Chinese Journal of Catalysis

Vol. 32 No. 3

文章编号: 0253-9837(2011)03-0477-06

DOI: 10.3724/SP.J.1088.2011.00832

研究论文: 477~482

共沉淀法制备 Cr-Mn 复合氧化物及其低温催化还原 NO_x性能

李雪辉,李 华,高 翔,陈志航,杨 青,王芙蓉,王乐夫 华南理工大学化学与化工学院,广东广州 510640

摘要:采用共沉淀法制备了一系列具有 CrMn_{1.5}O₄晶相的新型 Cr-Mn 复合氧化物催化剂并用于低温有氧条件下氨选择性催化还 原 (SCR)NO_x.结果表明,NO_x转化率随着 Cr/(Cr+Mn) 摩尔比从 0.1 到 0.4 的增加而升高.其中 Cr(0.4)-MnO_x具有较高的低温活性,在 140 °C,空速为 30 000 h⁻¹的条件下,NO_x转化率可高达 90%.利用 N₂吸附法,X 射线衍射及 X 射线光电子能谱对系列催化剂进行了表征,发现通过添加 Cr 元素,可形成新型 CrMn_{1.5}O₄活性物相;由于 Cr 元素对催化剂表面电子性能具有调变作用,Mn 元素主要以高氧化态形式 Mn⁴⁺及 Mn³⁺富集,不仅可以促进对 NO 的氧化,而且有利于对 NH₃的吸附和活化,从而使该催化剂具有较好的低温 SCR 活性.

关键词:共沉淀; 氦氧化物; 选择性催化还原; 氨; 低温; 铬; 锰
 中图分类号: O643
 文献标识码: A

Preparation of Cr-Mn Mixed Oxide by Coprecipitation and Its Performance for Low-Temperature Selective Catalytic Reduction of NO_x

LI Xuehui*, LI Hua, GAO Xiang, CHEN Zhihang, YANG Qing, WANG Furong, WANG Lefu

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, Guangdong, China

Abstract: A series of Cr-Mn mixed-oxide catalysts comprising a novel $CrMn_{1.5}O_4$ crystal phase were prepared by the coprecipitation method and applied to low-temperature selective catalytic reduction (SCR) of NO_x with NH₃ in the presence of O₂. The experimental results showed that the NO_x conversion increased with the increase of Cr content and peaked at the Cr(0.4)-MnO_x catalyst with the molar ratio of Cr/(Mn+Cr) = 0.4, which yielded nearly 90% NO_x conversion at 140 °C with a high space velocity of 30 000 h⁻¹. The characterization of N₂ adsorption, X-ray diffraction, and X-ray photoelectron spectroscopy indicated that the addition of Cr generated the novel CrMn_{1.5}O₄ crystal phase and adjusted the surface electronic properties, leading to the enrichment of higher oxidation states Mn⁴⁺ and Mn³⁺ on the surface. This promotes the oxidation of NO and is helpful for the adsorption of NH₃, so that the catalyst exhibits higher low-temperature SCR activity. **Key words:** coprecipitation; nitrogen oxide; selective catalytic reduction; ammonia; low-temperature; chrome; manganese

燃油、燃煤等静态污染源中排放的 NO, NO₂和 N₂O 是大气中氦氧化物 (NO_x)的主要来源之一. 一直 以来, 以煤炭为主要能源结构的格局使得我国面临 着越来越严重的 NO_x污染问题^[1]. 在控制静态污染 源中 NO_x 排放的诸多方法中, 催化法具有独特的优 势. 例如, 有研究采用 Mn-Fe/MPS 催化剂通过选择 性催化氧化法^[2]; 而利用钒系催化剂的氨选择性催 化还原法 (NH₃-SCR) 是得到商业化应用的主要技术 之一^[3]. 由于钒系催化剂在较高的温度下 (> 300 °C)

才具有足够的活性,故工业上的 SCR 装置布局主要 有两种:其一是直接置于烟道气出口处以保证催化 剂在较高的温度下运转,但高尘烟气、大量的微量元 素(如K, Na, Ca, As等)及 SO₂等极易造成催化剂的 中毒、失活;其二是将 SCR 装置安装于除尘、脱硫 单元的下游,虽可以避免上述问题,但在较低温度下, 传统催化剂的活性非常低而需要对烟气进行再加 热,从而导致能量利用不合理及投资增加等.因此, 开发低温高效 SCR 催化剂有着重要意义. 已有的研

收稿日期: 2010-07-30. 接收日期: 2010-12-21.

