黄河下游游荡段滩岸土体组成及力学特性分析

夏军强 吴保生 王艳平 赵寿刚

(清华大学水沙科学与水利水电工程国家重点实验室,北京 100084; 黄河水利委员会黄河水利科学研究院,郑州 450003.
 E-mail: <u>xiajq@tsinghua.edu.cn</u>)

摘要 黄河下游游荡段是下游河床冲淤变化的主要河段, 滩岸侵蚀是该河段清水冲刷期河床演变的一 个重要特点, 其过程与滩岸土体组成及力学特性密切相关.本文首先分析了花园口至高村游荡段近期 的滩岸侵蚀情况, 然后对这一河段的10个典型滩岸进行了现场查勘与室内土工试验, 最后根据试验结 果, 较为全面地揭示了游荡段滩岸土体组成, 而且深入分析了滩岸土体的力学特性, 定量地解释了游荡 段滩岸侵蚀严重的两个原因.结果表明, 游荡段大部分滩岸土体属于黏性土, 且具有较为明显的垂向分 层结构; 滩岸土体因黏粒含量少、抗冲强度弱, 其起动切应力(0.1~0.3 Pa)比近岸平均水流切应力(2~3 Pa) 小一个数量级, 故容易冲刷; 滩岸土体的抗剪强度随土体含水率增加而降低, 其凝聚力可由 34 kPa 急剧 降低到 4 kPa, 故滩岸土体容易在汛期发生崩塌.

关键词 黄河下游 游荡型河段 滩岸侵蚀 土体组成 力学特性 抗冲强度 抗剪强度

黄河下游孟津至高村河段为典型的游荡型河段。 全长约 286 km. 该河段因断面宽浅、水流散乱、冲淤 幅度较大、主流摆动不定、故河床的稳定性较差。游 荡型河段这种特殊的演变特点, 是与其河床边界条 件密不可分的. 由于黄河下游游荡段滩岸组成物质 相对较粗, 黏粒含量较少, 缺乏抗冲性, 故该河段的 稳定性相对较差 [1.2]. 在三门峡水库蓄水拦沙期间, 进入下游河道的泥沙大幅度减少、小浪底站年均输 沙量由 20 世纪 50 年代的 14.5×10⁸ t减少到 5.7×10⁸ t, 导致黄河下游河道发生强烈冲刷. 1960年9月至1964 年10月间, 小浪底至利津河段总共冲刷泥沙 21.4×10⁸ m³、其中高村以上游荡段的冲刷量达 15.2×10⁸ m³、 占下游河道总冲刷量的 71%^[3]. 据统计, 在这段时间 内,花园口至高村河段约有 200 km²的滩地崩塌,滩 地的大量崩塌使该河段二滩之间的河槽宽度增加. 如花园口至东坝头河段二滩之间的宽度由 2563 m增 加到 3633 m, 增加近 1000 m. 在这 4 年中, 下游河段 年均冲刷泥沙约 5.58×10⁸ t, 其中细泥沙(d < 0.025 mm 部分)占43.3%、而从下游主槽中冲起的细泥沙仅占 5%~10%、因此有近 35%的泥沙来自滩地的冲刷与崩 塌 [1.4]. 近期(指1999 年 10 后, 小浪底水库处于蓄水 拦沙运用阶段),进入黄河下游河道的泥沙又一次大 幅度减少、2000~2005 年花园口站年均沙量仅为 0.6×10⁸ t, 下游河道同样发生了持续冲刷. 根据断面

法计算,这 6 年内下游河道累计冲刷泥沙约7.7×10⁸ m³,其中高村以上游荡段冲刷约 5.9×10⁸ m³,占下游 总冲刷量的 77%.另外游荡段平均主槽面积由 1800 m² 扩大到 4270 m².根据不同时刻的主槽断面形态,可以初步计算出该时段内游荡段滩地崩塌量与河段 总冲刷量的比例大约为 45.6%.由此可见,小浪底水 库运用后,下游游荡段主槽面积的扩大有近一半来 自滩地的崩塌与走失^[5].

