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Generalized Selection Bias and The 
Decomposition of Wage Differentials* 

 
 
The major contribution of this paper is ending a new and flexible way to measure the effects 
of selection on log-wages. In this context, we offer a general approach to performing 
decomposition analysis when selection effects are present. We call the difference between 
unconditional and conditional expectations of the log-wages a generalized selection bias 
(GSB) when the two expectations are measured using the estimates from the joint 
estimation of the whole model (log-wages and selection equations) by the MLE method. The 
unconditional and conditional expectations are, respectively, the deterministic component of 
log-wages, and the deterministic component plus the conditional expectation of the 
stochastic component of log-wages, where the deterministic component is computed using 
the estimates from the joint estimation. That is, the GSB is the expectation of the residuals 
estimated from the joint estimation. It is appropriate to apply the Blinder-Oaxaca 
decomposition method to the wage differentials adjusted for the GSB. The GSB approach to 
decomposition analysis is not only easy to implement and flexible enough to apply to 
virtually any kind of selection issue, but also efficient because it uses full information. We 
illustrate the GSB approach by applying it to the racial wage differentials among women 
using data from the Current Population Survey. We discuss the possibility of using semi-
parametric or Bayesian sampling method for the joint estimation and related modifications of 
decomposition analysis. 
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1. INTRODUCTION

The decomposition method introduced by Blinder (1973) and Oaxaca (1973) has

been widely adopted in the analysis of wage differentials.1 In this approach,

log-wages are regressed on various socio-economic characteristics. Based on the

regression analysis, the observed log-wage gap of average workers is decomposed

into a part explained by difference in the average characteristics, and a part

explained by difference in coefficients, traditionally labeled “discrimination.”2

It is well recognized that sample selection causes bias in the OLS coefficients

of log-wages.3 A decomposition analysis which does not take account of sample

selection, therefore, could over- or underestimate “true” discrimination. Studies

on wage differentials and discrimination have adopted the well-known Heckman’s

two-step method (selection bias correction method) to obtain consistent estimates

of log-wage parameters and applied the Blinder-Oaxaca decomposition method

to the log-wage differentials adjusted for the selection bias.4 We call the decom-

position analysis which relies on Heckman’s two-step method a “selection bias

correction (SBC) approach.”

However, previous studies which have adopted the SBC approach are limited

1Though we discuss the decomposition method in terms of (hourly) wages in this paper,
our argument still holds when wage is replaced with (monthly) earnings. We also follow the
convention of analyzing log-wages rather than level wages. Our argument can be applied to
level wages with minor modification.

2See Becker (1971), Cain (1986) and chapter 2 of Joshi and Paci (1998) for a discussion of
the concept of discrimination.

3We interpret sample selection in broad sense; it includes not only the self-selection issue
but also any kind endogeneity caused by censoring, truncation, etc.

4See, for example, Bloom and Killingsworth (1982) and Joshi and Paci (1998). See Heckman
(1979) for his two-step method.
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to models with relatively simple selection, usually a single selection (e.g., partici-

pation vs. non-participation). There are numerous studies on various selection is-

sues (e.g., double selection model, censored or truncated regression model, switch-

ing regression model) which have not used yet but may be used in the decom-

position analysis of wage differentials. Some studies have used only Heckman’s

two-step method or only the maximum likelihood estimation (MLE) method or

both to take selection issues into account. In practice, it is often the MLE method,

not Heckman’s two-step method, which is used for the complicated selection mod-

els. Heckman’s two-step method might have conceptual or practical difficulties in

handling these complicated selection issues for which the MLE method is usually

used. By developing a general way to use the MLE method in the context of the

decomposition analysis, we substantially broaden the scope of the decomposition

analysis. Furthermore, the decomposition analysis using the MLE method will

be more efficient than that using Heckman’s two-step method due to the effi-

ciency of the MLE method, even when the selection issues can be handled by

both Heckman’s two-step and the MLE methods.

What is a proper way to apply the MLE method to the decomposition analy-

sis? In this paper, we introduce a new approach to decomposing wage differ-

entials based on joint estimation of log-wages and selection equations using the

MLE method. It is well-known that joint estimation using the MLE method

gives consistent estimates of log-wage parameters by taking correlation between

log-wages and selection equations into account. Obtaining the consistent esti-
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mates of log-wage parameters using the MLE method is just a part of the proper

decomposition analysis. As a second part of the proper decomposition analysis,

we show a simple and general way to compute selection bias which can be used as

long as consistent estimates of log-wage parameters are available. The selection

bias is the difference between conditional and unconditional expectations of the

log-wages (Rosen (1986), p. 654) which is the source of bias of the OLS estimates

of log-wages. The conditional expectations of the log-wages are the expectations

of the log-wages given that the condition of being selected in the sample is sat-

isfied. By combining consistent estimates of log-wages and selection bias, we can

decompose the observed wage differentials properly. The intuition behind our

new approach is remarkably simple.

In general, the sample expectations of any random variable should be the

same as the population expectations of the variable if the sample is randomly

sampled from the population. If there is any discrepancy between them, we sus-

pect non-randomness of the sample, i.e., the existence of selection bias, provided

that distribution of the variable is correctly specified to infer the population expec-

tations. In practice, we are interested in a variable which contains deterministic

and stochastic components. In this paper, this variable is log-wages.

Since only the stochastic component may have conditional expectations differ-

ent from unconditional (population) expectations, the selection bias of a random

variable is identical to that of the stochastic component. The stochastic compo-

nent of the random variable can be computed by subtracting the deterministic
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component from the variable. Since we do not know the value of the determin-

istic component of the variable, we have to recover it by estimating a structural

equation which is supposed to predict the value of the deterministic component.

The estimation of the structural equation itself, using only the selected sample by,

for example, OLS may mislead us to a wrong measurement of both deterministic

and stochastic components because the conditional expectations of the stochastic

component provided being selected in the sample may be different from the un-

conditional expectations of the stochastic component. That is the reason why we

jointly estimate the structural equation with sample selection equations which are

supposed to affect the selection of the sample. By taking the correlation among

the structural and selection equations, the source of the selection bias, into ac-

count, we can obtain consistent estimates of the structural equation parameters

and measure the deterministic and stochastic components of the random variable.

Without loss of generality, we may assume the stochastic component of the

random variable follows a distribution whose expectations are zero, e.g., the nor-

mal distribution. If unconditional expectations are assumed to be zero, the selec-

tion bias can be easily computed by taking expectations of the residuals which are

equal to the difference between value of the random variable and its deterministic

component. We call the expectations of residuals a “generalized selection bias”

(GSB) if the residuals are computed using the consistent estimates of the struc-

tural equation parameters from the joint estimation.5 In this paper, the MLE

5Computing selection bias via residuals requires only that the estimates of the structural
equation parameters are consistent. This implies that the consistent estimates from Heckman’s
two-step method can be used to compute selection bias via computing residuals. Our definition
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method is used for the joint estimation.6

We can apply the Blinder-Oaxaca decomposition method to the log-wage dif-

ferentials adjusted for the GSB, i.e., the log-wage differentials measured using the

structural equations for two groups representing only the differentials of the pop-

ulation (unconditional) expectations. We call the decomposition method which

uses the joint estimation of the structural and selection equations and measures

selection bias from the residuals computed using the consistent estimates from

the joint estimation a “generalized selection bias (GSB) approach.”

For exposition purposes, in this paper, we assume that log-wages and selection

equations follow a joint normal distribution when we discuss the SBC and GSB

approaches. This distributional assumption, joint normality among log-wages and

selection equations, is not crucial to our discussion. Our discussion can be easily

extended to semi- or nonparametric framework with minor modification.7

In next section, we discuss the econometrics of the GSB approach to decom-

position (discrimination) analysis in detail. In section 3, we illustrate the im-

plementation of the GSB approach to racial wage differentials using the Current

Population Survey. The final section concludes the paper with comments on the

possibility of using various joint estimation methods (semiparametric, Bayesian

of the GSB, however, also requires the joint estimation of the structural and selection equations.
We define the GSB in this way because the selection bias can be directly measured using selection
bias correction terms and their coefficients at the second step if Heckman’s two-step method is
employed.

6The choice of estimation technique itself is not crucial as long as the joint estimation can
obtain consistent estimates of the structural equation parameters.

7See Powell (1994) and Härdle and Linton (1994) for discussions of semi- and nonparametric
methods.
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sampling) and their implications for decomposition analysis.

2. GSB APPROACH TO DECOMPOSITION ANALYSIS

The foundation of conventional decomposition analysis is a regression of log-

wages.8 We estimate the log-wage function for group g which typically takes the

following form,9

Ygn = Xgnβg + egn (n = 1, . . . , ng),(1)

where Ygn, Xgn, and egn are log-wages, 1×KY socio-economic characteristics, and

error of individual n in group g (a and b), respectively; βg is KY × 1 vector of

parameters; E(egn) = 0.

Based on the OLS analysis, the conventional decomposition analysis uses a

simple identity to compute the portion of wage differentials between group a and

b explained by the difference in average characteristics and by the difference in the

coefficients. Formally, the decomposition of the difference in log-wages between

8The Blinder-Oaxaca type decomposition analysis without selection issues is called a con-
ventional decomposition analysis in this paper.

