Chinese Journal of Catalysis

Vol. 32 No. 2

文章编号: 0253-9837(2011)02-0321-04

DOI: 10.3724/SP.J.1088.2011.00932

研究论文: 321~324

# 炭气凝胶孔结构对其负载的TiO2光催化降解甲基橙性能的影响

崔华楠,赵振华,梁业如,石建英,吴丁财,刘 鸿,符若文 中山大学化学与化学工程学院,广东广州 510275

**摘要:** 选用两种孔径不同的炭气凝胶 CA125 和 CA500 制备了碳含量为 20% 的 TiO<sub>2</sub>/CA 光催化剂,采用 X 射线衍射、扫描电镜 和 N<sub>2</sub>吸附-脱附对催化剂进行了表征,并考察了其光催化降解甲基橙反应性能.结果表明,TiO<sub>2</sub>/CA 样品中 TiO<sub>2</sub> 主要以锐钛矿相 存在,伴随有少量的金红石相,且均匀分散于炭气凝胶的表面.催化剂的孔隙率分析表明,孔结构直接影响到催化剂的光催化活 性,以中孔为主的 TiO<sub>2</sub>/CA125 活性要远高于 TiO<sub>2</sub>/CA500. 这主要源于中孔良好的吸附性能及其合适的空间限域效应. 关键词:炭气凝胶;氧化钛;限域效应;光催化;甲基橙;降解

中图分类号: O643 文献标识码: A

# Influence of Carbon Aerogel (CA) Pore Structure on Photodegradation of Methyl Orange over TiO<sub>2</sub>/CA

CUI Huanan, ZHAO Zhenhua, LIANG Yeru, SHI Jianying<sup>\*</sup>, WU Dingcai<sup>\*</sup>, LIU Hong, FU Ruowen School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275, Guangdong, China

**Abstract:** Two kinds of carbon aerogel (CA), CA125 and CA500, with pore diameters of ~18 nm and > 50 nm, respectively, were used as supports to prepare TiO<sub>2</sub>/CA photocatalysts with the CA content of 20%. X-ray diffraction, scanning electron microscopy and N<sub>2</sub> adsorption-desorption were used to characterize the crystal structure, morphology, and pore structures of the TiO<sub>2</sub>/CA photocatalysts, respectively. The loaded TiO<sub>2</sub> was mainly anatase with a little amount of rutile, which was homogeneously dispersed on the CA support. The activity of TiO<sub>2</sub>/CA125 was much higher than that of TiO<sub>2</sub>/CA500 in the photodegradation of methyl orange. The photodegradation rate over TiO<sub>2</sub>/CA is mainly influenced by the pore structure of the catalysts. The favorable adsorption and suitable confinement effect of mesopore structure are beneficial to the photodegradation of methyl orange. Therefore, TiO<sub>2</sub>/CA125 with the large amount of mesopores displays the higher photocatalytic activity than TiO<sub>2</sub>/CA500.

Key words: carbon aerogel; titania; confinement effect; photocatalysis; methyl orange; degradation

自 1977 年 Frank 等<sup>[1,2]</sup>发现分散于水中的 TiO<sub>2</sub> 经光照后可降解腈化物以来,人们对 TiO<sub>2</sub> 在污水处 理中的应用开展了大量的研究.与传统水处理方法 (UV/O<sub>3</sub>, UV/H<sub>2</sub>O<sub>2</sub> 和芬顿等)相比,光催化技术采用 半导体催化剂,不引入其他杂质,成本低廉,无有毒 有害中间产物,甚至可用来净化饮用水<sup>[3~6]</sup>.

