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Abstract: A series of WO3/ZnO composite photocatalysts with different WO3 concentrations were prepared by a precipitation-grinding
method followed by calcination at different temperatures. The prepared samples were characterized by N, physical adsorption, X-ray diffrac-
tion, scanning electron microscopy, Fourier transform infrared spectroscopy, UV-visible spectroscopy, and photoluminescence spectroscopy.
The photocatalytic activity of the samples was evaluated by photocatalytic degradation of acid orange Il under UV light (1 = 365 nm) irradia-
tion. The results showed that at the optimal calcination temperature of 600 °C, the WO3/ZnO composite photocatalyst with 2 wt% concentra-
tion of WO; showed about doubled photocatalytic activity compared to pure ZnO. The increase in the photocatalytic activity could be attrib-
uted to the coupling of WO3, which suppressed the growth of ZnO particles, increase of the surface area and increased amount of surface OH
groups of the sample. The presence of WO; also restrained the recombination rate of e /h* pairs.
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Fig. 1. XRD patterns of the samples. (a) ZnO and WO3/ZnO with
different WO;3; contents calcined at 500 °C; (b) 2%WO,/ZnO calcined
at different temperatures; (c) (101) plane of 2%WO;/ZnO calcined at
different temperatures.
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Table 1  Average grain size and specific surface area of the samples

Sample Calcination Average grain  Specific surface
temperature (°C) size (nm) area (m?/g)
ZnO 500 22.64 12.06
1% WO3/ZnO 500 2191 17.83
2% WO5/ZnO 500 19.28 21.05
4% WO,/ZnO 500 17.22 23.08
8% WO/ZnO 500 16.92 25.33
2% WO5/ZnO 400 17.66 24.03
2% WO5/ZnO 600 26.82 17.06
2% WO5/ZnO 700 31.10 12.03
2% WO/ZnO 800 34.43 9.69
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Fig. 2.
°C; (d) 2% WO,/ZnO calcined at 800 °C.
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SEM images of the WO,/ZnO samples. (a) ZnO calcined at 500 °C; (b) 2% WO3/ZnO calcined at 500 °C; (c) 8% WO/ZnO calcined at 500
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Fig. 3. FT-IR spectra of the samples. (a) ZnO and WO3/ZnO with
different WO; contents calcined at 500 °C; (b) 2% WO,/ZnO calcined
at different temperatures.
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Fig. 4. UV-Vis diffuse reflectance spectra of the samples. (a) ZnO

and WO3/ZnO with different WO;3; contents calcined at 500 °C; (b) 2%
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Table 2 Band gap energy of the samples

Calcination
Sample o E eV
temperature (°C)
ZnO 500 3.20
1% WO3/ZnO 500 3.03
2% WO3/ZnO 500 2.99
4% WO/ZnO 500 2.93
8% WOs/ZnO 500 2.92
2% WO3/ZnO 400 3.13
2% WO3/ZnO 600 3.02
2% WO3/ZnO 700 3.02
2% WO3/ZnO 800 3.03
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Table 3 The first-order reaction rate constant of the catalysts in deg-
radation of acid orange Il

Calcination

Sample xh™ R?
temperature (°C)

ZnO 500 0.073 0.98
1% WO3/ZnO 500 0.218 0.99
2% WO3/Zn0O 500 0.229 0.96
4% WO3/ZnO 500 0.194 0.99
8% WO3/Zn0O 500 0.128 0.99
2% WO3/Zn0O 400 0.163 0.99
2% WO3/Zn0O 600 0.308 0.99
2% WO3/Zn0O 700 0.274 0.99 1
2% WO3/Zn0O 800 0.259 0.99
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EEX
English Text