以上分析表明、滩岸侵蚀是黄河下游游荡段河 床演变的一个重要方面,尤其在清水冲刷期.游荡段 的滩岸侵蚀与其滩岸土体组成及力学特性密切相关。 但目前缺乏系统的黄河下游滩岸土体的组成资料. 故对滩岸土体的力学特性研究较少,对清水冲刷期 滩岸侵蚀较为严重的原因缺少定量的解释. 因此开 展黄河下游滩岸土体组成及力学特性分析,不仅有 利于全面研究游荡型河段的河床演变特点、而且也 能为动床河工模型试验及泥沙数学模型计算中关于 滩岸变形模拟方面提供相关数据,我们在分析下游 游荡段近期滩岸侵蚀情况的基础上、于 2006 年 9 月 中旬对黄河下游花园口至高村河段10个典型断面的 滩岸土体进行了现场取样及土力学试验. 该文内容 是本次研究成果的一部分,将重点分析游荡段滩岸 土体组成及力学特性、并结合试验成果、从力学机理 上定量解释游荡段滩岸侵蚀严重的原因.

2007-07-02 收稿, 2007-10-08 接受

国家自然科学基金(批准号: 50409002)、中荷战略科学联盟计划(编号: 2004CB720402)和创新研究群体科学基金(批准号: 50221903)资助项目

1 近期游荡段滩岸侵蚀情况

黄河下游清水冲刷期河床调整一般包括两个方 面、主槽的纵向下切与横向展宽. 水流的纵向侵蚀将 使断面趋于窄深, 而主流的横向摆动和滩岸侵蚀可 使主槽横向展宽. 在未建库前, 一个局部河段的滩岸 崩塌会伴随着泥沙在另一局部河段的落淤还滩、在 较长时期内塌滩与成滩作用之间保持相对平衡、河宽 变化不大,修建水库后、洪峰的调平与沙量的减少、 破坏了这种相对平衡关系、损失的滩地不能完全得 到补偿、导致滩坎后退与主槽展宽 11. 小浪底水库蓄 水拦沙后, 黄河下游河道出现持续冲刷, 部分河段主 槽在纵向冲深的同时,也逐渐向两侧展宽.由于近期 没有出现较大范围的漫滩洪水、因此主槽展宽主要 是由滩岸侵蚀(横向冲刷与崩塌)引起的. 目前、黄河 下游主槽展宽现象在花园口至高村之间的游荡型河 段较为明显,花园口至夹河滩河段因两岸控导工程 与护滩工程较少、主槽展宽现象尤为突出. 据实测资 料分析,花园口至夹河滩河段的平均主槽宽度由1999 年汛后的 1210 m 展宽到了 2005 年汛后的 1770 m、增加 幅度达 47%、平均主槽深度也由 1.5 m变化到 2.6 m、 增加近 68%; 夹河滩至高村的平均主槽宽度由最初 的 650 m增加到 890 m、增加近 36%、平均主槽深度 由 2.3 m变化到 3.6 m、 增加近 57%. 这两个河段的滩 岸侵蚀土体量与其相应河床冲刷量之比分别为 54% 和 50%^[5]. 由此可见、近期花园口至高村河段河床冲 刷量的近一半来自于滩岸侵蚀.

图1给出了花园口至夹河滩游荡段内两个典型 断面(黑石1与曹岗)形态的变化过程.黑石1断面位 于花园口水文站以下约 46 km, 左岸位于原阳滩上一 个取水口下游、附近控导工程较多、故左岸滩岸相对 稳定:而右滩岸附近没有控导工程、加上滩岸土体抗 冲性较弱,6年间滩岸后退936m,其中2004年因下 游水量相对较多、右滩岸侵蚀后退达 465 m. 曹岗断 面位于夹河滩水文站以上约 3 km、右岸直接受到府 君寺控导工程控制、故右滩岸侵蚀相对较弱、6 年间 仅侵蚀后退130 m; 而左岸为一大片滩地, 附近无控导 工程, 故滩岸侵蚀较为严重, 6 年间滩岸后退 340 m. 在 夹河滩至高村游荡段内, 控导工程及险工布置相对 较密、故滩岸侵蚀程度相对较弱、主槽展宽不多。由 此可见、为全面研究目前黄河下游清水冲刷期间游 荡型河段的河床演变规律、必须考虑滩岸侵蚀过程. 而滩岸侵蚀过程与滩岸土体组成及力学特性密切相 关。故本次游荡段滩岸土体的现场查勘与室内土工 试验是在这样的研究背景下开展的.