TiO<sub>2</sub>具有化学性质稳定、无毒和来源丰富等优 点,是优良的半导体光催化材料.但是,TiO<sub>2</sub>带隙较 宽,对太阳光的利用效率较低;并且TiO<sub>2</sub>内光生电 子-空穴的复合几率高,致使光催化反应的量子效率 较低.改性是提高 TiO<sub>2</sub> 光量子效率的重要手段<sup>[7]</sup>. 利用多孔碳材料与纳米 TiO<sub>2</sub> 复合是目前光催化领 域的研究热点<sup>[8-17]</sup>.碳纳米管是当前应用最多的碳 材料<sup>[8-11]</sup>.然而,碳纳米管制备工艺复杂、产品质量 低,作为载体需要进一步纯化处理;其它技术(如电 弧放电、激光刻蚀等)合成的纳米碳管虽然纯度高, 但价格昂贵.因此,急需寻找制备工艺简单、价廉的 可替代纳米碳管的多孔碳载体.

收稿日期: 2010-09-30. 接收日期: 2010-10-12.

联系人: 石建英. Tel: (020)84114227; E-mail: shijying@mail.sysu.edu.cn

吴丁财. E-mail: wudc@mail.sysu.edu.cn

基金来源:中国科学院大连化学物理研究所催化基础国家重点实验室开放课题 (N-10-01);中央高校基本科研业务费专项资金 (101gpy35).

作为一种新型纳米介孔炭材料,炭气凝胶具有 比表面积大、孔隙率高、密度低及稳定性较好的特 点,是最佳的催化剂载体之一.更为重要的是,我们 发展了工艺简便、绿色环保的微乳模板调控溶胶-凝胶聚合,水溶剂常压干燥制备炭气凝胶的方法<sup>[18]</sup>. 基于此,本文选用两种不同孔径的炭气凝胶为载体, 制备了负载型 TiO<sub>2</sub>/CA 催化剂,考察了其光催化降 解甲基橙反应性能,并考察了催化剂孔结构对其光 催化性能的影响.

## 1 实验部分

#### 1.1 催化剂的制备

选用的两种不同孔径炭气凝胶 CA125 (~18 nm) 和 CA500 (> 50 nm) 来自中山大学化学与化学 工程学院材料所, 合成方法参见文献[18]. 采用溶 胶-凝胶法制备 TiO<sub>2</sub>/CA 光催化剂. 将适量钛酸异 丙酯 (上海晶纯试剂有限公司) 溶于 20 ml 无水乙 醇,称取一定量的 CA 加入到上述溶液中, 持续搅拌 至形成干凝胶, 放置老化一周后, 在室温下真空干燥 过夜. 将干燥后的样品研磨, 置于管式炉中, 以 N<sub>2</sub> 为载气, 在 400 °C 焙烧 2 h 得到碳含量为 20% 的 TiO<sub>2</sub>/CA 光催化剂. 作为对比, 同法制备了 TiO<sub>2</sub> 催 化剂.

#### 1.2 催化剂的表征

采用Bruker Advance D8型 X 射线衍射 (XRD) 仪测定样品的晶相结构, Cu 靶  $K_{\alpha}$  ( $\lambda = 0.154$  18 nm), 扫描范围  $2\theta = 20^{\circ} \sim 80^{\circ}$ , 扫描速率 5°/min, 扫描步长 0.02°. 利用 Quanta 400F 型热场发射环境扫描电镜 (SEM) 观测催化剂的形貌. 催化剂的 N<sub>2</sub> 吸附-脱附 实验在 ASAP 2010 型物理吸附仪上进行. 吸附等温 线在静态模式下记录, 分别用 BET 及密度函数理论 (DFT) 法计算催化剂的比表面积和孔隙率.

### 1.3 催化剂的评价

以甲基橙为目标污染物,300 W 汞灯作为光源, 在内照式反应器中评价 TiO<sub>2</sub>/CA 的光催化活性.将 8.0 mg 催化剂分散于 160 ml 甲基橙溶液 (10 mg/L) 中,待催化剂达到吸附饱和后,开灯反应,按一定的 时间间隔进行取样分析.在整个反应过程中不断向 系统中通入空气.样品中甲基橙浓度在日本岛津 UV-2450 型紫外-可见分光光度计上进行定量分析.