9We emphasize that this is an equation for the observed log-wages, which may or may not be
randomly selected from the population. In the conventional decomposition analysis, the sample
is assumed to be randomly sampled from the population.
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group a and b can be shown as follows,10

Y a − Y b =


(Xa −Xb)β̂b +Xa(β̂a − β̂b), or

(Xa −Xb)β̂a +Xb(β̂a − β̂b),
(2)

where Y g, Xg, and β̂g are, for each group g (a and b), the sample average of log-

wages (
∑ng

n=1 Ygn/ng), 1×KY vector of the average characteristics, and KY × 1

vector of OLS coefficients, respectively.

From equation (2), we compute two discrimination coefficients (see Oaxaca

(1973) for details), depending on which group’s characteristics are used as weights,

Dg = exp
(
Xg(β̂a − β̂b)

)
− 1,(3)

where g = a or b.

The crucial assumption of the conventional decomposition analysis is that the

expectations of egn are zero, which makes the identity of equation (2) hold. That

is, the sample of each group is randomly selected from the population. However,

the expectations of egn might not be zero when the sample is not randomly selected

from population. The violation of a mean zero assumption results in biased OLS

estimates. This, in turn, implies that the conventional decomposition analysis

that does not take account of the bias of the estimates may lead us to a wrong

10Another issue in the discrimination literature is that the wage differentials between two
groups consists of two parts: the gain above the nondiscriminatory (competitive) wage and the
loss below the nondiscriminatory wage. The nondiscriminatory wage is usually estimated using
pooled data. See Oaxaca and Ransom (1988, 1994) and Neumark (1988). This issue can be
easily incorporated in the GSB approach by estimating log-wages and selection equations jointly
using pooled data to compute the nondiscriminatory wage.
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measurement of the sources of wage differentials.

We discuss two approaches to decomposition analysis when there are selection

issues: the SBC approach based on Heckman’s two-step method and the GSB ap-

proach based on joint estimation of log-wages and selection equations using the

MLE method. The SBC approach has been widely used in the decomposition

studies, in fact, it has been virtually the only available approach in the decom-

position studies until now. We first compare two approaches using a simple two

equation model for exposition purposes, and later argue that the GSB approach

is, in general, easy to implement, flexible enough to handle virtually any kind of

selection issue, and efficient because it uses full information.

2.1 Preliminary: A Two Equation Model

We consider a two equation model to simplify the exposition. For each group

a and b, equations for individual N are,

Y ∗gN =XgNβg + egN(4)

S∗gN =ZgN γg + vgN (N = 1, . . . , Ng),(5)

where XgN and ZgN are respectively 1×KY and 1×KS vectors of socio-economic

characteristics of individual N in group g (a and b); coefficients βg and γg are

KY × 1 and KS × 1 vectors of parameters, respectively; E(egN) = 0, E(vgN) = 0,

E(e2
gN) = σ2

eg , E(v2
gN) = σ2

vg , E(egN vgN ′) = σegvg if N = N ′ and zero if N 6= N ′.
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Y ∗gN and S∗gN are respectively latent log-wages and selection variables. We

observe a binary variable SgN for every individual in group g which has a value

of one if S∗gN > 0 and zero otherwise. The sample size whose SgN = 1 (SgN = 0)

is ng (Ng − ng), where Ng > ng. For individuals whose SgN = 1, a continuous

variable YgN is observed equal to Y ∗gN while, for others whose SgN = 0, YgN is

missed.11 Y ∗gN and YgN may be interpreted as “offered” log-wages and “observed”

log-wages (Reimers (1983)).

The population regression function for (4) can be written as

E(Y ∗gN |XgN ) = XgNβg,(6)

since the unconditional expectations of egN are assumed to be zero, i.e., E(egN) =

0. The regression function for the non-random sample due to the sample selection

determined by equation (5) may be written as

E(Y ∗gN |XgN , SgN = 1) = XgNβg + E(egN |SgN = 1),(7)

where N = 1, . . . , ng because only ng observations have data available on Y ∗gN .

The OLS estimates of equation (7) may not be consistent if the conditional

expectations of egN , E(egN |SgN = 1), are not zero. It has been well-studied how to

obtain the consistent estimates of log-wage parameters from both Heckman’s two-

step and the MLE methods. Measuring the selection bias, the difference between

11The conventional decomposition analysis presumes Ygn is observed without any missing or
censoring, that is ng = Ng . Hence it does not consider the second equation (5).
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conditional and unconditional expectations of log-wages, is also required in the

decomposition analysis to modify the decomposition equation (2) in addition to

obtaining consistent estimates. We have to answer two related questions to have a

proper decomposition (or discrimination) analysis when the data is not randomly

selected from population: “how can consistent estimates of log-wage parameters

be obtained when there are selection issues?” and “how can the selection bias of

log-wages be measured?”.

2.2 Selection Bias Correction Approach: A Two Equation Model

Heckman’s two-step method provides one way to answer both questions (see

Heckman (1979) for details). It has been a popular choice in studies of selection

models ever since its introduction to (empirical) microeconomists.12

Heckman’s two-step method begins from the analytical formula for the con-

ditional expectations of egN given the value of SgN = 1 (vgN > −ZgNγg), which

is

E(egN |SgN = 1) = θgλgN ,(8)

12See Maddala (1983) for the usefulness of Heckman’s two-step method. Heckman’s two-
step method is implemented in various statistical packages. For example, see Green (1995) for
Limdep.
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where θg = σegvg/σvg = ρegvgσeg , ρegvg = σegvg/(σegσvg), and

λgN =
φ
(
−ZgN γg

σvg

)
1− Φ

(
−ZgN γg

σvg

) ,
where φ and Φ are the standard univariate probability density and distribution

functions, respectively.

Equation (7) may be written as

E(Y ∗gN |XgN , SgN = 1) = XgNβg + θgλgN ,

so the log-wages for the selected sample may be written as

YgN = XgNβg + θgλgN + εgN ,(9)

where εgN = egN − θgλgN and E(εgN |XgN , λgN , SgN = 1) = 0.

The first-step estimates the parameters of the probability that SgN = 1, i.e.,

γg since σvg is normalized to 1 for identification purposes, using probit analysis for

the full sample (Ng observations). From the probit estimates of γg , we compute

a selection bias correction term (inverse Mill’s ratio, λgN ) for the selected sample

(ng observations whose YgN is available). The constructed value of λgN is used

as a regressor in equation (9) in the second step. The OLS estimates (β̂g, θ̂g)

in the second step are consistent because the conditional expectations of ε are

zero. This answers the first question, “how can consistent estimates of log-wage

11



parameters be obtained when there are selection issues?”.

The answer to the second question, “how can the selection bias of log-wage

be measured?”, can be also found from the second step. Let ΛgN be the selection

bias of log-wages of individual N = 1, . . . , ng in group g (a and b). The ΛgN is the

difference between equations (6) and (7) which is identical to equation (8), the

conditional expectations of egN given SgN = 1, since the unconditional expecta-

tions of egN are zero. The ΛgN can be evaluated by the selection bias correction

term computed using the first-step probit estimates (λ̂gN ) and its coefficient at

the second-step OLS (θ̂g = \ρegvgσeg), that is

Λ̂gN = θ̂gλ̂gN ,(10)

where

λ̂gN =
φ(−ZgN γ̂g)

1− Φ(−ZgN γ̂g)
,

where γ̂g is the vector of estimates from the probit analysis.

Once the selection bias is measured in the second-step, we can apply the

Blinder-Oaxaca decomposition method to the log-wage differentials adjusted for

the selection bias, i.e., the log-wage differentials measured from the population

regression equations (6) for two groups using the second step OLS estimates. The

decomposition equation (2) is modified as follows using only the selected sample

12



(SgN = 1),13

Y a − Y b =


(Xa −Xb)β̂b +Xa(β̂a − β̂b) + (θ̂aλ̂a − θ̂bλ̂b), or

(Xa −Xb)β̂a +Xb(β̂a − β̂b) + (θ̂aλ̂a − θ̂bλ̂b),
(11)

where Y g, Xg, and λ̂g are, for each group g (a and b), the sample average of log-

wages (
∑ng

N=1 YgN/ng), 1×KY vector of the average characteristics of individuals,

and the mean selection bias correction term computed using probit estimates

(
∑ng

N=1 λ̂gN/ng), respectively. β̂g and θ̂g are, for each group g (a and b), KY × 1

vector and scalar of the second step OLS coefficients for XgN and λ̂gN , respectively.

The discrimination coefficients are also modified accordingly,

D̂g = exp
(
Xg(β̂a − β̂b)

)
− 1(12)

where g = a or b, and β̂ is KY × 1 vector of estimates of log-wage parameters

from the second step OLS analysis.

We call the decomposition analysis which relies on Heckman’s two-step method

to answer the two questions, “how to obtain consistent estimates of log-wage pa-

rameters?” and “how to compute the selection bias?”, a “selection bias correction

(SBC) approach” to the decomposition analysis. It requires the computation of

the selection bias correction term (λgN ) to obtain consistent estimates of log-wage

parameters and to measure the selection bias (ΛgN ).