联系人: 李雪辉. E-mail: cexhli@scut.edu.cn

基金来源:国家自然科学基金(20876063);广东省自然科学基金(06025654).

究表明,系列过渡金属氧化物催化剂,如 MnO_x -SnO₂^[4], NiSO₄/Al₂O₃^[5], MnO_x/Al₂O₃^[6], V₂O₅/活性 碳^[7], Co₃O₄^[8], MnO_x-CeO₂^[9]和 V₂O₅/AC^[10]等具有一 定的低温活性.但最佳催化活性温度尚偏高 (> 160 °C),催化活性范围较窄.前期研究表明,采用柠檬酸 法可制备出具有较好低温 SCR 性能的系列 CrMnO_x 复合氧化物催化剂,且其主要活性物相为 CrMn_{1.5}O₄^[11].本文尝试采用共沉淀法制备具有同样 物相的系列 CrMnO_x复合氧化物催化剂且具有相近 的低温 NH₃-SCR 活性,从而进一步说明 CrMn_{1.5}O₄为 该系列复合氧化物催化剂的活性相.

1 实验部分

1.1 催化剂制备

以氨水为沉淀剂,采用共沉淀法制备系列催化剂.具体步骤如下:配制 0.5 mol/L 的乙酸锰和硝酸铬溶液,将两种溶液按所需 Cr/Mn 摩尔比同时滴加 至浓度为 2.5 mol/L 的适量氨水中且强力搅拌,静置 12 h. 再经过滤、洗涤,将得到的滤饼在 120 °C 下干燥 12 h. 最后在 650 °C 下焙烧 3 h,压片、研磨、过筛得 到 60~100 目的颗粒备用.系列催化剂用 Cr(*a*)-MnO_x 来表示,其中 *a* 表示催化剂中 Cr/(Mn+Cr) 的摩尔比. 同法制得纯 CrO_x及 MnO_x催化剂.

1.2 催化剂性能评价

催化剂活性测试在固定床石英管反应器中进行.反应温度由程序升温仪控制,配制的模拟混合气含有0.1%NO,0.1%NH₃,3%O₂,N₂为平衡气.催化剂用量为2.3g,混合气的总流速为860 ml/min(空速为30000 h⁻¹).反应前后气体中NO,NO₂以及O₂经德国MRU公司SWG-300烟气分析仪在线分析,N₂及N₂O采用4890D气相色谱在线检测.稳态下NO_x的转化率及N₂的选择性分别由下式计算:

 $X(NO_x) = \frac{([NO]_{in} + [NO_2]_{in}) - ([NO]_{out} + [NO_2]_{out})}{([NO]_{in} + [NO_2]_{in})}$ $S(N_2) = \frac{[N_2]_{out}}{2N_1 + [NO_2]_{out}}$

$$[N_2]_{out} + [N_2O]_{out}$$

式中下标 in 和 out 分别表示入口 (进料)和出口 (尾 气).

1.3 催化剂表征

X射线衍射(XRD)分析在RigakuD/MAX-3A型 X射线衍射仪上进行.测试条件:CuKa靶,Ni滤波, 射线长 0.154 nm, 电压 40 kV, 管电流 30 mA, 扫描范围 2 θ = 5°~85°. 比表面积和孔径分布由 Micromerities 公司 ASAP2400 型比表面积分析仪测量. N₂ 为吸附 质, 在 –196 °C 下吸附, He 作载气. X 光电子能谱 (XPS) 分析在 Physical Electronics 公司 Quantum-2000 Scanning ESCA Microprobe 谱仪上进行, 工作条 件: 210 W (*I*=15 mA, *U*=14 kV), Al K_a (1 486.6 eV), 结 合能以 C 1s 线 (284.6 eV) 作对比, 测量精度为 0.3 eV.