#### 2 结果与讨论

### 2.1 TiO<sub>2</sub>/CA 催化剂的晶相结构、形貌及孔结构

图 1 为 TiO<sub>2</sub> 及 CA125 和 CA500 负载 TiO<sub>2</sub> 前 后的 XRD 谱.可以看出,各炭气凝胶样品上出现 2 个宽的衍射峰,表明具有类石墨微晶结构; TiO<sub>2</sub>, TiO<sub>2</sub>/CA125 和 TiO<sub>2</sub>/CA500 三个样品的谱峰相似, 即均以锐钛矿相 TiO<sub>2</sub> 为主,同时还在 2*θ* = 27.4°, 36.1°和 54.3°处出现弱的衍射峰,表明各样品中均 含有少量金红石相 TiO<sub>2</sub>.



图 1 TiO<sub>2</sub>及 CA125 和 CA500 负载 TiO<sub>2</sub>前后的 XRD 谱 Fig. 1. XRD patterns of TiO<sub>2</sub> and CA125 and CA500 before and after loading TiO<sub>2</sub>.

图 2 为 CA500 和 TiO<sub>2</sub>/CA500 样品的 SEM 照 片.可以看出,载体 CA500 只有疏松多孔的结构特 征;负载 TiO<sub>2</sub>后,样品仍具有多孔的结构特征,但 部分孔结构被 TiO<sub>2</sub>填塞.

图 3(a) 为 TiO<sub>2</sub>/CA125 和 TiO<sub>2</sub>/CA500 催化剂 的 N<sub>2</sub>吸附-脱附等温线.可以看出,两条曲线均呈现 典型的 IV 型特征,其中 TiO<sub>2</sub>/CA125 具有明显的回 滞环.图 3(b) 为 TiO<sub>2</sub>/CA125 和 TiO<sub>2</sub>/CA500 催化剂 的 DFT 孔径分布.可以看出,TiO<sub>2</sub>/CA125 催化剂以 2~50 nm 的中孔为主,而 TiO<sub>2</sub>/CA500 则以大于 50 nm 的大孔居多.

#### 2.2 TiO<sub>2</sub>/CA 光催化降解甲基橙反应性能

图 4 为 TiO<sub>2</sub>和 TiO<sub>2</sub>/CA 光催化降解甲基橙的 曲线.可以看出, TiO<sub>2</sub>/CA125 样品的光催化活性明 显高于 TiO<sub>2</sub>,反应 60 min 时,甲基橙完全降解;而 TiO<sub>2</sub>/CA500 光催化降解活性略低于 TiO<sub>2</sub>.

多孔碳载体的采用使得半导体催化剂活性提



图 2 CA500 (a) 和 TiO<sub>2</sub>/CA500 (b) 的 SEM 照片 Fig. 2. SEM images of CA500 (a) and TiO<sub>2</sub>/CA500 (b) samples.



图 3 TiO<sub>2</sub>/CA125 和 TiO<sub>2</sub>/CA500 催化剂的 N<sub>2</sub>吸附-脱附等温线 (a) 和 DFT 孔径分布 (b) Fig. 3. N<sub>2</sub> adsorption-desorption isotherms (a) and DFT pore size distribution (b) of TiO<sub>2</sub>/CA125 and TiO<sub>2</sub>/CA500 catalyst samples. DFT—Density functional theory.

高,源于载体对反应物的吸附和富集,提高了局部的 反应物浓度,即提高了光催化反应的传质效率;另 一方面则来源于碳载体优良的导电性能,有利于光 生载流子的分离,从而进一步提高光催化活性.本



图 4 TiO2 和 TiO2/CA 光催化降解甲基橙的曲线

Fig. 4. Photodegradation of methyl orange over  $TiO_2$  and  $TiO_2/CA$ . Catalyst concentration 50 mg/L; Methyl orange concentration 10 mg/L; 300 W mercury lamp.

