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Nonlinear self-adjointness and conservation
laws of forced KdV equation
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Abstract: Using the concept of nonlinear self-adjointness and the general theorem on conservation
laws developed by Ibragimov, nonlinear self-adjointness and conservation laws for the forced KdV equation
are investigated. Its self-adjointness was disscussed firstly, and it’s found that the forced KdV equation
is nonlinearly self-adjoint. At the same time, formal Lagrangian for the equation is obtained. Having
performed Lie symmetry analysis for the equation, lots of nontrivial conservation laws for the equation were
derived according to the difference of Lie symmetries.
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1 Introduction

Conservation laws play important roles in the study of differential equations in mathematical physics!-2.
Explicit forms of conservation laws are also used for the development of appropriate numerical methods and for
mathematical analysis, in particular, existence, uniqueness and stability analysisl®l. In addition, the existence
of a large number of conservation laws of a partial differential equation (system) is a strong indication of
its integrability. To search for explicit conservation laws of nonlinear partial differential equations (PDEs),

a number of methods have been presented, such as Noether’s Theorem!*, multiplier approachl®9l, partial
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Noether approach!” and so onl Among those, the new conservation theorem given by Ibragimov(®! is one

of the most frequently used methods!*®:19],

Based on the concept of adjoint equation for a given differential equation!®!, Ibragimov gives a general
conservation theorem by which conservation laws for the system consisting of the given equation and its adjoint
equation can be obtained. In fact, we are only interested in the conservation laws for the given equation.
Therefore one has to eliminate the nonlocal variable which is introduced in the adjoint equation. For a self-
adjoint nonlinear equation, its adjoint equation is equivalent with the original equation after replacing the
nonlocal variable with the dependent variable in the original equation. However, many equations, which have
remarkable symmetry properties and physical significance, are not self-adjoint. Thus the nonlocal variables of
these equations cannot be eliminated easily. To solve this problem, Ibragimov has introduced the concept of
nonlinear self-adjointness, which extends the self-adjointness to the most generalized meaning.

The KdV equation is the most popular soliton equation and has been extensively investigated. In many
geophysical and marine applications it is necessary to include a forcing term. Typical examples are when the
waves are generated by moving ships, or by flow over bottom topography. In this paper, we consider the forced

KdV equation!20-21]
Ey = up + cug + auug + Buge, — F(t) =0, (1)

where ¢, and 8 are constants, F(t) is a smooth function. Bilinear form and multiple-soliton solutions for
Eq.(1) have been obtained in Ref.[21]. To our best knowledge, nonlinear self-adjointness, Lie symmetries and
conservation laws of Eq.(1) have not been discussed up to now.

The rest of the paper is organized as follows. In section 2, we introduce the main notations and theorems
used in this paper. In section 3, we first discuss the nonlinear self-adjointness for the forced KdV equation (1)
and get its formal Lagrangian. In section 4, after performing Lie symmetry analysis, nontrivial conservation
laws of Eq.(1) are derived making use of the obtained formal Lagrangian and Lie symmetries. Some conclusions

and discussions are given in the last section.

2 Preliminaries

In this section, we briefly present the main notations and theorems used in this paper. Consider a

sth-order nonlinear evolution equation

F(.CE,U,’U,(l),’U,(Q),'",U(s)) = 05 (2)
with n independent variables x = (21,22, -+, ;) and a dependent variable u, where u(y),u(2), - -, u(s) denote
the collection of all first, second, - - -, sth-order partial derivatives. u; = D;(w), u;; = D;jD;(u),- --. Here

0 0 0 .