Semiconductor photocatalysis has received intensive at-
tention in environmental purification due to its simplicity,
mild reaction conditions, and low energy consumption
[1-4]. ZnO is a n-type semiconductor with a band gap of 3.2
eV that is widely employed as a raw material in the textile,
cosmetic, ceramic, and glass industries. ZnO has the photo-
catalytic ability to decompose volatile organic pollutants to
CO, and H,0. Organic pollutants in water can be removed by
its photocatalytic degradation. Therefore, its photocatalytic
ability has attracted much interest [5,6]. Compared with the
common photocatalyst of TiO,, the drawbacks of ZnO are its
low efficiency of photocatalysis [7]and low stability due to
photocorrosion. In order to improve its photocatalytic per-
formance, two methods have been developed. The first is to
cause changes in its physical property, such as morphology
and particle size [8-10]. The second method for enhancing
its photocatalytic efficiency is by noble metal deposition
[11,12], metal ion doping [13], semiconductor coupling
[14,15], or nonmetal element doping [16]. Among these,
semiconductor coupling is an effective method to accelerate
the separation of the generation of the electron (¢7)-hole (h")
pairs because the energy gap between the two semiconduc-
tors would benefit the separation of photo-generated elec-
trons and holes. WOj; is another n-type semiconductor with a
small band gap of 2.7 eV, and its valence and conduction
band positions are different from ZnO.

In this paper, the effects of the using WO; in ZnO in dif-
ferent concentrations on the surface property and the sepa-
ration efficiency of electron (¢7)-hole (h*) pairs of ZnO were

investigated. It was found that the presence of a small quan-
tity of WO; can effectively enhance the photocatalytic effi-
ciency of ZnO in the degradation of acid orange II.

1 Experimental
1.1 Catalyst synthesis

Tungstenic acid was first prepared according to the fol-
lowing procedure. Under stirring, 3.00 g sodium tungstate
(Na,WO0,-2H,0, AR, Sinopharm Chemical reagent Co. Ltd)
and 0.05 g hexadecyl trimethyl ammonium bromide
(CTAB, AR, Sinopharm Chemical reagent Co. Ltd) were
dissolved in 10 ml deionized water. Then 10 ml nitric acid
(1.5 mol/L) solution was slowly added into the above solu-
tion and the mixed solution was further stirred for 2 h. The
precipitate produced was collected by centrifugation,
washed twice with deionized water and three times with
ethanol, dried in an oven at 80 °C to give the tungstenic acid.
Zinc hydroxyl carbonate was prepared as follows. Zn(NOs),
(3.67 g, AR, Shanghai, Sinopharm Chemical reagent Co.
Ltd) and 0.10 g CTAB were dissolved in 50 ml deionized
water to obtain solution A. Na,CO; (1.31 g) was dissolved in
50 ml deionized water to obtain solution B. Solution B was
added dropwise to solution A with vigorous stirring. After
stirring for 1 h, the precipitate was collected by the same
method as above. Then, an appropriate amount of tungstenic
acid was mixed with zinc hydroxyl carbonate and the mixture
was ground for 0.5 h. The mixture was calcined at different
temperatures for 2 h in air. The final contents of W and other
elements in the composite were determined by X-ray fluo-
rescence analysis (Panalytical-PW2424).

1.2 Catalyst characterization

The BET surface areas of the samples were obtained from
N, adsorption-desorption isotherms determined at liquid
nitrogen temperature (=196 °C) on an automatic analyzer
(NOVA 4000).The samples were outgassed for 2 h under
vacuum at 350 °C prior to adsorption. X-ray diffraction
(XRD) patterns were obtained on a Bruker D8 Advance
X-ray diffraction meter using Cu K, radiation (4 = 0.154178
nm) at a scan rate of 0.05%s. The accelerating voltage and the
applied current were 30 kV and 15 mA, respectively. The
microstructures of the samples were determined by a XL30
(Philips) scanning electron microscope (SEM) with an en-
ergy dispersive X-ray (EDX) spectrometer (EDax Genesis
instrument, USA). UV-Vis diffuse reflectance spectra (DRS)
were measured using a UV-Vis spectrophotometer
(UV-2550, Shimadzu). Absorption spectra were referenced
to BaSO,. Fourier transform infrared (FT-IR) spectra were
recorded with a Nicolet 470 FTIR spectrometer (USA).
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Samples were pressed by a KBr disk preparation apparatus.
The samples were dried at 250 °C for 4 h prior to pressing. To
investigate  the  recombination and lifespan  of
photo-generated electrons/holes in the photocatalysts, the
photoluminescence (PL) emission spectra of the samples
were recorded. A 325 nm He-Cd laser was used as an exci-
tation light source. The emission from the sample was
measured by a spectrometer (Spex 500M, USA) equipped
with a photon counter (SR400, USA).