13The modified decomposition equation is one of the many possible modifications summarized
in Neuman and Oaxaca (1998).
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2.3 Generalized Selection Bias Approach: A Two Equation Model

In this section, we propose a new approach, the “generalized selection bias

(GSB) approach” to decomposition analysis based on joint estimation of log-wage

equation (4) and selection equation (5) using the MLE method.14

The likelihood function of group g (a and b) for the joint estimation of log-

wages and selection equations is15

Lg =
∏
SgN=1

Φ

(
ZgN γg + µvgN |egN

σvg|eg

)
· 1

σeg
· φ
(
egN
σeg

) ∏
SgN=0

Φ

(
−ZgN γg

σvg

)
,(13)

where for each group g (a and b), egN = YgN −XgNβg, µvgN |egN = egNρegvgσvg/σeg ,

σvg|eg = σvg
√

1− ρegvg , σvg = 1, and N = 1, . . . , Ng.

By maximizing the likelihood function (13), we obtain consistent estimates of

the log-wages and selection equation parameters (βg, γg), and standard deviation

of log-wages and correlation coefficient between eg and vg (σeg and ρegvg).
16 This

14The GSB approach is essentially independent of the estimation method as long as it can
estimate consistent estimates of log-wage parameters by jointly estimating log-wages and selec-
tion equations to take correlation between them into account. In this paper, we focus on fully
parametric classical MLE method as a method of joint estimation of log-wages and selection
equations. This is mainly because of relative ease of estimation and popularity of the MLE
method. We will briefly discuss the possibility of using semiparametric and Bayesian methods
for the joint estimation and the modification of decomposition analysis at the end of this paper.

15Equation (13) is the functional expression of the following,

Lg =
∏

SgN=1

Pr(SgN = 1|egN)Pr(egN )
∏

SgN=0

Pr(SgN = 0).

The derivation of the analytical formula of the selection bias correction term can be avoided
in the MLE method because the likelihood for those of SgN = 1, Pr(egN , SgN = 1), can be ex-
pressed as Pr(SgN = 1|egN)Pr(egN ), not Pr(egN |SgN = 1)Pr(SgN = 1) in two equation model.
Pr(egN |SgN = 1) requires the analytical formula for the selection bias, which is ρegvgσegλgN .

16The estimates obtained from joint estimation using the MLE method are not only consis-
tent, but also have other desirable properties (they are asymptotically efficient and normally
distributed).
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gives the answer to the first question, “how can consistent estimates of log-wage

parameters be obtained when there are selection issues?”. This answer is common

sense to economists.

What is not answered yet is the second question, “how can the selection bias in

log-wage be measured?”.17 One may try to compute the selection bias according

to its analytical formula, equation (8), using the MLE estimates (Dolton and

Makepeace (1986, 1987)). We might call this a pseudo-SBC approach in the sense

that it evaluates the analytical formula of the selection bias used in Heckman’s

two-step method.

There is another way, much easier and simpler than evaluating the analytical

formula of the selection bias once the MLE estimates are available. The uncondi-

tional expectations of log-wages, equation (6), can be computed using the MLE

estimates as follows,

E(Y ∗gN |XgN ) = XgN β̃g,(14)

and the conditional expectations of log-wages, equation (7), may be written as

E(Y ∗gN |XgN , SgN = 1) = XgN β̃g + E(ẽgN |SgN = 1),(15)

where β̃g is KY ×1 vector of the MLE estimates of log-wage parameters for group

17In contrast to the SBC approach which answers both questions at the same time in the
second step, the GSB approach answers the first question first, and the second question later
using the answer to the first question.
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g (a and b) and ẽgN = YgN − XgN β̃g, i.e., residuals computed using the MLE

estimates of log-wage parameters (below called MLE residuals).

The selection bias, the difference between equations (14) and (15), is simply

the conditional expectation of the MLE residuals, i.e., Λ̃gN = E(ẽgN |SgN = 1).18

We call Λ̃gN , the conditional expectation of the MLE residuals, a “generalized

selection bias” (GSB).

The log-wages for selected sample, equation (9), may be written using GSB

as

YgN = XgN β̃g + Λ̃gN + ε̃gN ,(16)

where ε̃gN = ẽgN − Λ̃gN and E(ε̃gN |XgN , Λ̃gN , SgN = 1) = 0.

We can apply the Blinder-Oaxaca decomposition method to the log-wage dif-

ferentials adjusted for the GSB, i.e., the log-wage differentials measured from the

population regression equations (14) for two groups evaluated with the MLE es-

timates. The decomposition equation (2) is modified as follows using only the

18The selection bias can be evaluated according to the analytical formula (the pseudo-SBC
approach), Λ̃gN = ρ̃egvg σ̃eg λ̃gN , where σ̃eg and ρ̃egvg are, for each group g (a and b), the MLE
estimates of standard deviation of log-wages and correlation coefficient between eg and vg,
respectively, and λ̃gN is the selection bias correction term of individual N = 1, . . . , ng in group
g (a and b) evaluated using the MLE estimates of selection equation parameters.

The selection bias measured in the SBC approach is, in fact, the conditional expectation of
the second step OLS residuals. That is, Λ̂gN = E(êgN |SgN = 1) = θ̂g λ̂gN , where θ̂g = \ρegvgσeg
and êgN = YgN −XgN β̂g . Note that XgN does not include λ̂gN .
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selected sample (SgN = 1),

Y a − Y b =


(Xa −Xb)β̃b +Xa(β̃a − β̃b) + (Λ̃a − Λ̃b), or

(Xa −Xb)β̃a +Xb(β̃a − β̃b) + (Λ̃a − Λ̃b),

(17)

where Y g, Xg, and Λ̃g are, for each group g (a and b), the sample average of log-

wages (
∑ng

N=1 YgN/ng), 1×KY vector of the average characteristics of individuals,

and the mean GSB (
∑ng

N=1 Λ̃gN/ng), respectively. β̃g is KY ×1 vector of the MLE

estimates of log-wage parameters for group g (a and b).

In the SBC approach, the selection bias correction term (hence the selection

bias) of each individual is computed for the decomposition analysis of wage differ-

entials between group a and b. However, in the GSB approach, the computation

of the GSB (Λ̃gN ) itself for each individual is not required for the decomposi-

tion analysis of wage differentials between group a and b. The sample average

of the GSB used in the decomposition equation (17) can be measured by the

sample average of the MLE residuals since E(ε̃gN |XgN , Λ̃gN , SgN = 1) = 0, that

is, Λ̃g =
∑ng

N=1 ẽgN/ng, where ẽgN = YgN −XgN β̃g. Since the evaluation of the

GSB at the individual level is not necessary when we compare wage differentials

of two groups, we don’t have to rely on the analytical formula for selection bias.

The GSB approach eliminates the burden of deriving the analytical formula for

the selection bias and computing it. It is the ability to skip the computation of

the selection bias following the analytical formula that makes the GSB approach

attractive.
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The discrimination coefficients are also modified accordingly,

D̃g = exp
(
Xg(β̃a − β̃b)

)
− 1(18)

where g = a or b, and β̃ is KY × 1 vector of estimates of log-wage parameters

from the MLE method.

In this section, we have shown the basic idea of the GSB approach using

two equation model which does not rely on the selection bias correction term.

Next section, we will discuss merits of the GSB approach and its multivariate

extensions.

2.4 Comparison of Two Approaches

Table I summarizes how to compute the selection bias in two approaches, the

SBC and GSB approaches. For exposition purposes, it also shows the pseudo-

SBC approach and what the equivalent to the GSB would be if the second step

OLS estimates from Heckman’s two-step method are used.

To summarize, for the SBC approach:

(1) Estimate the parameters of the probability that S∗gN > 0 using probit

analysis.

(2) From the probit estimates of the sample selection parameters (γg, since

σvg = 1), calculate the selection bias correction term (λgN ).

(3) Regress log-wages (YgN ) on exogenous variables augmented with the esti-

mated value of λgN .
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(4) Estimate sample means of YgN , XgN , and λ̂gN .

(5) Compute the decomposition equation (11) and the discrimination coeffi-

cients (12) using the sample means of YgN , XgN , and λ̂gN , and the second step

OLS estimates of log-wage parameters.

On the other hand, for the GSB approach:

(1) Write the likelihood function of the joint estimation (log-wages and selec-

tion equations) using the property of conditional and marginal distributions while

avoiding the need to compute selection bias analytically.

(2) Maximize the likelihood, estimating βg, γg, ρegvg , and σeg .

(3) Estimate the MLE residuals of log-wages, ẽgN = YgN −XgN β̃g.

(4) Estimate sample means of YgN , XgN , and ẽgN .

(5) Compute the decomposition equation (17) and the discrimination coeffi-

cients (18) using the sample means of YgN , XgN , and ẽgN , and the MLE estimates

of log-wage parameters.

Considering that the SBC and GSB approaches are based on Heckman’s two-

step and the MLE method, respectively, the comparison between two approaches

is more or less equivalent to comparing the two estimation methods.