Di:8$i+u?%+u%@+---, z:1,2,---,n,

is the total differential operator with respect to x;.
Definition 1(see Ref.[9])
The adjoint equation of Eq.(2) is defined by
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F*(2,u,v,u(1), V(1), U(2), V(2), " U(s)V(s)) = O, (3)
. * (5 UF
with F*(z,u,v,u(1), V(1), U(2), V(2), " * U(s)V(s5)) = (5u )7
R o)
h 2 _9 "D, ---D;, — 2
where ou Ou + Z( ) “ m auiliz...im

m=1
denotes the Euler-Lagrange operator, v is a new dependent variable, v = v(x).
Definition 2(see Ref.[8])
Eq.(2) is said to be self-adjoint if the equation obtained from the adjoint equation(3) by the substitution

vV =U:
F (2, 0,0, u01), w(1), U(2)s U(2)s - U(s) U(s)) = 0
is identical with the original equation (2). In other words, Eq.(2) is self-adjoint if and only if
F (w0, u(1), U1y, U(2)s U2y, 5 U(s)U(s)) = AT U (1), uga)s =) F (2505 001), U2, -5 U(s))

where X is an undetermined coefficient.
Definition 3 (see Ref.[16])
Eq.(2) is said to be nonlinear self-adjoint if its adjoint equation (3) is satisfied for all solutions of Eq.(2)

upon a substitution

v=9¢(z,u), ¢z,u)#0.

Theorem 1 (see Ref.[9])
The system consisting of Eq.(2) and its adjoint equation (3)

F(x7u7u(1)7u(2)7 T 7“(3)) =0

(4)
F* (2, u,v,u(1), v(1), U(2)s V(2)s " " U(s)V(s)) = 0
has a formal Lagrangian, namely
L= ’UF(.Z',’LL,U(l),U(Q),---,’LL(S)). (5)
In the following we recall the “ new conservation theorem ” given by Ibragimov in Ref.[§].
Theorem 2
Any Lie point, Lie-Backlund and non-local symmetry
;0 0
v=¢ — 6
o "5 (6)
of Eq.(2) provides a conservation law D;(T?) = 0 for the system (4). The conserved vector is given by
. ; oL oL oL oL
Ti = €1, 22 _pi(Z2)+D;Dy(=) -~ D;DyD
é- +W|:8'U/, ’(6uz~j)+ J k(@uijk) ik T(@uijkr)+ :|+
OL oL oL
DiW|— — Dy — DD —
J I:au” k(au”k) + k T(aumkr) ]+
oL oL
D;D,W — Dyl —— e 7
;D [auuk r(auﬁkr)Jr ] (7)



%2 H skartg: HERIAT KAV R dERdE B AR sEER (3E30) 157

where L is determined by Eq.(5), W is the Lie characteristic function and
W =n—¢u;.
3 Nonlinear self-adjointness and conservation laws

To search for conservation laws of the forced KdV equation (1) by Theorem 2, Lie symmetry and formal
Lagrangian of Eq.(1) must be known. We first construct its adjoint equation. According to Definition 1, the

adjoint equation of Eq.(1) is
E} = v + cvgp + auvg + Buges =0, (8)

where v is a new dependent variable with respect to  and ¢.
According to Theorem 1, the formal Lagrangian for the system consisting of Eq.(1) and its adjoint

equation (8) is
L = v[ug + cuy + auug + Buge, — F(1)]. 9)

According to Definition 3, we recall that the forced KdV equation (1) is nonlinearly self-adjoint if its
adjoint equation (8) coincides with Eq.(1) after the following substitution

where ¢(x,t,u) is a nonzero and smooth function. In other words, Eq.(1) is nonlinearly self-adjoint if and only
if
Er |'u=¢(z,t,u) = )\(.’L', tyu, Uy, Uty Uggy ')Eh (11)

where ) is an undetermined and smooth function.

The substitution of the expressions of E; and Ej into (11) results in the following equation

(P — Nug +8(dy — NUggz + & + COz + COyuy + quPy + QuP Uzt
3Bbuntizzy — Acugy — Aauug + AF(t) = 0. (12)

Solving the above system with the aid of Maple, the final results read as

A=Cit+Cy,

r ct

¢:Cl[tu— E + E —/tF(t)dt] +Cz[u—/F(t)dt] +C3,
where C1,C> and Cj3 are integral constants, and
CI+C3+C3 #£0.