2 结果与讨论

2.1 复合氧化物与纯氧化物的催化性能

首先对共沉淀法制备的含有等摩尔比的 Cr/Mn 复合氧化物 Cr(0.5)-MnO_x,纯 CrO_x和 MnO_x的低温催 化性能进行比较.图1结果表明,复合氧化物催化剂 在低温下表现出良好的催化性能,120°C下 NO_x转化 率接近 70%,140°C下 NO_x转化率达 82%(且 N₂选择 性为 100%);纯 MnO_x具有一定的催化性能,120及 140°C下,NO_x转化率分别为 60%及 76%;而纯 CrO_x 的低温催化活性非常低.由此推测,Cr-MnO_x复合氧 化物催化剂的主要活性组分为 Mn, Mn 有利于吸附 态 NH₃的活化^[12];通过加入 Cr 后,可提高复合氧化 物的催化活性.

图 1 CrO_x, MnO_x及 Cr(0.5)-MnO_x催化剂上 NH₃-SCR 活性

Fig. 1. The catalytic activity of CrO_x , MnO_x , and Cr(0.5)- MnO_x (Cr/(Cr+Mn) molar ratio = 0.5) catalysts. Reaction conditions: 0.1% NO, 0.1% NH₃, 3% O₂, N₂ balance, GHSV = 30 000 h⁻¹.

上述催化剂的 XRD 表征结果如图 2 所示. 沉淀 法制得的 CrO_x氧化物的主要物相是 Cr₂O₃ (ICDD PDF #84-1616 2 θ = 33.6°, 36.3°, 54.9°); MnO_x氧化物 的主要物相是 MnO (ICDD PDF #78-0424 2 θ = 35.1°,

图 2 CrO_x , MnO_x 及 Cr(0.5)- MnO_x 催化剂的 XRD 谱 Fig. 2. XRD patterns of CrO_x , MnO_x , and Cr(0.5)- MnO_x samples.

40.6°, 58.7°), MnO₂ (ICDD PDF #73-1539 2θ = 21.8°, 35.1°, 36.8°) 及 Mn₃O₄ (ICDD PDF #80-0382 2θ = 32.4°, 36.1°, 59.9°). 但对于 Cr(0.5)-MnO_x 复合氧化 物,没有出现上述铬氧化物的衍射峰,其主要是由 CrMn_{1.5}O₄ (ICDD PDF #71-0982 2θ = 35.1°, 61.9°, 29.8°) 以及 Mn₃O₄物相组成. 其中 CrMn_{1.5}O₄ 为主要 物相. 因此,利用共沉淀法制备该系列催化剂,同样 可生成含 CrMn_{1.5}O₄物相的复合氧化物,且其活性与 柠檬酸法接近.

2.2 Cr含量对复合氧化物催化性能的影响

具有不同 Cr/(Mn+Cr) 摩尔比的系列催化剂的 催化活性如图 3 所示.随着催化剂中 Cr 含量的增加,

图 3 Cr 含量对 Cr-MnO_x 复合氧化物催化性能的影响 Fig. 3. The catalytic activity of Cr-MnO_x with different Cr contents. Reaction conditions: 0.1% NO, 0.1% NH₃, 3% O₂, N₂ balance, GHSV = 30 000 h⁻¹. The number after Cr in the sample means Cr/(Mn+Cr) molar ratio.

NO_x转化率先升高后降低. 当 Cr/(Mn+Cr) 摩尔比为 0.4 时具有最高的活性: 120 °C 下, NO_x转化率接近 80%; 140 °C 时, NO_x转化率可达到 90%(且 N₂选择性 为 100%); 进一步增加 Cr 的含量, 复合氧化物的催化 活性有所下降.