Heckman’s two-step method has been a preferred method for empirical stud-

ies for last two decades. The popularity of Heckman’s two-step method may be

because it can be implemented using standard procedures (e.g., OLS and probit)

provided by almost every statistical package. It also handles non-normal distribu-

tion of error in selection equation (Lee (1983)). However, it should be noted that
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every model Heckman’s two-step method is able to handle can be estimated us-

ing the MLE method. Furthermore, the GSB approach (the MLE method) may

be preferred to the SBC approach (Heckman’s two-step method) for following

reasons.

First of all, the GSB approach will be the only feasible approach when Heck-

man’s two-step method cannot be applied due to conceptual difficulties. One

example is the truncation issue. The use of the probit analysis to obtain the coef-

ficients of determinants in the first step is ruled out because we don’t have obser-

vations for which SgN = 0.19 The GSB approach is the only available approach to

decomposition analysis, though the pseudo-SBC approach is still available, when

data has a truncation issue, since Heckman’s two-step method cannot be used.

From theoretical viewpoint, we may argue that the GSB approach is preferred

to the SBC approach because the GSB approach is more efficient since it is based

on the full information MLE method. Even though the efficiency of the GSB

approach (or the MLE method) can be easily accepted, many will be reluctant to

switch to the GSB approach if the implementation of the MLE method is difficult.

The practical aspects of the implementation of the GSB approach will be discussed

for two possible cases where the analytical formula is relatively simple and very

complicated, respectively.

As Heckman (1979, p. 155) notes, multivariate extensions of his two-step

method are mathematically straightforward using the results of moment gen-

19See Bloom and Killingsworth (1985), Hausman and Wise (1977), and chapter 6 of Maddala
(1983) for truncation issue.
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erating function of truncated multivariate normal distribution.20 The merit of

Heckman’s two-step method (ease of implementation), however, diminishes sub-

stantially if the selection issue becomes even slightly more complicated than the

standard two equation model. For example, double selection requires computa-

tion of two λ’s.21 The computation of λ’s requires a bivariate probit analysis

in the first-step of Heckman’s two-step method. One the other hand, for the

GSB approach, the likelihood of joint estimation of log-wages and double se-

lection equations may be expressed by the combination of conditional bivariate

probit given the value of log-wages and marginal density of log-wages for individ-

ual whose log-wages are observed, and only bivariate probit for individual whose

log-wages are not observed. Estimating log-wages and double selection equations

jointly is often easier, or at least no more difficult than estimating only bivari-

ate probit analysis of selection equations (see Co, Gang and Yun (forthcoming,

1999)). This might be because continuous log-wages provide variations which fa-

cilitate the estimation. The computational time taken for the joint estimation and

the bivariate probit analysis for Heckman’s two-step method is somewhat simi-

lar. Furthermore, since the the OLS analysis does not provide a correct variance

of the estimates, we have to correct the variance of second-step OLS estimates.

This requires non-trivial programming. Considering these factors, we argue that

the GSB approach (the MLE method) will be preferred to the SBC approach

20See Tallis (1961) for the moment generating function of the truncated multivariate normal
distribution. If multivariate normal distribution requires high dimensional numerical integra-
tion, simulation methods can be used. See Stern (1997).

21See Fishe, Trost and Lurie (1981), Ham (1982), and Tunali (1986) for double selection.

21



(Heckman’s two-step method) for double selection issues.

The main difference between the two approaches is that the GSB approach

does not rely on the analytical formula of the selection bias.22 Hence the GSB ap-

proach alleviates the burden of computing the λgN ’s, especially in a complicated

selection model. In practice, correcting the variance of the second-step OLS esti-

mates will be also very cumbersome as the selection issues become complicated.

This implies that the GSB approach will be very useful if the computation of the

selection bias correction term is difficult analytically or computationally or both.

An example might be found in some issues of the piecewise budget line con-

straint model which studies the effects of tax and subsidy, fixed costs associated

with labor market participation, etc. Though the main interest of the piecewise

budget line constraint model is estimating labor supply, Heckman and MaCurdy

(1981) pointed out this model could be applied to estimate (level) wage in addi-

22One might argue that the analytical formula of the selection bias is necessary for the decom-
position analysis if a researcher believes that θ̂aλ̂a − θ̂bλ̂b in the equation (11) or its equivalent

in the GSB approach should be decomposed further to θ̂a(λ̂a − λ̂b) + (θ̂a − θ̂b)λ̂b. This is still
in debate (Neuman and Oaxaca (1998)).

We may justify not pursuing further decomposition from two perspectives. The selection
bias represents the effects of unobserved characteristics of an individual on the log-wages. The
unobserved characteristics will be the combination of many factors, not just one characteristic
of the person. If the λgN is considered as another exogenous variable, then it is not clear
whether λgN and its coefficient can be treated like any other observed exogenous variables and
their coefficients because each observed exogenous variable represents only one aspect of the
individual’s characteristics.

Another argument is that, in decomposition or discrimination analysis, we are interested in the
difference in the unconditional expectations of log-wages, not the difference in the conditional
expectations. Note that the selection bias correction term is not included in the population
regression equation (6). The selection bias correction term affects only the conditional expec-
tations of log-wages. It will be easy to understand our point if we interpret the unconditional
and conditional expectations of log-wages as the expectations of offered and observed log-wages.
The decomposition or discrimination analysis studies the difference in offered log-wages per se,
not the difference in observed log-wages.
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tion to hours by endogenizing the wage.23 Heckman and MaCurdy (1981) try to

extend Heckman’s two-step method to analyze complex selection models which

are usually analyzed using the MLE method. However, it seems that the exten-

sion of Heckman’s two-step method to piecewise budget line constraint model has

not gained popularity. It is the MLE method that is used in the piecewise budget

line constraint models.

Previous studies on wage differentials are restricted to the simple selection

issue, usually with only one binary selection. The lack of diversity of the selection

issues studied in previous papers might be because only the SBC approach has

been available. The GSB approach is theoretically superior and computationally

practical. It will extend the scope of studies by providing a general framework for

decomposition analysis. The implementation of the GSB approach requires only

the conditional and marginal density functions of multivariate normal distribution

in most of cases which can be easily evaluated thanks to the recent developments

in computing technology. The necessity of using the MLE method for the joint

estimation is not an extra burden, since there are so many studies in which the

MLE method is preferred.

3. RACIAL WAGE DISCRIMINATION AMONG WOMEN

We apply the GSB approach to racial wage differentials between white and

23See Hausman (1985) and Moffitt (1986, 1990) for the general discussion of the piecewise
budget line constraint model. See Yun (1998) for endogenizing wages in this context.
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other races using the female sample from March 1995 Current Population Survey.

The source of selection is participation for the first illustration, and tobit type

hours of work for the second illustration. In the second illustration, we show

decompositions when data is either censored or truncated.

3.1 Data

The female sample used in the empirical study is drawn from the March 1995

Current Population Survey. The data comes from the outgoing rotation group

only, and the responses to questions about the survey month are used rather than

those for last year.24 The sample includes females aged between 25 and 60 who

were not in school, retired, disabled or self-employed. For married women, we

exclude those whose husbands are under 25 years old. We also exclude women

whose hourly wage rate is greater than $40, or whose working hours are top-coded

(99 hours per week). Table II describes the variables used for our study.

Table III shows means and standard deviations of variables used in the de-

composition analysis. The characteristics of working women are different from

those of non-working women. Working women are older and have more years of

education than non-working women. Non-working women have a higher marriage

rate among white women but there is little difference among other race women.

Non-working women have more children (for both age under 6 and between age

6 and 18) and larger family size. Non-working women have a higher non-labor

24The information on last year’s earnings are used to compute non-labor income. For details
of computation of the non-labor income, see Table II.
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income among white women, but there is not much difference among other race

women, which might be related to the marriage rates.

White women are more educated than other race women in both non-working

and working samples. Though white women have higher rate of marriage, family

size of white women is smaller than that of other race women. The number of

children is not significantly different between white and other race women. White

women, especially among non-working women, have higher non-labor income than

other race women do.

Though both white and other race women are working similar hours, their

wages (measured both in level and log) are significantly different from each other

according to the t-test at 5% (level wage) and 1% level (log-wage), respectively.

We study what portion of racial wage differentials can be explained by difference in

the characteristics and by difference in the coefficients using the GSB approach

to decomposition analysis proposed in section 2. The MLE method, the basis

of our decomposition analysis in these illustrations, is implemented using both

Gauss CML (constrained maximum likelihood) program and the SAS Non Linear

Programming procedure (SAS Institute, 1997).25

3.2 Illustration 1: Selection Bias Due to Participation Choice

The selection bias due to the participation decision is a well-studied subject

25For illustration 1, Limdep is also used to double-check. Limdep reports both estimates of
Heckman’s two-step and the MLE methods.
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in the area of both labor supply and wage determination.26 Most papers on wage

differentials, especially those on the gender gap, address sample selection bias

arising from the participation decision using Heckman’s two-step method.27

We illustrate the decomposition of racial wage differentials from both SBC

and GSB approaches.28 This illustration is a direct application of two equation

model explained in the section 2.

Women are partitioned into two groups according to their race, whites (g = w)

and other races (g = o). Hence group a and b in section 2 are whites (w) and

other races (o), respectively. For the selection equation, we have a participation

equation. Equations (4) and (5) are respectively latent log-wages and participa-

tion equations. Women will participate in the labor market if S∗gN in equation (5)

has a positive value.