文所用的两种碳载体呈现出不同的结果,即CA125 大幅度提高了TiO<sub>2</sub>活性,而CA500对活性几乎无 影响.这两种载体采用相同的方法制得,其导电性 的差别不足以引起光催化活性如此大的差别; TiO<sub>2</sub>/CA125和TiO<sub>2</sub>/CA500催化剂中TiO<sub>2</sub>负载量 相同,且具有相似的晶相结构,这些也不应是两者活 性差别的主要原因.

炭气凝胶由纳米炭颗粒相互连接而成.这些纳 米炭颗粒在三维空间相互堆叠形成丰富的中孔,在 纳米炭颗粒内部、表面及相互连结处还存在一定量 的微孔.表1为各载体和相应催化剂样品的孔结构 数据.可以看出,由于负载的 TiO<sub>2</sub>在载体孔道内的 分散,使得 CA125 和 CA500 比表面积大幅度减小, 其中 TiO<sub>2</sub>/CA125 的比表面积略小于 TiO<sub>2</sub>/CA500. 可见,比表面积的差别仍不能解释两者催化活性的 差别.还可以看出,TiO<sub>2</sub>在载体孔道内的分散导致 CA125 和 CA500 的孔体积也大幅度减小,其中,

| 表       | 1 T  | IO <sub>2</sub> /CA | 催化剂样       | 品的     | <b>孔结构</b> 数         | 又括                     |
|---------|------|---------------------|------------|--------|----------------------|------------------------|
| Table 1 | Pore | structure           | parameters | of the | TiO <sub>2</sub> /CA | catalysts <sup>*</sup> |

| ······································ |                                   |                            |                                    |                                    |                                    |                  |                  |                  |  |  |  |
|----------------------------------------|-----------------------------------|----------------------------|------------------------------------|------------------------------------|------------------------------------|------------------|------------------|------------------|--|--|--|
| Sample                                 | $A_{\rm BET}/({\rm m}^2/{\rm g})$ | $V_{\rm mic}/(\rm cm^3/g)$ | $V_{\rm mes}/({\rm cm}^3/{\rm g})$ | $V_{\rm mac}/({\rm cm}^3/{\rm g})$ | $V_{\rm DFT}/({\rm cm}^3/{\rm g})$ | $P_{\rm mic}$ /% | $P_{\rm mes}$ /% | $P_{\rm mac}$ /% |  |  |  |
| CA125                                  | 607                               | 0.174                      | 0.900                              | 0.032                              | 1.106                              | 15.7             | 81.4             | 2.9              |  |  |  |
| TiO <sub>2</sub> /CA125                | 140                               | 0.019                      | 0.134                              | 0.018                              | 0.171                              | 11.1             | 78.4             | 10.5             |  |  |  |
| CA500                                  | 520                               | 0.187                      | 0.324                              | 0.098                              | 0.608                              | 30.7             | 53.3             | 16.0             |  |  |  |
| TiO <sub>2</sub> /CA500                | 156                               | 0.033                      | 0.037                              | 0.042                              | 0.111                              | 29.7             | 33.3             | 37.0             |  |  |  |

\*Micro-, meso- and macropore ratios ( $P_{\text{mic}}$ ,  $P_{\text{mes}}$ , and  $P_{\text{mac}}$ , respectively) are calculated according to the following equations:  $P_{\text{mic}} = (V_{\text{mic}}/V_{\text{DFT}}) \times 100\%$ ,  $P_{\text{mes}} = (V_{\text{mes}}/V_{\text{DFT}}) \times 100\%$ , and  $P_{\text{mac}} = 100\% - P_{\text{mic}} - P_{\text{mes}}$ , where  $V_{\text{mic}}$ ,  $V_{\text{mes}}$ ,  $V_{\text{mac}}$ , and  $V_{\text{DFT}}$  are the cumulative volume of micro-, meso-, macropore, and total pore.

TiO<sub>2</sub>/CA125 的孔体积较大,并且中孔体积占总孔体积的 78%;而 TiO<sub>2</sub>/CA500 催化剂总孔体积比 TiO<sub>2</sub>/CA125 的中孔体积还要小,其中大孔体积占 37%,中孔和微孔各占 30% 左右.