1.3 Photocatalytic activity test

The photocatalytic activities of the samples were deter-
mined by measuring the degradation of acid orange Il in an
aqueous solution under UV light irradiation. A 365-nm UV
lamp (15 W Cole-Parmer Instrument Co.) was used as light
source. The photocatalyst (0.05 g) was suspended in 80 ml
aqueous solution of Cy= 0.020 g/L. Before the lamp was
turned on, the suspension was stirred in the dark for 40 min.
The suspension was vigorously stirred in the photoreactor
during the process and the temperature of suspension was
maintained at (22+2) °C by the circulation of water through
an external cooling coil. After fixed intervals of illumination,
a sample of the suspension was taken out and centrifuged.
The clear upper layer solution was analyzed by a spectro-
photometer. The dye concentration was measured at 1 = 484
nm, which is the maximum absorption wavelength for acid
orange Il. The degradation rate (D) of acid orange Il was
calculated according to the equation D = (4q — A)/A4y (Ao:
initial absorption degree; 4: final absorption degree).

2 Results and discussion
2.1 Characterization analysis
2.1.1 XRD analysis

XRD patterns were used to determine the effects of the
addition of WOs; on the crystal phase and crystallinity of
ZnO. Figure 1(a) shows the XRD patterns of pure ZnO and
WO,/ZnO samples with different WO; concentration. The
diffraction peaks of the (100), (002), (101), (102), (110),
(103), (200), (112), and (201) crystal planes were well in-
dexed with JCPDS 36-1451, which indicated that the ZnO
has the hexagonal wurtzite structure and high crystallinity.
With all the samples, no diffraction peak of WO; can be
observed, which may due to the highly dispersed WO; or
low concentration of WO; below the XRD detection limit
[17]. The effects of calcination temperature on the crystal-
linity of 2% WO,/ZnO are shown in Fig. 1(b). The position
of the diffraction peaks showed no changes, which indicated
no new compound was formed. With increase of calcination

temperature, the intensity of the diffraction peak at (101)
became stronger, suggesting the increase of crystallinity.
The Scherrer equation was used to estimate the average
crystallite sizes of the samples. The results are summarized
in Table 1. Table 1 shows that the addition of WO; decreased
the crystal size of ZnO, which indicated that the presence of
WO, restrained the growth of ZnO nano-particles. The pos-
sible reason for this could be that some W°®" entered into the
crystal lattice of ZnO and suppressed the growth of the ZnO
crystal due to the similar radius of W®" (0.068 nm) and zn**
(0.083 nm) [18]. The larger diffraction peaks at 36.4° for 2%
WO,/ZnO0 calcined at different temperatures showed that the
intensities of these peaks increased gradually with the in-
crease in temperature from 400 to 800 °C, which also indi-
cated that an elevated temperature calcination will cause the
sintering of ZnO particles and increase the crystallite size.

2.1.2 BET surface area analysis

The BET surface areas of all the samples are also shown in
Table 1. The specific surface area of the WOs/ZnO samples
increased with the increase of WQOj; content, which was
mainly caused by the decrease of the crystallite size of ZnO
due to the presence of WOs. The increase of surface area will
benefit the adsorption of dye and increase the photocatalytic
activity of ZnO [19]. The XRD analysis showed that the
increase of calcination temperature caused the sintering of
ZnO particles, thus resulting in the decrease of surface area.

2.1.3 SEM analysis

The morphologies and dispersions of the samples were
determined by SEM. Figure 2 shows typical SEM images.
Figure 2(a) indicates that the ZnO particles calcined at 500
°C had aggregated somewhat. However, the addition of 2%
WO; resulted in a better and uniform dispersion for this
sample, as shown in Fig. 2(b). The particles in this sample
have a sphere-like morphology with a size of around 2 pum.
The uniform size of the catalyst particle can benefit catalyst
dispersion, adsorption of dye and light absorption in this
photocatalytic system. Figure 2(c) shows the SEM image of
8% WO,/Zn0, which shows that the increase of WO; content
further decreased the particle size of this sample. These
particles showed a needle-like morphology with a size of
about 1 um. Figure 2(d) shows that serious aggregation of the
particles took place when the sample was calcined at 800 °C
with sintering of the particles.

