菌株 Thermus sp. TibetanG7 对铯的吸附: 热泉铯硅华 形成过程中生物成矿作用的征兆

王海雷 郑绵平 黄晓星

(中国地质科学院矿产资源研究所,北京 100037; 中国地质科学院盐湖资源与环境研究重点开放实验室,北京 100037; 中国 地质科学院盐湖与热水资源研究发展中心,北京 100037; 中国科学院微生物研究所微生物资源国家重点实验室,北京 100081. E-mail: <u>whailei@sohu.com</u>)

摘要 从西藏温泉中分离出了一株菌株*Thermus* sp. TibetanG7, 检验了它对铯的吸附能力. 同时模拟了 热泉中的环境条件, 检测了钠、钾离子和不同的钾离子培养条件对吸附的影响, 以探讨菌株*Thermus* sp. TibetanG7 在铯硅华形成过程可能起的作用. 结果显示: 尽管钠和钾离子都对菌株吸附铯有一定的影响, 但是菌株仍然显示了一定的吸附铯的能力, 在钠和钾抑制试验中的单位吸附量分别达到了 53.49 和 40.41 μmol 铯/克干重菌体. 菌株能较快的吸附铯, 在 5 min时间内完成了总吸附量的 40%~50%. 同时 还发现, 钾离子缺失体系培养的菌体能吸附更多的铯. 菌株*Thermus* sp. TibetanG7 在热泉中对铯的聚集 起了重要的作用. 最后探讨了菌株在铯硅华形成过程中的作用, 提出了铯硅华成矿的物理化学和生物 成矿模式.

关键词 铯 铯硅华 Thermus sp. TibetanG7 吸附 成矿模式

微生物对矿床成矿过程中的作用,即生物成矿, 在很多类型的矿床中都有过研究^[1,2],Widdel等人^[3] 的研究厌氧光合细菌在元古代和早古生代海洋中的 条带状铁建造(BIFs)的形成起了重要的作用.能追溯 到 35 亿年前的叠层石,一般认为是微生物成因的^[4]. 但是,铯在自然环境中一般以单价阳离子形式存在, 同时铯离子也是一种弱的路易斯酸,与配位体结合 的能力较弱^[5].铯矿床,如含铯伟晶岩、含铯盐类矿 床、铯星叶石一般认为是非生物成因的^[6].对铯矿床 生物成因方面的研究目前还没有做过.

作者之一于 20 世纪 80,90 年代相继西藏的温 泉区发现了一种新型的含铯矿床, 铯硅华矿床^[7].并 做了一些铯硅华中铯的浸取方面的研究^[8]. 但是总 有一部分铯残留在黑色的炭渣中,浸取不出来. 推测 可能残留在生物体内部. 栖热菌属细菌一般为大陆 温泉区优势生物种群^[9,10]. 研究证实嗜热细菌在原位 或控制的实验室条件下,都能促进水体中硅的沉积 沉淀^[11,12]. 活体生物对铯的吸附也有过很多报道 ^[13-18]. 因此,应该考虑栖热菌属菌株*Thermus* sp. TibetanG7 对铯硅华成矿的贡献. 人们已经知道,虽然 生物体对铯离子的细胞外吸附很少^[15],但是铯离子 由于和生物体需要的钾离子有相似的化学性质^[5], 可以通过钾离子通道替换钾进入生物体内 [<u>15.19~21]</u>. 人们还研究了一些环境因子, 如pH, K⁺, Na⁺和Ca²⁺等, 对真核生物*Riccia fluitans*吸附铯的影响 ^[22]. 但是目 前还不知道这些因子是否会对细菌吸附铯产生影响.

本 文 研 究 了 从 温 泉 区 分 离 到 的 栖 热 菌 菌 株 *Thermus* sp. TibetanG7 对铯的吸附. 同时也讨论了菌 株对温泉区铯的原位聚集的贡献. 最后, 我们提出了 一种在西藏温泉区形成铯硅华的假说.