Tables IV and V show the estimates of log-wages and participation equations,

respectively. First of all, the correlation coefficient between the errors of log-wage

and participation equations is significantly different from zero for white women,

26Participation is usually defined to include employment or unemployment. However most
studies of labor supply do not count unemployment in the definition of participation. We treat
unemployment as non-participation to keep the analysis simple. Blundell, Ham and Meghir
(1987) is a rare exception. They include unemployment in the definition of participation.

27There are numerous studies which use Heckman’s two-step method to correct selection bias
caused by the participation decision; for example, Reimers (1983), Hoffman and Link (1984),
Dolton and Makepeace (1986, 1987), Blau and Beller (1988), Vella (1988), Dolton, Makepeace,
and van Der Klaauw (1989), Wright and Ermisch (1991), Choudhury (1993), Wellington (1993),
Baker, Benjamin, Cegep, and Grant (1995), Joshi and Paci (1998), and Schaffner (1998).

28Dolton and Makepeace (1986, 1987) estimate the log-wages and participation equations
using both Heckman’s two-step and the MLE methods. To the best of our knowledge, Dolton
and Makepeace (1986, 1987) are the only papers which use the MLE method in the context of
decomposition analysis. However, they use the MLE estimates to compute the so-called λ and
its coefficient, i.e., they adopt the pseudo-SBC approach.
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and not significantly different from zero for other races.29 As shown in Table

IV, the estimates of log-wage parameters from Heckman’s two-step and the MLE

methods are not much different from the OLS estimates except for the constant

term. The MLE estimates are, however, closer to the OLS estimates than are

Heckman’s two-step estimates. Most of the estimates of the log-wage parameters

for white women are significant, but estimates for other race women are not

very significant. Nonetheless, the estimates for both groups of women have the

expected signs. The determinants of participation, shown in Table V, also show

the expected signs; education increases participation, and the presence of children

decreases participation. Only the marriage variable has an unexpected positive

sign. The estimate of the marriage coefficient is not significant in white women

but is significant at 5% in other race women.

We compute the selection bias from both SBC and GSB approaches. Nowa-

days, it is a simple exercise to compute the λgN term and its coefficient in Heck-

man’s two-step method. From the SBC approach, the sample average of the

selection bias (Λ̂g = \ρegvgσeg λ̂g) is 0.03832 and 0.07575 for white and other race

women, respectively. From the GSB approach, the sample average of the GSB

(Λ̃g =
∑ng

N=1 ẽgN/ng) is 0.02360 and 0.02374 for white and other race women,

respectively.

29If the covariance (σegvg) or correlation coefficient (ρegvg) is zero, then there is no selection
bias. In that case, the OLS estimates from the second step of Heckman’s two-step method are
equal to those of simple OLS without selection bias correction term (λgN ), reported at the first
column of Table IV, because the estimate for the λgN is zero (ρegvgσeg = 0). Also, in that case,
the estimates from the MLE method are identical to the simple OLS estimates for log-wage
parameters, reported at the first column of Table IV, and probit estimates for the participation
equation (i.e., the first step probit estimates in Heckman’s two-step method), reported at the
first column of Table V.
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For illustration purposes, we compute the selection bias following the analyt-

ical formula (ρegvgσegλgN ) using the MLE estimates (the pseudo-SBC approach).

First, the sample average of the selection bias following the analytical formula us-

ing the MLE estimates (ρ̃egvg σ̃eg λ̃gN) is 0.02363 and 0.02375 for white and other

race women, respectively. The discrepancy between the sample average of the

GSB and the selection bias derived using the analytical formula is 0.00003 and

0.00001 for white and other race women, respectively.30 Second, on the way to

computing selection bias from the analytical formula using the MLE estimates,

we compute ρegvgσeg , the coefficient for λgN in Heckman’s two-step method. For

white and other race women, the values are respectively 0.084 and 0.062, much

smaller than those from Heckman’s two-step method (0.136 and 0.199 for white

and other race women, respectively). The sample average of the selection bias

correction term derived from the Heckman’s two-step method (λ̂g) is 0.28096 and

0.38152 for white and other race women, respectively. The sample average of the

selection bias correction term using MLE estimates (λ̃g) are 0.28106 and 0.38154

for white and other race women, respectively. Since λ̂g and λ̃g are not different

substantially, we may conclude that the difference between the sample average of

selection bias derived from the SBC approach (Λ̂g) and the GSB approach (Λ̃g)

comes from the different estimates for the correlation and the standard deviation

of the log-wages.

30The discrepancy might be caused either because the MLE method fails to obtain the “true”
optimization, or because there is a precision problem in computing the λgN , since computing
λgN in extreme area where probability is very close to zero or 1 might be problematic. See
McCullough and Vinod (1999).
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Table VI shows the decomposition results. As it is clear from equations (11)

and (17), we do not decompose the difference in the sample mean of the selection

bias (θ̂wλ̂w − θ̂oλ̂o or Λ̃w − Λ̃o) further into difference in the mean of λg and

the difference in the θ = ρegvgσeg . Some earlier papers using the SBC approach

include θ̂g and λ̂g as simply another coefficient on another variable (albeit one

pertaining to unobserved characteristics).31 We treat the difference in the GSB

(or the selection bias in Heckman’s two-step method) as a separate component in

decomposition analysis.32 We have already discussed the reasons for not pursuing

further decomposition from theoretical viewpoint in section 2.4. The other main,

more practical, reason is that we want to have a consistent decomposition equation

regardless of the selection issue. We can find the analytical form of the selection

bias easily in this illustration (ΛgN = ρegvgσegλgN ), but we may have difficulty

in deriving selection bias analytically in many cases. This means we cannot

decompose the selection term into coefficient and unobserved characteristics. We

believe the consistency gained from our treatment outweighs the gain from this

refinement.33

As shown in Table VI, decomposition results from the conventional analysis

using simple OLS estimates and the GSB approach show very similar patterns.

31Dolton and Makepeace (1986), and Joshi and Paci (1998), among others.
32Reimers (1983), Wright and Ermisch (1991), and Ermisch and Wright (1992) follow this

direction.
33Since we devise the GSB method to avoid the difficulty of finding the analytical formula

for selection bias, we do not recommend dividing the selection bias into coefficients and unob-
served characteristics even if there is only a single selection. But in the case where researchers
believe that the refinement is worth doing, they can refine the decomposition equation using
the analytical formula of the selection bias evaluated at the MLE estimates (the pseudo-SBC
approach), as Dolton and Makepeace (1986, 1987) did.
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Difference in characteristics explains half of log-wage differentials (about 57%

(46%) when the coefficients of log-wage parameters of other race (white) women

are used), and difference in coefficients explains other half of the log-wage differ-

entials (about 43% (54%) when the average characteristics of white (other race)

women are used as weights). This is because the difference in the GSB is vir-

tually non-existent.34 The discrimination coefficients (in percentage) from the

conventional analysis and the GSB approach (Dg and D̃g in equations (3) and

(18), respectively) are about 3.4% and 4.3% when characteristics of white and

other race women are respectively used as weights. In contrast, decomposition

results from the SBC approach shows larger discrimination than do those from

both the conventional analysis and the GSB approach. The discrimination coeffi-

cients (in percentage) from the SBC approach (D̂g in equation (12)) are 7.0% and

8.1% when characteristics of white and other race women are respectively used

as weights.35 This is because differences in the selection bias between white and

other race women are large and negative, which means log-wages of other race

women are more likely increased due to their unobserved characteristics.36

In this section, we discussed a very simple selection model which can be easily

analyzed using both SBC and GSB approaches. In next illustration, we will show

the application of the GSB approach when the choice is not a participation but

34The sample average of the GSB is 0.02360 and 0.02374 for white and other race women,
respectively.

35If we include the difference in the coefficients of the λgN as part of discrimination, the
discrimination coefficients (in percentage) become 5.1% and 5.6%, still higher than those from
both the conventional analysis and the GSB approach.

36The sample average of the selection bias is 0.03832 and 0.07575 for white and other race
women, respectively.
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tobit type hours.

3.3 Illustration 2: Selection Bias Due to Hours Choice

In this section, the choice set is a continuous variable (hours of work), unlike

in the previous section where choice set was discrete (i.e., participation or not).

The purpose of this illustration is not to claim that selection should be modeled

as continuous hours for the study of wage differentials, but to show that the GSB

approach can be easily applied as long as the joint estimation of log-wages and

selection equations is available.37 We will analyze two specifications: joint estima-

tion of log-wages and hours with censoring (using whole sample) and truncation

(using only working sample).38

We assume that each person has latent log-wages (Y ∗gN ) and her own optimal

hours of work (H∗gN ) specified separately for each race group as follows,

Y ∗gN = XgNβg + egN ,(19)

H∗gN = αgY
∗
gN + ZgNγg + vgN(20)

= αgXgNβg + ZgNγg︸ ︷︷ ︸
bHgN

+αgegN + vgN︸ ︷︷ ︸
ηgN

37However, we might claim the efficiency of using continuous hours as a choice variable since
hours will give us more information than just the binary variable participation or not.