不同 Cr/(Mn+Cr) 摩尔比的系列催化剂的 XRD 物相分析结果如图4所示.对Cr(0.1)-MnOr,其主要 物相是 Mn₂O₃(ICDD PDF #89-4836, 20=23.1°, 33.0°, 55.2°), 以及少量的 CrMn₁₅O₄, 说明 Cr 的加入, 可以 生成CrMn₁₅O₄物相.随着Cr含量的增加,CrMn₁₅O₄ 物相逐渐增加.当Cr/(Mn+Cr)为0.4时,复合氧化物 具有最强的CrMn₁₅O₄物相衍射峰,该比例与该物相 的化学计量比一致. 但是, 当Cr/(Mn+Cr)为0.6时, 主 要物相则变成了 MnCrO₃ (ICDD PDF #73-1539, 2θ= 33.0°, 33.4°, 35.1°)及Cr₂O₃和Mn₂O₃,催化性能显著 下降. 由此进一步说明, CrMn_{1.5}O₄物相是复合氧化 物催化还原 NO_x的主要活性物相. 与采用柠檬酸法 制备的系列复合氧化物催化剂相比,采用共沉淀法 制备的系列催化剂的 XRD 衍射峰的强度更强且杂 峰少,说明采用共沉淀法时前驱体之间的反应更充 分. 系列复合氧化物的比表面积及孔径分布数据表

图 4 不同 Cr 含量 Cr-MnO_x 复合氧化物的 XRD 谱 Fig. 4. XRD patterns of Cr-MnO_x with different Cr molar ratios.

表 1 不同催化剂样品的孔结构性质 Table 1 Pore structure properties of different catalyst samples

	summer beeks		
Sample	$A_{\rm BET}/({\rm m}^2/{\rm g})$	Pore volume (cm^{3}/g)	Average pore diameter (nm)
		(**** , 8)	********
$Cr(0.1)$ - MnO_x	8.5	0.075	49.5
Cr(0.2) MnO	13.0	0.104	34.2
CI(0.2)-IVIIIO _x	13.9	0.104	34.2
$Cr(0.3)$ - MnO_x	16.4	0.111	28.8
$Cr(0.4)$ - MnO_x	33.6	0.197	20.9
Cr(0.5)-MnO _r	35.6	0.176	21.8
~ ~ ~ ~ ~			
$Cr(0.6)$ - MnO_x	37.3	0.193	19.3

明(表1),复合氧化物催化剂的比表面积和孔体积均随 Cr/(Cr+Mn)比例的变化表现出一定的正相关性,即随着 Cr含量的增加,复合氧化物催化剂的比表面积和孔体积增大,但平均孔径减小,较好地反映了 CrMn_{1.5}O₄相态的形成过程.虽然样品的比表面积等参数与其活性没有必然的关联性,但是,较大的比表面积及合适的孔径分布,也会对低温 SCR 过程有一定的影响.例如,具有最佳活性的 Cr(0.4)-MnO_x 催化剂,有最大的孔体积和较大的比表面积,从而为较多的活性组分参与催化剂结构相的形成提供可能.

2.3 复合氧化物表面的 XPS 分析

系列复合氧化物的 XPS 表面分析结果(表 2)表明,对于 Cr(0.1)-MnO_x, Cr(0.2)-MnO_x, Cr(0.3)-MnO_x及 Cr(0.6)-MnO_x四种催化剂,表面 Cr 的浓度基本上与其化学配比一致,说明在共沉淀过程中,各组分混合充分.但是,对于 Cr(0.4)-MnO_x, Cr(0.5)-MnO_x两种复合氧化物,前者 Cr 和 Mn 的添加量符合 CrMn_{1.5}O₄物相的化学计量比,Cr 基本上以 CrMn_{1.5}O₄的形式存在;而对于后者,由于 Cr 过量,Mn 基本上以CrMn_{1.5}O₄物相的形式存在.也就是说,这两种复合氧化物中非 CrMn_{1.5}O₄物相态的含量较少,这与 XRD分析相互印证.由于 CrMn_{1.5}O₄物相中 Mn 的含量较Cr 高,从这两种复合氧化物表面元素分布来看,Cr 的

表 2	不同位	崔化剂样	品表面	面的原	[子含]	量
-----	-----	------	-----	-----	------	---

 Table 2
 Atom percentage of different catalyst samples (determined by XPS)