2 滩岸土体现场取样及室内土工试验

2.1 现场取样情况

根据近期黄河下游游荡段滩岸侵蚀程度的具体 情况,结合现场查勘结果,取样点通常选取在现有淤 积测量断面附近,具体位置一般为主流靠近边滩(嫩 滩)的部位,并用手持 GPS 精确定位.本次取样点在 花园口至高村河段共设置10个,其中在花园口至夹 河滩河段取样点布置相对较密(6个),而在夹河滩至 高村河段取样点布置相对较疏(4个).各滩岸土体取 样点的具体位置及经纬度坐标见表1及图2.由于下 游游荡段的滩地十分开阔,嫩滩位置不易确定,故本

⁽a) 黑石1断面; (b) 曹岗断面

伯旦	影而久犯 目伏位罢 阳祥上仪住府								
姍丂	的山石孙	具 译 论 但 直	以 件 只 经 纾 侵						
1	花园口	花园口断面以上, 南裹头以下 1000 m 处	-	-					
2	申庄	申庄断面附近, 石桥断面以上 1248 m	113°46′01.5″	34°54′30.1″					
3	辛寨	辛寨1断面附近, 六堡断面以上 416 m	113°59′20.1″	34°55'09.3"					
4	韦城	韦城1断面附近,回回寨断面以上1949m	114°12′05.6″	34°54′52.3″					
5	柳园口	柳园口1断面附近,柳园口1断面以上 768 m	114°21′15.3″	34°54′25.7″					
6	夹河滩	开封黄河大桥下游 100 m, 夹河滩水文测流断面附近	114°34′29.8″	34°55′23.1″					
7	王小庄	东坝头险工下游凹岸位置,禅房断面以下 2348 m	114°49′01.4″	34°58'37.2"					
8	王夹堤	王夹堤险工下游 200 m,油房寨断面以上 1737 m	114°49′53.8″	35°01′29.0″					
9	杨小寨	杨小寨断面附近,河道较窄,杨小寨断面以下 903 m	114°55′37.0″	35°14′55.0″					
10	高村	高村水文测流断面附近	115°04′39.5″	35°22′57.8″					

表 1 选取的典型断面及取样点位置^{a)}

a) 现场取样时间为 2006 年 9 月 16 日至 17 日

图 2 花园口至高村河段取样点位置

次试验的现场取样点, 仅布置在河道右岸. 目前下游 游荡段的嫩滩都是在小浪底水库蓄水前的几次大洪水 过程中形成的, 在小浪底水库蓄水前该河段主流摆动 较为频繁, 左右滩岸的土体组成及力学特点应该相差 不大, 河道右岸土体可以代表断面平均的情况. 另外 由于游荡段的横断面形态较为复杂, 取样点位置都选 择在水边, 多数位于崩塌较为明显的滩岸上.

鉴于取样仪器等实际情况,本次所取土样厚度 均在 1.5 m 以内,且按照各层土体组成、结构及性质 不同,分别进行分层取样.现场共取原状土样 13组, 散状土样 6 组.原状土样用铁皮筒取样,散状样以袋 装取样.根据现场查勘,测量边滩土体各种土层的厚 度,并对各土层根据颗粒组成情况,按经验进行了现 场定名,绘制出游荡段边滩取样处现场土层剖面图.

2.2 室内土工试验内容情况

室内土工试验的粒组及土类划分标准主要依据

《土工试验方法标准》(GB/T 50123-1999)及《土工试 验规程》(SL237-1999).为了研究黄河下游游荡型河 段的土体组成及力学特性,室内试验主要包括颗粒 分析、比重、界限含水率、密度、直剪试验等,试验 结果能反映滩岸土质的类别、颗粒组成、抗剪强度以 及密实程度等指标.表2给出了黄河下游游荡段滩岸 土体物理力学性质的试验成果.由于部分滩岸土层 太薄或未揭露,故无法给出这部分土体在天然状态 下的物理指标及抗剪强度.