38See Heckman (1974), Wales and Woodland (1980), and Mroz (1987) for details. Mroz
(1987) refers to censoring and truncation models as tobit and conditional tobit, respectively.
There is another similar specification, the so-called generalized tobit which consists of both
participation and hour choices and log-wage equation. See Mroz (1987) for detail. Gang and
Yun (1999) estimate the generalized tobit using the MLE method.
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where XgN and ZgN are respectively 1×KY and 1×KH vectors of socio-economic

characteristics of individual N in group g (w and o); coefficients βg and γg are

KY × 1 and KH × 1 vectors of parameters; coefficient αg is a scalar of parameter;

E(egN) = 0, E(vgN ) = 0, E(e2
gN) = σ2

eg , E(v2
gN) = σ2

vg , E(egN vgN ′) = σegvg if

N = N ′ and zero if N 6= N ′; ĤgN and ηgN are deterministic and stochastic

components of the optimal hours, respectively; N = 1, . . . , Ng.

We observe the log-wages and hours only when H∗ is positive for ng individ-

uals, and not working otherwise for (Ng − ng) individuals, that is, YgN = Y ∗gN if

H∗gN > 0 and missing otherwise, and HgN = max(H∗gN , 0), where YgN and HgN

are respectively observed log-wages and hours.39 This model assumes continuous

labor supply and ignores factors such as fixed time or money costs associated with

working which cause discontinuity of labor supply.40

For joint estimation of hours and log-wages, the MLE method has been fre-

quently used in previous studies. We estimate hours and log-wages jointly for data

on the whole sample (censoring specification) by maximizing following likelihood

39If we ignore the choice of hours, i.e., if we consider only whether H∗ is positive or not, then
this model reduces to a simple participation choice model discussed in sections 2 and 3.2.

40See Killingsworth (1983) pp. 23-28 and Hausman (1980).
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function,41

Lg =
∏

HgN>0

φ
(vgN−µvgN |egN

σvg|eg

)
σvg|eg

·
φ
(egN
σeg

)
σeg

∏
HgN=0

Φ

(
−ĤgN

σηg

)
,(21)

and for working women only (truncation specification) by maximizing following

likelihood,42

Lg =
∏

HgN>0

φ
(vgN−µvgN |egN

σvg|eg

)
σvg|eg

·
φ
(egN
σeg

)
σeg

/
Φ

(
ĤgN

σηg

)
,(22)

where egN = YgN −XgNβg and vgN = HgN − ĤgN − αgegN ; the conditional mean

and standard deviation are respectively µvgN |egN = egNρegvgσvg/σeg and σvg|eg =

σvg

√
1− ρ2

egvg ; ρegvg = σegvg/(σegσvg) and σηg =
√
α2
gσ

2
eg + 2αgρegvgσegσvg + σ2

vg .

Tables VII and VIII show the estimates of log-wages and hour parameters.43

41Equation (21) is functional expression of the following,

Lg =
∏

HgN>0

Pr(vgN |egN ) · Pr(egN)
∏

HgN=0

Pr(ηgN ≤ −ĤgN ) .

42Equation (22) is functional expression of the following,

Lg =
∏

HgN>0

Pr(vgN |egN) · Pr(egN )
/
Pr(ηgN ≥ −ĤgN) .

43We do not include education in the hours equation because many estimates have the wrong
signs when education is included. This might be a multicollinearity problem between education
and predicted log-wages (XgNβg) when education variable is included in the hours equation.
The correlation coefficient is about 0.953 (white women) and 0.926 (other race women) for the
censoring specification, and about 0.947 (white women) and 0.900 (other race women) for the
truncation specification when the predicted log-wages are computed using the MLE estimates.
The omission of education variable is not rare in simultaneous equations. Hausman and Wise
(1977, p. 931) assume that “these attributes (education, I.Q., and occupation training) of indi-
viduals, given their wage rates, do not affect their choices between labor and leisure.” Blundell,
Duncan and Meghir (1992) cite identification as a reason why education and other variables
are excluded from the hour equation. The estimation results when education is included in the
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Even though the correlation coefficient (ρegvg) is small, that does not mean that

the selection issue does not exist. Since the hours equation has an error term

(ηgN = αgegN +vgN ) which includes the stochastic component of log-wages, there

is always correlation between log-wages and hours, i.e., ρηgeg 6= 0, even if ρegvg = 0

as long as αg 6= 0 (see Moffitt (1984) for this point).

The estimates of the log-wage parameters reported in Table VII show the sim-

ilarities between the two specifications, and even with those estimated in previous

section (Table IV). However, in censoring model for other race women, the MSA

and the regional variables (West, South, and Midwest) have different estimates

from other specifications. Estimates of the constant term of both white and other

race women in censoring specification are quite different from the simple OLS re-

ported in Table IV and other specifications (the truncation model reported Table

VII, and the participation choice model reported in Table IV).

In contrast, the hour equation reported in Table VIII shows quite a difference

between two specifications: censoring (with whole sample) and truncation (with

working sample). Mroz (1987) also reports differences in estimates between cen-

soring (tobit) and truncation (conditional tobit) specifications. For example, in

the censoring specification, the coefficients for log-wages and non-labor income

are about two to three times larger than those in truncation specification (Mroz

(1987), Tables IX and X), while our results are about three to four times larger

in censoring specification. Mroz (1987, p. 790) concludes “the hours of work de-

hours equation are available upon request.
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cisions made when the woman is in the labor force appear quite distinct from her

labor force participation decision.”44 The signs of significant estimates are rea-

sonable except that of the marriage variable in the censoring model; it becomes

positive and very large.45

Table IX shows the labor supply elasticities evaluated at average white woman’s

hours and wages. The elasticities have the expected signs, and their magnitudes

lie within the ranges reported in previous papers.46 The uncompensated wage

elasticity is measured using αg/ Hw where Hw is the average hours of white

working women. The uncompensated wage elasticity of white women is larger

than that of other race women when we measure the elasticity using OLS and

the truncation specifications. However, the reverse is true when the censoring

specification is used. The income elasticity is measured using δgWw, where δg is

the coefficient of labor supply parameter for non-labor income, and Ww is the

average (level) wages of white working women. The income elasticity also shows

the same pattern; the income elasticity of white women is larger in absolute terms

than that of other race women when OLS and truncation specifications are used;

the opposite is true when the censoring specification is used.

Table X shows the decomposition results. As expected, the decomposition

44However, Wales and Woodland (1980) report similar estimates between two specifications
from an experiment with generated data.

45We estimate the censoring specification, without the marriage variable in the hours equation.
The results of the log-wage equation are similar to those with the marriage variable in the hours
equation. The estimates for remaining variables in the hours equation are similar to those with
the marriage variable in the hours equation. These results are also available upon request.

46Previous studies of the elasticity of female labor supply are summarized in Killingsworth
and Heckman (1986) and Killingsworth (1983).
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from the truncation specification is very similar to that from OLS. The sample

average of the GSB is negligible in both white and other race women in the

truncation specification. The discrimination coefficients (in percentage) are also

very similar to those of OLS; 3.4% (4.4%) when the characteristics of white (other

race) women are used as weights. However, the sample average of the GSB is big

when the censoring specification is used. The fact that other race women have

larger GSB than do white women (0.069 for whites, 0.147 for other races) in

the censoring specification results in larger discrimination. The discrimination

coefficients (in percentage) are 11.22% (evaluated using whites’ characteristics)

and 11.93% (evaluated using other races’ characteristics).

In this section, we have illustrated the GSB approach to decomposition analy-

sis using tobit type specifications. These specifications are studied quite often in

labor supply literature, but not in the context of wage differentials and discrimi-

nation. The illustration in this section shows the potential of the GSB approach:

liberation from the limited selection models currently available for wage differen-

tial and discrimination analysis.

4. CONCLUSION

The major contribution of this paper is finding a new and flexible way to mea-

sure the effects of selection on the log-wages. In this context, we offer a general

approach to performing decomposition analysis when selection effects are present.

We call the difference between unconditional and conditional expectations of the

36



log-wages a generalized selection bias (GSB) when the two expectations are mea-

sured using the estimates from the joint estimation of the whole model (log-wages

and selection equations) using the MLE method. The unconditional and condi-

tional expectations are, respectively, the deterministic component of log-wages,

and the deterministic component plus the conditional expectations of the sto-

chastic component of log-wages, where the deterministic component is computed

using the estimates from the joint estimation. That is, the GSB is the expectation

of the residuals estimated from the joint estimation. It is appropriate to apply

the Blinder-Oaxaca decomposition method to the log-wage differentials adjusted

for the GSB. The GSB approach to decomposition analysis is not only easy to

implement and flexible enough to apply to virtually any kind of selection issue,

but also efficient because it uses full information. We have illustrated GSB ap-

proach by applying it to the racial wage differentials among women using data

from the Current Population Survey.

In our illustrations, the fully parametric classical MLE method has been used

to estimate log-wages and selection equations jointly. However, the GSB approach

is not restricted to the fully parametric classical MLE method. It is not crucial

which estimation technique is used for the joint estimation of log-wages and selec-

tion equations as long as the joint estimation provides the consistent estimates of

log-wages. We will now briefly discuss two other methods which have their own

merits.