Samula	Atom conce	Cr/(Cr+Mr)		
Sample	Cr	Mn		
$Cr(0.1)$ - MnO_x	3.6	21.0	0.12	
$Cr(0.2)$ - MnO_x	3.7	13.6	0.19	
$Cr(0.3)$ - MnO_x	4.8	12.4	0.30	
$Cr(0.4)$ - MnO_x	11.1	19.2	0.36	
$Cr(0.5)$ - MnO_x	13.2	16.3	0.46	
$Cr(0.6)$ - MnO_x	19.6	12.2	0.60	

表面浓度低于设定值.这不仅进一步说明 CrMn_{1.5}O₄ 物相为这两种复合氧化物的主要物相,而且说明在 CrMn_{1.5}O₄物相中 Mn 具有向表面富集的倾向,从而 可以增加对 NH₃的吸附而有利于提高催化剂活性.

随着Cr含量的增加,Cr-MnOr催化剂的Cr2p谱 峰强度逐渐增强, Mn 2p 谱峰强度逐渐减弱(图 5). 其 中 Cr 2p3/2 和 Cr 2p1/2 的 XPS 特征峰分别在 576.2 eV 和 586.2 eV 附近. 通过线性积分分峰, Cr 2p3/2 谱可分 别归属于位于 575.5~575.7 eV 及 576.6~576.7 eV 的 "低价 Cr"和位于 577.8~578.3 eV 处的"高价 Cr" 两类. 其中处于 575.5~575.7 eV 和 576.6~576.7 eV 的 "低价 Cr" 可分为 Cr²⁺和 Cr^{3+[13~15]}, "高价 Cr" 可归 属为更高价态的 Cr, 如 Cr⁵⁺(578.0~578.8 eV)^[16,17]或 Cr⁶⁺ (579~580 eV)^[18,19]. 线性积分分峰的结果表明, 共沉淀法制备的系列催化剂高价态的Cr主要以Cr5+ 形式存在. 随着 Cr/(Cr+Mn) 摩尔比的增加,催化剂表 面 Cr²⁺含量基本保持不变,但 Cr³⁺的含量呈增加的趋 势(见表3);相应地,Cr⁵⁺的含量呈现降低的趋势,且 其结合能也逐步向低结合能方向偏移. 对于 Cr(0.6)-Mn₁₅O₄,由于主要物相已由 CrMn₁₅O₄转变为 CrMnO₃, 三种价态的 Cr 离子含量有较大的变化, 催 化活性大幅度降低. 由此也说明,特定的物相结构决 定催化剂活性.

如图 5(b) 所示, Mn $2p_{3/2}$ 和 Mn $2p_{1/2}$ 的特征峰位 于 641.6和 653.6 eV 附近. 通过线性积分, 可将 Mn 2p进行分峰拟合, 得到 Mn²⁺, Mn³⁺和 Mn⁴⁺的特征峰, 分 别位于 640.3~640.7, 641.8~642.0和 644.3~644.7 eV. 这与文献[20]中有关 MnO_x-CeO₂复合氧化物的 XPS 结果一致.

通过峰面积积分,得到 Mn²⁺, Mn³⁺, Mn⁴⁺三种价态的百分含量,结果列于表 3.不同 Cr 含量 Cr-MnO_x 催化剂表面均存在三种价态的 Mn,对于 Cr(0.1)-MnO_x催化剂主要物相是 Mn₂O₃(见图 4),低价态的 Mn 元素较多,表面 Mn 的平均价态也是最低(见表 4);随着 Cr/(Cr+Mn) 摩尔比的增加, Cr-MnO_x 催化剂表面各价态 Mn 含量发生显著变化,其中 Mn³⁺, Mn⁴⁺含量逐渐增加, Mn²⁺含量逐渐减少, Mn⁴⁺/Mn³⁺原子比升高,表面 Mn 元素平均价态增大.这说明 Cr 的加入有利于催化剂表面的 Mn 向高价态转变.当 Cr/(Cr+Mn)=0.4 (即达到 CrMn_{1.5}O₄化学计量比,低温 SCR 活性最佳摩尔比)时, Mn²⁺, Mn³⁺, Mn⁴⁺

图 5 不同 Cr 含量 Cr-MnO_x 复合氧化物的 XPS 谱 Fig. 5. XPS spectra of the Cr-MnO_x with different Cr contents.