3 滩岸土体的组成及变化特点

3.1 滩岸土体组成的垂向分层结构

由土工试验结果(表 2)可知,目前花园口至高村 游荡河段滩岸土体,从总体上看大部分为黏性土组 成,个别断面为非黏性土组成⁶⁰.而且滩岸土体组成 具有较为明显的垂向分层结构:表层土质相对较细,

论文

断面名称	各层土层厚度 /cm	土样 名称	黏粒含量 (%)	塑性指数 (I _p)	天然状态下的物理指标				抗剪强度		
					含水率 ω	湿密度 $ ho$	干密度 ρ_d	孔隙比 e	饱和度 S _r (%)	凝聚力 c/kPa	内摩擦角
					(%)	$/g \cdot cm^{-3}$	$/g \cdot cm^{-3}$				<i>φ</i> /(°)
花园口	表层(30)	CL	4.5	13.2	20.7	2.031	1.68	0.599	93	31.0	36.8
	下层(20)	SM	3.2		15.3	1.720	1.49	0.797	51.5	27.4	34.5
申庄	表层(6)	CL	26.1	16.7							
	下层(20)	SM	2.2		20.2	2.018	1.68	0.596	90.8	32.8	33.7
	表层(34)	CL	34.9	21.9	25.6	1.735	1.38	0.976	71.6	25.6	26.1
辛寨	中层(36)	CL	8.5	17.6	33.6	1.875	1.40	0.924	98.2	18.3	26.7
	下层(3)	СН	57.3	35.3							
	表层(43)	CL	6.8	15.7	27.1	1.862	1.46	0.843	86.8	22.7	32.7
韦城	中层(24)	CL	5.5	11.5	17.3	1.850	1.58	0.706	66.0	26.4	35.6
	下层(*)	SF	1.1								
柳园口	单层(130)	CL	5.7	12.3	26.2	1.795	1.42	0.898	78.8	18.8	26.3
夹河滩	单层(*)	SM	3.3		22.8	2.047	1.67	0.614	99.9	4.10	35.8
王小庄	单层(*)	CL	5.1	16	26.6	1.904	1.50	0.782	91.2	16.6	29.3
	表层(3)	CL	17	11.7	21.5	2.011	1.66	0.625	92.5		
王夹堤	中层(10)	CL	10.5	13.1	25.4	1.968	1.57	0.720	95.2	16.3	28.4
	下层(*)	SM	3.7		32.2	1.790	1.35	0.979	88.1		
杨小寨	单层(30)	CL	5.5	16.6	23.5	1.982	1.60	0.689	92.5	34.0	29.8
高村	表层(5)	CL	22.5	10.4							
	下层(*)	CL	23.4	15.2	38.5	1.861	1.34	1.017	102.6	4.10	26.7

表 2 游荡段滩岸土体物理力学性质的试验成果 ^{a)}

a) CH, 高液限黏土; CL, 低液限黏土; SM, 粉土质砂; SF, 含细粒土砂; (*), 该层滩岸土体未揭露

平均黏粒含量为 13.1%, 多为低液限黏土; 下层土质 相对较粗, 平均黏粒含量为 6.2%, 一般为粉土质砂 或含细粒土砂; 个别断面中间土层中含有一层较薄 的黏土夹层. 图 3 给出了韦城及王夹堤断面附近滩岸 土体的垂向组成结构. 由图可知, 这两处滩岸土体垂 向组成相当明显. 如韦城断面滩岸土体表层为低液 限黏土, 平均黏粒含量为 6.3%, 底层为含细粒土砂, 黏粒含量仅为 1.1%; 王夹堤断面滩岸土体表层为低 液限黏土, 平均黏粒含量为 12%, 底层为粉土质砂, 黏粒含量仅为 3.7%. 由此可见, 滩岸土体的形成经 历了两种不同强度水流的作用, 下层土体通常为主 流中的泥沙堆积物, 上层土体一般为漫滩水流落淤 造成的. 显然滩岸土体的这种垂向分层结构是与游 荡段主流摆动分不开的^[2].