The argument for computing the GSB in this paper ignores the possibility
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that we may misspecify the error distributions of log-wages or selection equation

or both. In the situation where we assume a normal distribution, but the true

distribution is, say, log-normal, our estimates will be biased, and so will the GSB.

Also, we cannot obtain the correct discrimination coefficients. We can avoid the

problem of misspecification of the error distribution by adopting a distribution free

estimation method, a semiparametric method.47 Since semiparametric methods

usually estimate parameters up to a scale factor, it is difficult to estimate the

constant term. Hence the difference in the constants, which is thought to be a

part of discrimination, cannot be calculated. The only solution is including the

difference in the constant coefficients into the GSB. The decomposition formula

will be the same, only the concept of the GSB is extended to include the difference

in the constant terms.

Bayesian methods can also be used for our joint estimation. Since Bayesian

estimation gives us the (posterior) distribution of coefficients, mean values of coef-

ficients could be used for computing the GSB and the decomposition analysis (17),

presuming that mean values are consistent estimates of population parameters.

Unlike semiparametric method, this approach will not change the interpretation

of the GSB or discrimination. Interesting development in recent Bayesian estima-

tion is the Bayesian sampling method. It estimates the (posterior) distribution of

coefficients of highly complicated models by utilizing Markov Chain Monte Carlo

(MCMC) simulation methods. We can estimate the distribution of each compo-

47See Powell (1994) for a survey of semiparametric methods.
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nent of the decomposition analysis (17), by evaluating them from the sampled

estimates in each sampling round.48

The GSB approach can be implemented in conjunction with any kind estima-

tion method; MLE, semiparametric, and Bayesian estimation methods. With the

progress of computing technology, the GSB approach is able to handle virtually

any selection issue. The GSB approach is a basic tool for wage differentials and

discrimination analysis. It is conceptually simple, and practically versatile.
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TABLE I

TWO APPROACHES TO THE DECOMPOSITION ANALYSIS

Selection Bias Correction Approach

Error (egN ) Two-Step (MLE)

Selection Bias Correction Term λ̂gN λ̃gN

(a) Conditional Expectations θ̂gλ̂gN ρ̃egvg σ̃eg λ̃gN

(b) Unconditional Expectations 0 0

Selection Bias: (a) - (b) θ̂gλ̂gN ρ̃egvg σ̃eg λ̃gN

Log-wages (Y ∗gN ) Two-Step (MLE)

Selection Bias Correction Term λ̂gN λ̃gN

(a) Conditional Expectations XgN β̂g + θ̂gλ̂gN XgN β̃g + ρ̃egvg σ̃eg λ̃gN

(b) Unconditional Expectations XgN β̂g XgN β̃g

Selection Bias: (a) - (b) θ̂gλ̂gN ρ̃egvg σ̃eg λ̃gN

Generalized Selection Bias Approach

Error (egN ) (Two-Step) MLE

(a) Conditional Expectations E(êgN |SgN = 1) E(ẽgN |SgN = 1)

= Λ̂gN = Λ̃gN

(b) Unconditional Expectations 0 0

Selection Bias: (a) - (b) Λ̂gN Λ̃gN

Log-wages (Y ∗gN ) (Two-Step) MLE

(a) Conditional Expectations XgN β̂g + Λ̂gN XgN β̃g + Λ̃gN

(b) Unconditional Expectations XgN β̂g XgN β̃g

Selection Bias: (a) - (b) Λ̂gN Λ̃gN

a êgN = Y ∗gN −XgN β̂g , and ẽgN = Y ∗gN −XgN β̃g . See text for the notations.
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TABLE II

VARIABLES USED IN THE ANALYSIS

Variables Definition and Note

Age Aged 25 – 60 years.

Age2/100 Age squared in hundreds.

Education Number of years of schooling.

Marriage Married = 1, Single = 0. Married but spouse absent is treated
as single.

Children < 6 Number of children under age 6.

Children 6–18 Number of children age 6 – 18.

Family Size Number of family members.

Non-Labor Inc. Sum of last year’s survivor’s income, interest income, divi-
dends income, rent income, child support payment, alimony.
If married, husband’s annual wage of last year is added. Unit
is $1000.

MSA Metropolitan statistical areas = 1, Else = 0.

West West region = 1, Else = 0.

South South region = 1, Else = 0.

Midwest Midwest region = 1, Else = 0.

Northeast Reference region.

Wages ($) Hourly wage rate (level) = usual weekly earnings / usual
weekly hours of work.

Hours Usual weekly hours of work.
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TABLE III

MEAN CHARACHERISTICS OF THE SAMPLE

Whites Others

Mean (s.d.) Mean (s.d.)

Whole Sample

Age 39.694 (9.371) 39.088 (9.368)

Education 13.290 (2.642)∗∗ 12.832 (2.648)

Marriage 0.615 (0.487)∗∗ 0.403 (0.491)

Children < 6 0.294 (0.609) 0.318 (0.656)

Children 6–18 0.618 (0.925)∗ 0.706 (0.967)

Family Size 2.919 (1.439)∗∗ 3.125 (1.600)

Non-Labor Inc. 25.154 (27.218)∗∗ 13.267 (20.746)

Sample size 3829 894

Non-Working Sample

Age 38.576 (9.434) 37.701 (9.134)

Education 12.326 (2.933)∗ 11.814 (2.996)

Marriage 0.755 (0.430)∗∗ 0.398 (0.491)

Children < 6 0.622 (0.842) 0.534 (0.882)

Children 6–18 0.799 (1.017) 0.928 (1.122)

Family Size 3.555 (1.483) 3.561 (1.743)

Non-Labor Inc. 33.479 (31.286)∗∗ 14.142 (23.850)

Sample size 695 221

Working Sample

Age 39.942 (9.340) 39.544 (9.406)

Education 13.503 (2.524)∗∗ 13.166 (2.435)

Marriage 0.584 (0.493)∗∗ 0.404 (0.491)

Children < 6 0.222 (0.517) 0.247 (0.544)

Children 6–18 0.578 (0.899) 0.633 (0.900)

Family Size 2.778 (1.390)∗∗ 2.982 (1.524)

Non-Labor Inc. 23.308 (25.876)∗∗ 12.979 (19.631)

MSA 0.737 (0.440)∗∗ 0.816 (0.388)

West 0.185 (0.388) 0.198 (0.399)

South 0.280 (0.449)∗∗ 0.441 (0.497)

Midwest 0.268 (0.443)∗∗ 0.160 (0.367)

Wages 11.723 (6.120)∗ 11.070 (6.229)

Log-wages 2.331 (0.526)∗∗ 2.254 (0.576)

Hours 37.594 (9.024) 37.960 (7.482)

Sample size 3134 673

a ** and * imply that the null hypothesis, mean of white women is equal to that

of other race women, is rejected at 1% and 5% level of significance, respectively.
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TABLE IV

LOG-WAGES: ILLUSTRATION 1

Whites

OLS Two-Step MLE

Est. (s.e.) Est. (s.e.) Est. (s.e.)

Constant −0.214 (0.161) −0.357∗ (0.178) −0.303 (0.165)

Age 0.059∗∗ (0.008) 0.060∗∗ (0.008) 0.060∗∗ (0.008)

Age2/100 −0.067∗∗ (0.009) −0.069∗∗ (0.010) −0.068∗∗ (0.010)

Education 0.098∗∗ (0.003) 0.103∗∗ (0.004) 0.101∗∗ (0.003)

MSA 0.089∗∗ (0.019) 0.090∗∗ (0.017) 0.089∗∗ (0.019)

West −0.023 (0.025) −0.024 (0.025) −0.024 (0.025)

South −0.104∗∗ (0.022) −0.104∗∗ (0.023) −0.104∗∗ (0.022)

MidWest −0.105∗∗ (0.022) −0.106∗∗ (0.022) −0.105∗∗ (0.022)

λ 0.136∗ (0.057)

σe 0.457∗∗ (0.006)

ρev 0.184∗ (0.072)

Adjusted R2 0.254 0.255

Others

OLS Two-Step MLE

Est. (s.e.) Est. (s.e.) Est. (s.e.)

Constant −0.102 (0.373) −0.391 (0.509) −0.192 (0.390)

Age 0.039∗ (0.018) 0.042∗ (0.021) 0.040∗ (0.018)

Age2/100 −0.036 (0.022) −0.037 (0.025) −0.036 (0.022)

Education 0.103∗∗ (0.008) 0.113∗∗ (0.013) 0.106∗∗ (0.009)

MSA 0.105∗ (0.051) 0.106∗ (0.045) 0.105∗ (0.051)

West 0.053 (0.063) 0.047 (0.071) 0.051 (0.063)

South −0.101 (0.053) −0.104 (0.056) −0.102 (0.053)

MidWest −0.032 (0.066) −0.040 (0.069) −0.035 (0.065)

λ 0.199 (0.217)

σe 0.504∗∗ (0.014)

ρev 0.124 (0.162)

Adjusted R2 0.229 0.230

a ** and * mean statistically significant at 1% and 5%, respectively.
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TABLE V

PARTICIPATION: ILLUSTRATION 1

Whites

Two-Step MLE

Est. (s.e.) Est. (s.e.)