表 3	Cr(a)-MnO。催化剂样品中各元素结合能及对应的价态分布	

Fable 3	Binding energy	of the elements a	nd the percen	t of differential	l valence states i	in the Cr(a)-MnO _x	samples

Samula		$E_{\rm b}$ of Cr 2p (eV)			E_{b} of Mn 2p (eV)	
Sample	Cr ²⁺	Cr ³⁺	Cr ⁵⁺	Mn^{2+}	Mn ³⁺	Mn^{4+}
$Cr(0.1)$ - MnO_x	575.6 (20.9%)	576.6 (29.9%)	578.2 (49.1%)	640.7 (30.1%)	642.0 (44.8%)	644.4 (25.1%)
$Cr(0.2)$ - MnO_x	575.6 (19.9%)	576.6 (27.0%)	578.1 (53.2%)	640.6 (25.2%)	642.0 (48.1%)	644.7 (26.7%)
$Cr(0.3)$ - MnO_x	575.6 (20.9%)	576.6 (32.6%)	578.0 (46.5%)	640.3 (18.7%)	641.9 (52.1%)	644.6 (29.1%)
$Cr(0.4)$ - MnO_x	575.6 (20.1%)	576.6 (33.2%)	577.8 (46.8%)	640.3 (14.1%)	641.8 (52.8%)	644.3 (33.1%)
$Cr(0.5)$ - MnO_x	575.6 (20.3%)	576.6 (35.9%)	577.8 (43.8%)	640.6 (24.1%)	642.0 (46.5%)	644.7 (29.4%)
$Cr(0.6)$ - MnO_x	575.6 (18.4%)	576.6 (37.6%)	578.1 (44.0%)	640.3 (16.9%)	641.8 (49.6%)	644.4 (33.5%)

The data in parentheses are the surface concentration of different Mn and Cr valence states.

含量分别为14.1%, 52.8%和33.1%, Mn的平均价态 达到最大(Mn^{3.189+}), Mn²⁺含量最小.结合以上关于催 化剂中 Cr 元素价态变化趋势, 说明高价态的 Mn 及 低价态 Cr 的存在有利于 NO_x 的转化.对于具有最高 催化活性的 Cr(0.4)-MnO_x 复合氧化物, 其表面 Cr/(Cr+Mn)摩尔比低于其化学计量比(见表 2), 而表 面 Cr, Mn元素价态的计算值最大(见表 4).

研究表明,对于 SCR 过程,直接催化 NH₃还原 NO 为 N₂非常困难,然而 NH₄NO₂在100 °C 左右即可 快速分解而生成 N₂和 H₂O,因此 NO 被氧化为 NO₂

表 4 不同催化剂样品表面元素的平均价态及 Mn 离子的 富集情况

Table 4	The average valence	e and Mn ^{x+}	enrichment or	n the surf	ace of
Cr-MnO _x	with different Cr con	tents			

S	Av	verage va	lence	(Mn ⁴⁺ +Mn ³⁺)/	Mn4+/
Sample	Cr	Mn	$(CrMn_{1.5})$	Mn	Mn^{3+}
$Cr(0.1)$ - MnO_x	3.770	2.950	8.195	69.9%	0.56
$Cr(0.2)$ - MnO_x	3.868	3.014	8.389	74.8%	0.56
$Cr(0.3)$ - MnO_x	3.721	3.104	8.377	81.3%	0.56
$Cr(0.4)$ - MnO_x	3.738	3.189	8.522	85.8%	0.63
$Cr(0.5)$ - MnO_x	3.673	3.054	8.254	75.9%	0.63
$Cr(0.6)$ - MnO_x	3.696	3.165	8.444	83.1%	0.68

是其速控步骤^[21].从 NO, O₂及 NH₃形成 NH₄NO₂的 过程来看,其前提条件是 NO 被氧化为 NO₂,低温下 能快速将 NO 氧化为 NO₂的催化剂具有较高的低温 SCR 活性^[22,23].因此,Cr(0.4)-MnO_x复合氧化物表面 的 Mn 以高氧化态形式 (Mn⁴⁺及 Mn³⁺)富集,对于将 NO 氧化为 NO₂是有利的;此外高氧化态的 Mn 元素 存在,提供更多的空穴,这对于吸附具有孤对电子的 NH₃也十分有利.因此,通过添加 Cr 元素,可极大地 对该新型催化剂体系的表面价态进行调变并有利于 提高低温 SCR 过程活性.