2.1.4 FT-IR analysis

Figure 3 gives the infrared spectra of all the samples. All
the samples have a peak at 3443 cm™, which was assigned to
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the stretching vibration and bending vibration of surface
—OH groups on ZnO. In the photocatalytic reaction, the
reaction activity is closely related to the amount of —OH
groups on the catalyst because the —OH groups can capture
the photo-generated hole (h*) and transform to reactive "OH
radicals. The peak at 1630 cm ™ was assigned to the bending
vibration of adsorbed water on the surface of the catalyst.
The peak at 432 cm ™ was attributed to the stretching vibra-
tion of the Zn—0O bond. From the literature [21], it is known
that the characteristic peaks for WO; are at 929.2, 879.6, and
773.6 cm . However, with all the samples, no peak for WO,
was observed. A strong interaction between WO; and ZnO
may be the cause of the non-appearance of the characteristic
peaks of WO;. Another two peaks at 1380 cm™ and 1120
cm* could be ascribed to the formation of a W—-O-Zn bond
because these two peaks were not found with WO; and ZnO.
Figure 3(a) shows that the addition of WO, caused the peak
at 3443 cm™ to become stronger and bigger, which sug-
gested that more —OH groups may be present due to the
increase of surface area and the improved property of the
surface. In the photocatalytic degradation of the dye, the
main reactive radical is "OH [22]. Therefore, the presence of
WO; can effectively improve the photocatalytic activity.
Figure 3(b) also shows that at the same concentration of
WOQO,, with the increase in calcination temperature from 400
to 600 °C the intensity of the peak at 1380 cm ™ increased
gradually, which indicated that in this temperature range, the
increase in calcination temperature can strengthen the inter-
action between WO; and ZnO and produce more W—0O-Zn
bonds. However, when the calcination temperature was
increased to 700 and 800 °C, the intensity of this peak began
decreasing. At the same time, two new peaks at 1457 and
1543 cm™ appeared. The high calcination temperatures de-
creased the intensity of the peak at 3443 cm™ because the
elevated temperature treatment caused the loss of —OH
groups and surface area.

2.1.5 UV-Vis diffuse reflectance spectra

UV-Vis diffuse reflectance spectroscopy is an effective
technique to determine the light absorption ability of a
semiconductor at different wavelengths. Figure 4 shows the
UV-Vis diffuse reflectance absorption spectra of all the
samples. The band gap energy (£,) for the catalyst was de-
termined with £y = 1240/44 (eV), where /g is the absorption
edge, which was obtained from the intercept between the
tangent of the absorption curve and the abscissa. The calcu-
lated band gap energies for the different samples are shown
in Table 2. Figure 4(a) shows that pure ZnO has strong light
absorption from 200 to 380 nm and no absorption in the
visible light range. The presence of WO; caused the absorp-
tion to shift towards long wavelengths, which may be due to

the formation of the energy level of vacancy oxygen because
when W®* was doped into the crystal lattice of ZnO, an va-
cancy oxygen may form [23]. Figure 4(b) indicates that the
calcination temperatures had slight influences on the light
absorption of 2% WO,/ZnO. The increase in temperature
caused the absorption edge to slightly shift to long wave-
lengths.

2.1.6 PL emission spectra

PL emission spectra were used to investigate the effects of
the coupling of WO; on the recombination of
photo-generated electrons and holes in ZnO. According to
the literature [24], two emission peaks of ZnO can be ob-
served. One is around 390 nm near the ultraviolet range,
which is due to the recombination of photo-generated elec-
trons and holes. Another emission peak is around 420-620
nm; there is some controversy about the mechanism of this
emission. One explanation is that this emission is an indirect
emission which is related to a surface vacancy on ZnO.
Figure 5(a) shows that the addition of WO; did not change
the position of the emission peak in the visible light range.
However, a red shift occurred for the emission peak at 390
nm due to the presence of WO;. Moreover, an increase in
WO;content caused a decrease in the intensity of this emis-
sion peak, which suggested that the recombination of
photo-generated electrons and holes was effectively sup-
pressed by the WO,. As for the emission peak in the visible
light range, a slight increase in its intensity appeared with the
existence of WO;. A possible reason is that an interaction
between W°®" and crystal lattice oxygen resulted in an un-
saturated bond and surface vacancy on ZnO. The calcination
temperature had a big influence on the recombination of
photo-generated electrons and holes. An increase in calcina-
tion temperature from 400 to 600 °C caused the decrease on
the intensity of the emission peak at 390 nm, which was
because the increased crystallinity enhanced the separation
of photo-generated electrons and holes. Therefore, the sam-
ple calcined at 600 °C showed the smallest intensity. How-
ever, the further increase in temperature from 600 to 800 °C
increased the intensity of this emission peak. The very high
temperature may result in the displacement of O* and Zn*
and produce more O* or Zn** vacancy in the ZnO crystal
lattice. The vacancy would increase the recombination of
photo-generated electrons and holes. As for the emission
peak in the visible light range, the increase in temperature
slightly increased the intensity of this emission peak.