Constant −1.626∗∗ (0.525) −1.646∗∗ (0.525)

Age 0.086∗∗ (0.026) 0.085∗∗ (0.026)

Age2/100 −0.108∗∗ (0.032) −0.107∗∗ (0.032)

Education 0.119∗∗ (0.010) 0.120∗∗ (0.010)

Marriage 0.054 (0.077) 0.071 (0.076)

Children < 6 −0.475∗∗ (0.050) −0.478∗∗ (0.049)

Children 6–18 −0.072 (0.040) −0.067 (0.040)

Family Size −0.053 (0.030) −0.049 (0.030)

Non-Labor Inc. −0.009∗∗ (0.001) −0.010∗∗ (0.001)

Others

Two-Step MLE

Est. (s.e.) Est. (s.e.)

Constant −1.418 (0.945) −1.411 (0.945)

Age 0.025 (0.046) 0.022 (0.047)

Age2/100 −0.015 (0.057) −0.010 (0.057)

Education 0.129∗∗ (0.020) 0.132∗∗ (0.021)

Marriage 0.293∗ (0.147) 0.296∗ (0.147)

Children < 6 −0.239∗∗ (0.082) −0.244∗∗ (0.082)

Children 6–18 −0.076 (0.063) −0.065 (0.065)

Family Size −0.024 (0.042) −0.021 (0.042)

Non-Labor Inc. −0.011∗∗ (0.003) −0.012∗∗ (0.004)

a ** and * mean statistically significant at 1% and 5%, respectively.
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TABLE VI

DECOMPOSITION ANALYSIS: ILLUSTRATION 1

(a) Observed Log-Wage Differentials

E(Yw) - E(Yo) 0.077 (100.00%a)

OLS

Component Logarithm (%)

(b) Difference in Characteristics

(b.a) (Xw −Xo)β̂o 0.043 (56.24%)

(b.b) (Xw −Xo)β̂w 0.035 (45.22%)

(c) Difference in Coefficients

(c.a) Xw(β̂w − β̂o) 0.034 (43.75%)

(c.b) Xo(β̂w − β̂o) 0.042 (54.78%)

Two-Step

Component Logarithm (%)

(b) Difference in Characteristics

(b.a) (Xw −Xo)β̂o 0.047 (60.94%)

(b.b) (Xw −Xo)β̂w 0.036 (47.31%)

(c) Difference in Coefficients

(c.a) Xw(β̂w − β̂o) 0.067 (87.69%)

(c.b) Xo(β̂w − β̂o) 0.078 (101.32%)

(d) Difference in Selection Bias

\ρewvwσewλw −\ρeovoσeoλo -0.037 (-48.63%)

MLE

Component Logarithm (%)

(b) Difference in Characteristics

(b.a) (Xw −Xo)β̃o 0.044 (57.75%)

(b.b) (Xw −Xo)β̃w 0.036 (46.54%)

(c) Difference in Coefficients

(c.a) Xw(β̃w − β̃o) 0.033 (42.43%)

(c.b) Xo(β̃w − β̃o) 0.041 (53.64%)

(d) Difference in the GSB

(Λ̃w − Λ̃o) -0.0001 (-0.18%)

a Percentage of observed differentials contributed by component is in parentheses.
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TABLE VII

LOG-WAGES: ILLUSTRATION 2

Whites

Censoring Truncation

Est. (s.e.) Est. (s.e.)

Constant −0.525∗∗ (0.169) −0.224 (0.161)

Age 0.063∗∗ (0.008) 0.059∗∗ (0.008)

Age2/100 −0.071∗∗ (0.010) −0.067∗∗ (0.009)

Education 0.109∗∗ (0.003) 0.098∗∗ (0.003)

MSA 0.069∗∗ (0.019) 0.089∗∗ (0.018)

West −0.019 (0.026) −0.014 (0.025)

South −0.093∗∗ (0.023) −0.093∗∗ (0.023)

MidWest −0.071∗∗ (0.024) −0.099∗∗ (0.023)

σe 0.479∗∗ (0.008) 0.454∗∗ (0.006)

ρev −0.034 (0.042) −0.065 (0.039)

Others

Censoring Truncation

Est. (s.e.) Est. (s.e.)

Constant −0.713 (0.427) −0.101 (0.373)

Age 0.042∗ (0.020) 0.039∗ (0.018)

Age2/100 −0.035 (0.024) −0.036 (0.022)

Education 0.129∗∗ (0.010) 0.103∗∗ (0.008)

MSA 0.049 (0.058) 0.103∗ (0.051)

West 0.103 (0.069) 0.048 (0.063)

South −0.043 (0.059) −0.103 (0.053)

MidWest −0.025 (0.072) −0.034 (0.065)

σe 0.571∗∗ (0.030) 0.502∗∗ (0.014)

ρev 0.033 (0.105) −0.043 (0.086)

a ** and * mean statistically significant at 1% and 5%, respectively.
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TABLE VIII

HOURS EQUATION: ILLUSTRATION 2

Whites

OLS Censoring Truncation

Est. (s.e.) Est. (s.e.) Est. (s.e.)

Constant 34.295∗∗ (3.079) 6.153 (5.534) 33.315∗∗ (3.119)

Age −0.105 (0.158) −0.037 (0.285) −0.167 (0.162)

Age2/100 0.058 (0.191) −0.101 (0.346) 0.132 (0.195)

Marriage −0.474 (0.474) 1.713∗ (0.870) −0.418 (0.475)

Children < 6 −2.644∗∗ (0.359) −8.494∗∗ (0.618) −2.664∗∗ (0.360)

Children 6–18 −1.649∗∗ (0.253) −2.064∗∗ (0.462) −1.650∗∗ (0.253)

Family Size −0.054 (0.190) −0.357 (0.350) −0.028 (0.193)

Non-Labor Inc. −0.039∗∗ (0.008) −0.157∗∗ (0.015) −0.042∗∗ (0.009)

Log-Wages 4.025∗∗ (0.298) 15.121∗∗ (1.049) 4.962∗∗ (0.639)

σv 16.857∗∗ (0.293) 8.440∗∗ (0.108)

Adjusted R2 0.126

Others

OLS Censoring Truncation

Est. (s.e.) Est. (s.e.) Est. (s.e.)

Constant 28.885∗∗ (5.539) 2.508 (13.112) 28.321∗∗ (5.676)

Age 0.136 (0.279) −0.532 (0.660) 0.109 (0.281)

Age2/100 −0.189 (0.338) 0.601 (0.800) −0.159 (0.340)

Marriage −0.121 (0.913) 5.246∗ (2.080) −0.087 (0.865)

Children < 6 0.235 (0.593) −4.348∗∗ (1.268) 0.241 (0.600)

Children 6–18 −0.408 (0.400) −0.654 (0.933) −0.404 (0.418)

Family Size −0.005 (0.246) −0.122 (0.587) 0.003 (0.282)

Non-Labor Inc. −0.012 (0.022) −0.213∗∗ (0.051) −0.015 (0.023)

Log-Wages 3.209∗∗ (0.514) 18.100∗∗ (2.267) 3.708∗∗ (1.126)

σv 18.541∗∗ (0.952) 7.236∗∗ (0.199)

Adjusted R2 0.054

a ** and * mean statistically significant at 1% and 5%, respectively.
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TABLE IX

ELASTICITY: ILLUSTRATION 2

Whites

OLS Censoring Truncation

Compensated Wage Elasticity 0.564 2.238 0.620

Uncompensated Wage Elasticity 0.107 0.402 0.132

Total Income Elasticity −0.457 −1.836 −0.488

Others

OLS Censoring Truncation

Compensated Wage Elasticity 0.230 2.981 0.271

Uncompensated Wage Elasticity 0.085 0.482 0.099

Total Income Elasticity −0.145 −2.499 −0.172

a Compensated wage elasticity is αg/Hw − δgWw, where g = w and o,

that is uncompensated wage elasticity minus total income elasticity.
b α and δ are respectively the coefficients for log-wages and non-labor income

in hours equation.
c Elasticity is evaluated at the average hours and wages of white working women.
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TABLE X

DECOMPOSITION ANALYSIS: ILLUSTRATION 2

(a) Observed Log-Wage Differentials

E(Yw) - E(Yo) 0.077 (100.00%a)

Censoring

Component Logarithm (%)

(b) Difference in Characteristics

(b.a) (Xw −Xo)β̃o 0.049 (63.11%)

(b.b) (Xw −Xo)β̃w 0.042 (54.90%)

(c) Difference in Coefficients

(c.a) Xw(β̃w − β̃o) 0.106 (138.21%)

(c.b) Xo(β̃w − β̃o) 0.113 (146.42%)

(d) Difference in the GSB

(Λ̃w − Λ̃o) -0.078 (-101.32%)

Truncation

Component Logarithm (%)

(b) Difference in Characteristics

(b.a) (Xw −Xo)β̃o 0.044 (56.75%)

(b.b) (Xw −Xo)β̃w 0.034 (43.71%)

(c) Difference in Coefficients

(c.a) Xw(β̃w − β̃o) 0.033 (43.24%)

(c.b) Xo(β̃w − β̃o) 0.043 (56.28%)

(d) Difference in the GSB

(Λ̃w − Λ̃o) 0.00001 (-0.01%)

a Percentage of observed differentials contributed by component is in parentheses.
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