3 结论

采用共沉淀法可制备出具有以 CrMn_{1.5}O₄为活 性物相的系列 Cr-Mn 复合氧化物低温 SCR 催化剂. 其中 Cr(0.4)-MnO_x 催化剂在较高的空速下具有较好 的低温催化还原 NO_x 性能.通过添加 Cr 元素,可形 成新型 CrMn_{1.5}O₄活性物相,由于 Cr 元素对催化剂 表面电子性能具有调变作用, Mn 元素主要以高氧化 态形式 (Mn⁴⁺及 Mn³⁺) 富集,不仅可以促进对 NO 的 氧化,而且有利于对 NH₃的吸附,从而使该催化剂具 有较高的低温 SCR 活性.

参考文献

- 1 Huo H, Zhang Q, Wang M Q, Streets D G, He K B. *Environ Sci Technol*, 2010, **44**: 4856
- 2 Zhang J F, Huang Y, Chen X. J Natur Gas Chem, 2008, 17: 273
- 3 Johnson T V. Int J Engine Res, 2009, 10: 275
- 4 唐幸福,李俊华,魏丽斯,郝吉明. 催化学报(Tang X F, Li J H, Wei L S, Hao J M. Chin J Catal), 2008, **29**: 531

- 5 Chen J P, Yang R T, Buzanowski M A, Cichanowicz J E. Ind Eng Chem Res, 1990, **29**: 1431
- 6 Singoredjo L, Korver R, Kapteijn F, Moulijn J. Appl Catal B, 1992, 1: 297
- 7 Zhu Zh P, Liu Zh Y, Niu H X, Liu Sh J. J Catal, 1999, 187:
 245
- 8 Ke R, Li J H, Liang X, Hao J M. Catal Commun, 2007, 8: 2096
- 9 Qi G, Yang R T. Chem Commun, 2003: 848
- 10 马建蓉, 刘振宇, 黄张根, 刘清雅. 催化学报 (Ma J R, Liu Zh Y, Huang Zh G, Liu Q Y. *Chin J Catal*), 2006, 27: 91
- 陈志航,李雪辉,高翔,江燕斌,吕扬效,王芙蓉,王乐 夫.催化学报 (Chen Zh H, Li X H, Gao X, Jiang Y B, Lü Y X, Wang F R, Wang L F. *Chin J Catal*), 2009, **30**:4
- 12 李金虎, 张先龙, 陈天虎, 刘海波, 施培超. 催化学报 (Li J H, Zhang X L, Chen T H, Liu H B, Shi P Ch. *Chin J Catal*), 2010, **31**: 454
- 13 Maetaki A, Kishi K. Surf Sci, 1998, 411: 35
- 14 Liu B P, Nakatani H, Terano M. J Mol Catal A, 2002, 184: 387
- 15 Sainio J, Eriksson M, Lahtinen J. Surf Sci, 2003, 532: 396
- 16 Trunschke A, Hoang D L, Radnik J, Lieske H. J Catal, 2000, 191: 456
- 17 Russo N, Fino D, Saracco G, Specchia V. J Catal, 2005, 229: 459
- 18 Karamullaoglu G, Dogu T. Ind Eng Chem Res, 2007, 46: 7079
- 19 Hoang D L, Farage S, Dittmar A, Trunschke A, Lieske H, Martin A. Catal Lett, 2006, 112: 173
- 20 Qi G, Yang R T. J Phys Chem B, 2004, 108: 15738
- 21 Notoya F, Su C, Sasako E, Nojima S. *Ind Eng Chem Res*, 2001, **40**: 3732
- 22 Koebel M, Elsener M, Madia G. Ind Eng Chem Res, 2001, 40: 52
- 23 Long R Q, Yang R T. J Catal, 2002, 207: 224