3.2 滩岸土体组成的沿程变化特点

尽管黄河下游游荡段滩岸土体类别绝大部分为 黏性土体,但其组成物质沿程变化较大.如滩岸表层 土体的黏粒含量在 3.3%~34.9%之间变化,中值粒径 在 0.009~0.082 mm之间变化;滩岸底层土体的黏粒 含量在 1.1%~23.4%之间变化,中值粒径在 0.013~ 0.143 mm之间变化,且除高村断面外,其余断面滩岸 底层土体组成物质较为均匀,土体不均匀系数的平 均值仅为3. 由图 4 可知, 游荡段滩岸土体中值粒径 虽然大体上有沿程变小的趋势, 但变化规律不明显, 这种沿程变化情况与滩岸所在具体河段的位置及游 荡型河段的河床演变特点有极大关系^[7,8]. 2006 年汛 后, 花园口、夹河滩和高村水文站测量断面位置滩岸 土体底层中值粒径分别为 0.086, 0.082 和 0.013 mm, 如仅看这三站土体组成的沿程变化, 沿程递减趋势 较为明显. 一般情况下, 黄河下游游荡段主槽床沙中 值粒径沿程递减的变化规律较为明显. 如 2006 年汛 前, 花园口、夹河滩和高村水文断面床沙平均粒径分 别为 0.206, 0.142 和 0.133 mm, 呈沿程递减的变化规 律.

4 滩岸土体的力学特性

从上述试验结果可知,游荡段滩岸土体绝大部 分为黏性土.因此其侵蚀过程一般包括两个方面,即 近岸水流对滩岸土体的冲刷,以及滩岸土体在重力 作用下的崩塌过程^[9].滩岸土体的力学特性通常可 用其抗冲强度与抗剪强度来表示,力学特性的变化 影响滩岸土体的稳定性.

过去一般用河岸组成物质中粉砂与黏土的含量 来间接表示滩岸土体的抗冲性能,这是河流地貌学 中的定性表示方法^[10,11].因此为了定量分析滩岸土

图 3 典型滩岸土体组成的垂向分层结构

图 4 主槽床沙与滩岸土体中值粒径的沿程变化

体的抗冲性,应采用河流动力学中的表示方法,即根 据滩岸土体组成,采用起动切应力或起动流速来表 示滩岸土体抗冲能力的强弱.对黏性土组成的滩岸, 其岸坡上的土体,起动时除了受到水流作用于岸壁 的推力、上举力以及有效重力的作用,还受到颗粒间 黏结力的作用.颗粒间黏结力的大小与滩岸土壤的 矿物成分、含水量等物理化学特性密切相关^[12].当 水流的冲刷力大于滩岸土体的抗冲力时,就可以冲 动滩岸边坡上水面以下的表层土体,导致岸坡变陡. 当土体内部的剪切应力大于其抗剪强度时,河岸上 部分土体会在重力作用下发生滑动、坍塌. 黏性土滩 岸的坍塌一般表现为先在滩岸顶部出现垂直的拉伸 裂缝, 然后大块扰动土体沿略弯曲的破坏面滑入河 槽, 破坏面较深. 游荡型河段比降相对较大、流速大, 而滩岸组成物质中黏粒含量少、抗冲性差, 即使在床 面发生淤积的情况下, 近岸水流仍可能侧向冲刷滩 岸, 导致滩岸坡度变陡而发生坍塌. 根据试验资料, 下游游荡段滩岸土体的孔隙比相对较大, 在 0.6~1.0 之间变化, 因此组成滩岸土体的泥沙尚未完全密实, 基本上可以认为是新淤黏性土. 故泥沙在起动时可 按单颗粒处理,不过应考虑颗粒间的黏结力.此时滩 岸土体的起动切应力或起动流速可用窦国仁、武汉水 院及唐存本公式计算^[13].如唐存本^[14]将重力、拖曳 力、上举力及黏结力统一考虑,根据力的平衡方程式, 得出了新淤黏性土的起动拖曳力公式为

$$\tau_c = 6.68 \times 10^2 \times d + \frac{3.67 \times 10^{-6}}{d},\tag{1}$$

式中 τ_c 的单位为 N/m²; 粒径 d 的单位为 m. 点绘黏性 土体起动拖曳力随土体粒径的变化关系,可以看出 当 d 位于 0.08~0.1 mm 之间时, 土体最容易起动.