Obviously, ¢ # 0. In summary, we have the following statements.
Theorem 3

The forced KAV equation (1) is nonlinearly self-adjoint.
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Corollary 1
The formal Lagrangian of Eq.(1) reads as

t
L= {01 [tu - 2 + CE - /tF(t)dt] + (s [u — /F(t)dt] + C3}[Ut + cuy + auuy + Puge, — F(t)].  (13)
Remark 1

When the formal Lagrangian has the form of (13), the adjoint equation of Eq.(1) expressed by Eq.(8) is
equivalent with Eq.(1).

4 Lie symmetries and conservation laws

4.1 Lie symmetry analysis of Eq.(1)
In this section, we first perform Lie symmetry analysis for the force KAV equation 1) using the classical
Lie group approach. Suppose that the Lie symmetry of Eq.(1) is as follows

0 0 0
V—fa‘i‘T&*’n%; (14)

where £, 7 and 7 are undetermined functions with respect to z,t and u. According to the procedures of Lie

group method, the undetermined functions &,7 and n must satisfy the following invariant condition
' +en® + augn + aun® + " — TF'(t) = 0, (15)
where
n* = Dy(n — Eup — Tug) + EUgy + TUat,
Nt = Dy(n — Eug — TUg) + Etgr + Ty,
N"*® = Dyge(n — &uz — Tut) + EUgaas + TUazat-
Substituting the expressions of %, and 7%%® into (15) with u be a solution of Eq.(1), i.e.
Ut = —ClUy — QUUZ — PUggy + F ().

We obtain a system of over-determined differential equations with respect to &,7 and 7. Solving the system
of over-determined differential equations with the aid of Maple, we get the following cases.

Case I F(t) is arbitrary,

0 0 190
V=Vi+W, Vl—%, Vz—t%+a%.
Case Il F(t) = H, H is a constant,
0
Vs= 5

Case Il F(t) =73,

9,0
ox ot

3 ' 3a

0 (2u 20)66‘“‘_

x
V4:§

The above Lie symmetries can be used to get the similarity reduction solutions of Eq.(1). For example,

making use of V3, an exact solution of Eq.(1) is
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x
u = a +0(t),

where 6(t) satisfies
atd' (t) + ¢+ 0(t)a — atF(t) = 0. (16)

Solving (16), we can obtain the following similarity reduction solution of Eq.(1)
z 1 —c+ atF(t)
=—+-= ———=d¢
u o + ; ( / 5 + 04),

here Cy is an integral constant. Other similarity reduction solutions of Eq.(1) are omitted here, since searching
for exact solutions of Eq.(1) is not the main purpose of this paper.
4.2 Conservation laws of Eq.(1)

Through analysis of self-adjointness, the adjoint equation (8) of the forced KdV equation (1) has be-
come equivalent with the original equation (1). Using the formal Lagrangian and Lie symmetries of Eq.(1),
conservation laws for Eq.(1) can be obtained by Theorem 2 and they are listed as follows.

Case I For the first Lie symmetry V;, its Lie characteristic function has the form W = —u,, the conser-

vation laws for Eq.(1) associated with is

X =—C / F(t)dtuy — csuF (£) + Couy + Co / FO)ALF(t) — Cy / LB (1) dt(uy — F(t))—

cC1tF(t) n cChtuy + Crtuuy — CrtuF (t) — Cizu; " CizF(t) + Oy — F(1) — C’lumﬂ7
a a a a a
T = —u,Citu + CIZU:E — cClatuz + u Cq /tF(t)dt —u,Cou + uy Co /F(t)dt — Csuy.

