexes to low-carbon linear α-olefins. Journal of Catalysis, 2003, 220: 392~398[DOI]
- 4 Small B L, Brookhart M. Iron-based catalysts with exceptionally high activities and selectivities for oligomerization of ethylene to linear α-Olefins. J Am Chem Soc, 1998, 120(28): 7143~7144[DOI]
- 5 Annette B, Kevin B, John T, et al. Ethylene tetramerization: a new route to produce 1-Octene in exceptionally high selectivities. J Am Chem Soc, 2004, 126(45): 14712~14713[DOI]
- 6 Kevin B, Annette B, John T. Highly selective chromium-based ethylene trimerisation catalysts with bulky diphosphinoamine ligands. Chem Commun, 2005, (5): 620~621
- 7 Matthew J O, Kevin B, Annette B. Ethylene trimerisation and tetramerisation catalysts with polar-substituted diphosphinoamine ligands. Chem Commun, 2005, (5): 622~624
- 8 Briggs J R. The selective trimerization of ethylene to 1-hexene. J Chem Soc, Chem Commun, 1989, (11): 674~677
- 9 Yu Z X, Houk K N. Why trimerization? Computational elucidation of the origin of selective trimerization of ethene catalyzed by [TaCl₃(CH₃)₂] and an agostic-assisted hydride transfer mechanism. Angew Chem Int Ed, 2003, 42(7): 808~810[DOI]
- 10 Blok A N, Budzelaar P H, Gal A W. Mechanism of ethylene trimerization at an ansa-(Arene)(cyclopentadienyl) titanium fragment. Organometallics, 2003, 22(13): 2564~2567[DOI]
- 11 王航,胡友良,阎卫东,等.新型后过渡金属铁系催化剂用于乙 烯齐聚的研究.科学通报,2002,47(10):755~757
- 12 Britovsek G J P, Bruce M, Gibson V C, et al. Iron and cobalt ethylene polymerization catalysts bearing 2,6-bis(Imino)pyridyl ligands: synthesis, structures, and polymerization studies. J Am Chem Soc, 1999, 121(38): 8728~8740[DOI]

(2005-08-03 收稿, 2005-09-14 接受)