根据本次土工试验结果,花园口至高村河段滩 岸底层土体的中值粒径在 0.013~0.109 mm 之间,则 用唐存本公式可估算出游荡段滩岸土体的起动切应 力约为 0.1~0.3 N/m².若近似用河床比降代替水面比 降,游荡段岸边水深为平滩水深的一半,则可求出作 用岸边的平均水流切应力为 2~3 N/m².由此可见,游 荡段滩岸土体黏粒含量少、抗冲能力差,其滩岸土体 起动切应力比岸边水流切应力小一个数量级,这是 近期游荡段滩岸侵蚀较为严重的一个重要原因.

一般可用凝聚力及內摩擦角来表示滩岸土体的 抗剪强度,抗剪强度反映了滩岸边坡的稳定程度.根 据试验情况发现,滩岸土体的含水率与其抗剪强度 指标的关系非常明显.图5点绘了花园口至高村河段 低液限黏土的凝聚力及内摩擦角与含水率的关系. 由图可知,24%左右是凝聚力变化的一个界限点,此时 凝聚力可达34 kPa.当黏土含水率小于此含水率时,凝 聚力随着含水率的增大而增大;当黏土的含水率大于此 临界含水率,由24%增加到27%左右,凝聚力可急剧 减小到16 kPa;当含水率大于27%后,凝聚力随含水 率减小的趋势变得相对平缓.另外,低液限黏土含水 率与内摩擦角的变化关系也相当明显,当液限黏性 土的含水率从17%增加到39%时,相应内摩擦角可从 37°减小到 26°. 赵寿刚等人 ^[15]根据对黄河下游白鹤 至伊洛河口段滩岸土质的野外查勘及室内试验, 发 现黏性土的抗剪强度也随不同含水率而变化, 且也 存在上述类似的变化规律. 由此可见, 滩岸土体的含 水率大小能间接反映其抗剪强度, 一般是土体含水 率越大, 凝聚力越小, 内摩擦角越小.

因此,游荡段滩岸边坡稳定程度的降低,并不仅 仅是外界水动力因素作用的结果,滩岸土体本身的 物理性质、状态指标,以及强度指标等直接影响其稳 定性.在枯水期,河岸土体较干,容重较小,土体自 身产生的土压力较小,而内摩擦角&以及凝聚力c都 比浸水饱和时大,也就是其抗剪强度较大,滩岸相对 稳定.在洪水季节,滩岸土体经浸水饱和后,其内摩 擦角&和凝聚力c值均会有所降低,从而使土体的抗 剪强度降低.退水后,土的湿容重比干容重大,土体 自身土压力较大,故岸坡极易崩塌.一般来说,黏性 土滩岸稳定的直立临界高度,可以用土力学中的计 算公式估计^[12].该公式考虑了岸顶拉伸裂缝的存在, 可用下式表示:

$H_c = (2c / \gamma_{bk}) \tan(45 + \phi / 2),$ (2)

式中 H_c 为滩岸的直立临界高度; _{7bk} 为滩岸土体容重. (2)式实为均匀黏性土的计算公式, 天然河岸由于受 外界条件及垂向分层等因素影响, 计算结果与实际 值会存在一定的误差. 根据土工试验结果, 可以假设 滩岸土体较干燥时及较湿时的容重、凝聚力及内摩擦 角, 利用(2)式可以粗略估计不同状态下的滩岸临界 高度, 计算结果见表 3.