1
For the second Lie symmetry Va, its Lie characteristic function has the form W = ——tu,,, the conservation
o)

laws for Eq.(1) associated with V5 is

cCit?u;  Citxu
1uy _ Crtauy

X = —CgtF(t) + % - Chu / F(t)dt - clu/tF(t)dt + Cluzt + Cstus + o

2¢Citu

+ Csu+ Cou® +

C TT C
B fl“ _ 1;“ + 92 L oty — Ot / tF (t)dtu,—

CatuF(6) = Cat [ F(tdtun — Cii?ul (o) + Crttun + Cat [ Flpyaer() + L2

Q
Cy [ tFt)dt  ¢C, [ tF(t)dt
C 200t 1 / 2F
Clt/tF(t)th(t) _¢ ;w + & 21 - _ _cCit (t)’
Qa a Q a a
o) / LR ()t C / F(t)dt
t t
poatu_ar, <Ot I L S N
a ! Q Q ! Q Qa
Cht C, t?
1;% - ST L Otu, /tF(t)dt — Cotuug + C’ztuz/F(t)dt — Cstug.
Case II For the Lie symmetry V3, its Lie characteristic function has the form W = —u;, the conservation

laws for Eq.(1) associated with V3 is
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cC1H
X = —cCsuy — BC3Usze + 12 0t2ut — cChuuy + Crzuuy — Cron’uy — Czauuy — BCo U ULe—
Ciu cCizu; Cicctu
u + ,BCQutzuz - BC’guutm - 2001tUUt + ! t_ ¢ + CCQHotut—
« «

Hy

C
aCrtuu; + %t%tu + CoHyatuu, — BC Uy, + BCI Ui U — BCI UV e+

BC12Ue  BCLCTULGe n BCy Hot?
o o 2

Utzz + ﬂCQ Hﬂtutmz ’

Cchot
a

+ Clatuzuw — +

Cicpt
T = CQHgt + %01H3t2 + C’3Buwm - CZHOU/ + C’3cuw + @

— C1 Hotu + Cocuuy + Crauuy + Cofutiyyy + Csouu, — Crauu, — CsHo+

Cngm
a

Ciczuy, C1P2Uzgs N Cictu,

1
- —01H00t2um—
a o a 2

2C1ctuuy + C1Btuttyyy —

1 1
§ClH0at2uuz - §ClH0ﬂt2uzm - C'2Hoctuz - CgHooztuuz - CzHo,Btuzwz.

2 2
Case III For the Lie symmetry Vy, its Lie characteristic function has the form W = — (?u + 3—0) - %uz -
Q
tug, the conservation laws for Eq.(1) associated with Vj is
4 2 2 9 4 C3$ 20203 1 4003 2 3 CQ.’L'
X = —5002’111 - gOth’u - 5503uzw - W - 3—01 + 503.%'1145 TU - gCgOéu - %T/S
2¢8C5u, ACy  Chzu 1 Cozu;  2c¢Cou  aCou?
2 TT
BOug — BCotuiuse — ——3 = =~ = gop + 3 Cavtitie + o =~ =~
2¢2Cou 3 2B8Couz, 3
2BC Uty — 3@2 — 5002t1/3Ut — cCatu; — % - §ﬂ02t1/3um — BCstuigs—

3
5a02t1/3utu — cCotugu — aChtusu® — aCstusu + BCotugusy — BCrtutigs,

2cC3  2Chu 1 3
T= _Taa — t2—/23 — gCg.’L’Uz + Oy Btutiygy + cCotuuy + Coatuuy + icC’gtlmum—}—

3 2 1
§C2ﬂt1/3uzwz + C3Ctuz + CBﬂtuEEZ - @ - ﬁ - _C2$uzu szuz 302

3a at?/3 3 T T9p/3 T 93

Cs 2

2 3
25 §C2u2 — §C3u + 50204151/31“1z + Csatuu,.

Remark 2 All the conservation laws listed here are nontrivial. The correctness of them has been checked by

Maple software.

5 Conclusions

Recently, the concept of nonlinear self-adjointness, which extends the self-adjointness to the most general-
ized meaning, has been introduced in order to find conservation laws of non-self-adjoint differential equations.
Through analysis of self-adjointness, it’s show that Eq.(1) possesses nonlinear self-adjointness. Making use
of the Lie symmetries obtained by Lie symmetry analysis, many nontrivial conservation laws for Eq.(1) are
derived. These conservation laws may be useful for the explanation of some practical physical problems. As
far as we know, self-adjointness, formal Lagrangian, Lie symmetries and conservation laws for Eq.(1) have not

been reported in the existent literature, so they are completely new.
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