光降解反应中所用的甲基橙分子尺寸为 1.47 nm×0.53 nm×0.53 nm<sup>[19]</sup>. 催化剂中的微孔由于孔 径小,且部分分布于传质阻力很大的纳米炭颗粒内 部,不能有效吸附反应物分子;催化剂的大孔可吸 附反应物,但使得分子在孔道内自由进出,不利于反 应活性的提高;相比之下,中孔在有效吸附甲基橙 的同时,其合适的空间限域效应有利于光催化反应 的有效进行.因此,以中孔结构为主的 TiO<sub>2</sub>/CA125 光催化活性较高.

## 3 结论

选用两种孔径不同的炭气凝胶为载体,制备了 负载型 TiO<sub>2</sub>/CA125 和 TiO<sub>2</sub>/CA500 光催化剂,其中 TiO<sub>2</sub>/CA125 光催化降解甲基橙的活性较高.催化剂 的中孔具有良好的吸附性能以及合适的孔道限域效 应,是光催化降解活性提高的主要原因.因此,以中 孔为主的 TiO<sub>2</sub>/CA500 催化剂的光催化活性较高.

## 参考文献

- 1 Frank S N, Bard A J. J Am Chem Soc, 1977, 99: 303
- 2 Frank S N, Bard A J. J Phys Chem, 1977, 81: 1484
- 3 Ollis D F, Pelizzetti E, Serpone N. *Environ Sci Technol*, 1991, **25**: 1522

- 4 Bahnemann D. Solar Energy, 2004, 77: 445
- 5 Blanco-Galvez J, Fernandez-Ibanez P, Malato-Rodriguez S. *J Solar Energy Eng*, 2007, **129**: 4
- Duffy E F, Al Touati F, Kehoe S C, McLoughlin O A, Gill L
  W, Gernjak W, Oller I, Maldonado M I, Malato S, Cassidy
  J, Reed R H, McGuigan K G. Solar Energy, 2004, 77: 649
- 7 Anpo M, Takeuchi M. J Catal, 2003, 216: 505
- 8 Woan K, Pyrgiotakis G, Sigmund W. Adv Mater, 2009, 21: 2233
- 9 Xu Y J, Zhuang Y B, Fu X Z. *J Phys Chem C*, 2010, **114**: 2669
- 10 Gao B, Chen G Z, Puma G L. Appl Catal B, 2009, 89: 503
- 11 Tsubota T, Ono A, Murakami N, Ohno T. Appl Catal B, 2009, **91**: 533
- 12 和东亮, 孟祥举, 陶艳春, 张琳, 肖丰收. 催化学报 (He D L, Meng X J, Tao Y Ch, Zhang L, Xiao F Sh. *Chin J Catal*), 2009, **30**: 83
- 13 肖义, 党利琴, 安丽珍, 白士英, 雷志斌. 催化学报 (Xiao Y, Dang L Q, An L Zh, Bai Sh Y, Lei Zh B. *Chin J Catal*), 2008, **29**: 31
- 14 Zhong J, Chen F, Zhang J L. J Phys Chem C, 2010, 114: 933
- 15 Ravichandran L, Selvam K, Swaminathan M. J Mol Catal A, 2010, 317: 89
- 16 Park Y, Kim W, Park H, Tachikawa T, Majima T, Choi W. Appl Catal B, 2009, 91: 355
- 17 Chen C, Long M C, Zeng H, Cai W M, Zhou B X, Zhang J
   Y, Wu Y H, Ding D W, Wu D Y. *J Mol Catal A*, 2009, **314**: 35
- 18 Wu D C, Fu R W, Dresselhaus M S, Dresselhaus G. Carbon, 2006, 44: 675
- 19 范山湖, 孙振范, 邬泉周, 李玉光. 物理化学学报 (Fan Sh H, Sun Zh F, Wu Q Zh, Li Y G. Acta Phys-Chim Sin), 2003, 19: 25