2.2 Photocatalytic activity test and enhancement
mechanism

The photocatalytic activities of the samples were evalu-



www.chxb.cn

R SF: WO/ZnO KA i A6 71 ) 11 48 K HLOG i A 1 g 565

ated by measuring the decomposition of acid orange Il in an
aqueous solution under UV light (4 = 365 nm) irradiation.
Figure 6(a) shows the effects of WO; content on the photo-
catalytic activity. It was found that acid orange Il was only
slightly degraded under light irradiation without a catalyst,
indicating that acid orange Il is a stable molecule and its
photolysis can be ignored. The increase of WO, from 0 to
2% effectively increased the degradation efficiency. How-
ever, the further increase of WO; gave an adverse effect. The
degradation rates of acid orange Il after 5 h of irradiation
over Zn0O, 1% WO,/Zn0O, 2% WO/Zn0, 4% WO4/ZnO and
8% WO3/ZnO were 40.86, 64.18, 66.18, 60.79, and 52.52%,
respectively. The optimal concentration of WO; was found
2%.

Figure 6(b) gives the effects of calcination temperature on
the photocatalytic activity of 2% WO3/ZnO. From 400 to 600
°C, the increase in temperature gave a big increase in activity,
which was due to that the recombination of photo-generated
electrons and holes was suppressed by the increase in crys-
tallinity. The further increase in temperature produced a
negative effect on activity. The sample calcined at 800 °C
only gave 70% degradation rate. The elevated temperature
calcination caused the sintering of the catalyst. The loss of
surface area, increase in crystalline size, and decrease in
dispersion all gave an adverse effect on the harvest of light
and the adsorption of dye.

To quantitatively understand the reaction kinetics of the
acid orange Il degradation in our experiments, we used a
pseudo-first order model expressed by the equation In(Cy/C)
= xt, which can be generally used for photocatalytic degra-
dation if the initial concentration of the pollutant is low
[25,26]. Cy and C are the concentrations of dye in the solu-
tion at time 0 and ¢, respectively, and « is the pseudo-first

order rate constant. The rate constants obtained from the
regression of In(C/Cy,) vs ¢ are shown in Table 3. A good
correlation with pseudo-first order reaction kinetics (r? >
0.96) was found. The highest reaction rate constant was
0.308 h™* for the sample calcined at 600 °C with 2% WO;.

A simple mechanism shown in Fig. 7 is suggested.
WOQO,/ZnO can be considered a coupling of two semicon-
ductors. Due to the different positions of the valence and
conduction bands of WO; and ZnO, excited electrons in the
conduction band of ZnO can easily transfer to the conduction
band of WO, because W®* can capture electrons and be re-
duced to W' [26]. At the same time, the holes in the valence
band of WO; can transfer to the valence band of ZnO
Therefore, the recombination of the photo-generated carriers
is suppressed, leading to an increase in the photo-oxidation
efficiency. However, if the WO; content is too high, the
dispersion of WO; would become poor and the redundant
WO; can become recombination centers, resulting in a de-
crease in photocatalytic activity [27].

3 Conclusions

The effects of the addition of different WO; contents on
the properties of the structure and surface of ZnO and its
photocatalytic activity in the degradation of acid orange Il
were investigated. The presence of WO; can effectively
suppress the growth of ZnO particles and increase its surface
area and "OH groups. The recombination of photo-generated
electrons and holes was also suppressed. The sample with
2% WO calcined at 600 °C was twice as active as pure ZnO.

Full-text paper available online at ScienceDirect
http://www.sciencedirect.com/science/journal/18722067