表 3 计算结果表明, 滩岸土体在较湿润的条件下, 其稳定的直立高度远比土体干燥时小. 如果枯水期 河岸的稳定直立高度为 6.6 m, 那么洪水期土体浸水 饱和后, 其稳定的直立高度仅为 0.8 m. 从另一方面 来说, 枯水期高为 6.6 m 的直立滩岸, 在大洪水漫滩

斜 ~ 通 报 第52卷第23期 2007年12月

 $\tan(45 + \phi/2)$ 滩岸状态 含水率*ω*(%) 容重_{γbk}/kN·m⁻³ 凝聚力 c/kN·m⁻² 内摩擦角 $\phi/(^\circ)$ 临界高度 H_/m 较干燥 24.0 17.0 34.0 1.8 31.0 66 较潮湿 39.0 20.0 4.0 26.0 1.6 0.8

表 3 不同状态下滩岸土体的临界高度

后,即使没有外界水动力因素的作用,滩岸都有发生 崩塌的危险.因此表3计算结果表明,滩岸凝聚力随 含水率增加而急剧减小,导致滩岸发生崩塌,这是目 前清水冲刷期下游游荡段滩岸侵蚀较为严重的另一 个重要原因.

5 结论

本文首先分析了目前清水冲刷期下黄河下游花 园口至高村游荡段的滩岸侵蚀情况,然后对该河段 的 10 个典型滩岸土体进行了现场取样与室内土工试 验,较为全面地分析了游荡段滩岸土体组成及力学 特性,定量地解释了游荡段滩岸侵蚀较为严重的两 个原因.主要研究结论如下:

()目前大部分滩岸土体属于黏性土,不仅具 有较为明显的垂向分层结构,表层土质多为低液限 黏土,下层土质一般为粉土质砂或含细粒土砂,而且 其组成物质沿程变化较大;

() 滩岸土体的力学特性之一为抗冲强度,一般可用起动切应力定量表示;因游荡段滩岸土体黏粒含量少、抗冲能力差,岸边水流切应力远大于滩岸土体起动切应力,这是游荡段滩岸侵蚀较为严重的原因之一;

() 滩岸土体的力学特性之二为抗剪强度,一般可用凝聚力与内摩擦角表示; 随滩岸土体含水率增加, 其凝聚力与内摩擦角均会显著减小. 汛期滩岸土体遇水浸泡后,凝聚力急剧下降,导致滩岸土体失稳而发生崩塌, 这是游荡型河段滩岸侵蚀严重的另一重要原因.

参考文献

- 1 许炯心.黄河下游游荡河段清水冲刷时期河床调整的复杂相应 现象.水科学进展,2001,12(3):291—299
- 2 钱宁,张仁,周志德. 河床演变学. 北京:科学出版社, 1987
- 3 张原锋,张留柱,梁国亭,等.黄河下游断面法冲淤量分析与评价.河南:黄河水利出版社,2005
- 4 赵业安,周文浩,费祥俊,等.黄河下游河道演变基本规律.河南:黄河水利出版社,1998
- 5 Xia J Q, Wu B S, Wang Y P. Processes and characteristics of recent channel adjustment in the Lower Yellow River. In: Proceedings of the 10th International Symposium on River Sedimentation (Vol. II), Moscow, 2007. 448—457
- 6 陈仲颐,周景星,王洪瑾.土力学.北京:清华大学出版社,1994
- 7 钱宁,周文浩.黄河下游河床演变.北京:科学出版社,1965
- 8 叶青超,陆中臣,杨毅芬,等.黄河下游河流地貌.北京:科学 出版社,1990
- 9 王光谦,张红武,夏军强.游荡型河流演变及模拟.北京:科学 出版社,2005
- 10 Schumm S A. River adjustment to altered hydrologic regimen— Murumbidge River and Paleochannels, Australia. United States Geological Survey, Professional Paper, No. 598, 1968
- Julian J P, Torres R. Hydraulic erosion of cohesive riverbanks. Geomorphology, 2006, 76: 193–206[DOI]
- 12 Thorne C R, Hey R D, Newson M D. Applied Fluvial Geomorphology for River Engineering and Management. New York: John Wiley and Sons, 1997
- 13 Chien N, Wan Z H. Mechanics of Sediment Transport. Reston, Virginia: American Society of Civil Engineers, 1999
- 14 唐存本. 泥沙起动规律. 水利学报, 1963, 2:1-12
- 15 赵寿刚, 王笑冰, 杨小平, 等. 黄河下游沉积黏土层的土力学特 性分析. 岩土工程界, 2005, 8(10): 31—32

2812