- 1 材料与方法
- 1.1 微生物的培养

菌株 *Thermus* sp. TibetanG7 在 CHA 培养基中做 常规培养,培养基成分为(g/L): (NH₄)₂SO₄, 1.5;酵母 浸粉, 2.0;蛋白胨, 2.0; NaNO₃, 1.0; Na₂HPO₄, 0.21; K₂HPO₄, 0.3; CaCl₂, 0.015; MgCl₂, 0.2; KCl, 0.04;浓 硫酸, 0.005 mL,以及 10 mL 含(g/L): MnSO₄, 2.2, ZnSO₄, 0.5; H₃BO₃, 0.5; CuSO₄, 0.016; Na₂MoO₄, 0.025; CoCl₂, 0.046. 分离后的纯菌株在 70, 130 rpm 的恒温水浴摇床培养. 培养 24 h 后,4, 4000 rpm 离心 10 min,收集菌体,并用去离子蒸馏水冲洗 3 遍,以洗去多余的营养成分,保证没有其他离子的 影响,同时也消除细胞生长的影响.

²⁰⁰⁷⁻⁰³⁻²² 收稿, 2007-07-10 接受

国家地质大调查项目(批准号: 200313000065)和国家重点基础研究发展计划(批准号: 2002CG412610)资助

1.2 钾离子缺失体系的诱导

菌体在无 K_2 HPO₄和 KCl 的上述培养基中连续转 接 3 次,每次间隔 24 h,以后的处理同上.

1.3 吸附实验

实验在 10 mL 刻度管中进行,加入一定浓度的 CsCl 和一定量的菌体,使铯终浓度为 70 μ mol/L,菌 体浓度约 0.5 g/L.反应起始体积为 10 mL,实验温度 为 70 .菌体干重在 100 恒温干燥箱干燥 24 h 得到. 调节 pH 以及钾、钠至合适浓度,以模拟温泉中原位 环境条件.在 pH 实验中,通过加 1 mol/L 的 HCl 或 NaOH 调节 pH 分别到 3.0, 4.5, 6.0, 7.5 和 9.0. 在钾、 钠实验中,分别加入一定量的 KCl 和 NaCl,使钾、钠 浓度分别为 700, 350, 70, 7 μ mol/L 和 7000, 700, 350, 70, 7 μ mol/L.设一个不加钾、钠的对照组和一个不含 菌液的空白组,每组设 3 个重复.

在一定的时间间隔取出 1 mL 体积的反应液, 4 , 9000 r/min 离心 5 min, 取上清液, 利用原子吸收检测 上清液中铯离子的浓度(Perkin Elmer). Q_{5min} 和 Q_{24h} 分别表示 5 min 和 24 h 的铯吸附量(μ mol 铯/克干重菌 体). 所有试剂均为分析纯.

2 结果

2.1 泉水的离子组成

菌藻席在温泉中大量发育(图 1), 而水体中则以 细菌为主^[23](图 2).

泉水中主要离子组成见表 1.

同时我们采集并分析了从泉眼到泉水下游不同 位点泉水中的铯含量(表 2).

从表中可以看出, 上下游泉水的铯含量有较显

图 1 微生物菌藻席在西藏温泉中大量发育

图 2 嗜热细菌在温泉水中大量发育

著的差异: 下游泉水中的铯含量低于上游泉水的.

2.2 细菌对铯的吸附及 pH 对吸附的影响

实验用菌株 *Thermus* sp. TibetanG7 分离自温泉 区菌藻席. 从图 3 和 4 可以看出, 菌株 *Thermus* sp. TibetanG7 对铯的吸附在开始的 5 min 内进行得相当 迅速, 完成了总吸附量的 40%以上. 5 min 内最大的 铯吸附量出现在 pH 6.0 的试验组, 达到了 45.95 μ mol/g(干重菌体). 而 24 h 的最大吸附量, 79.26 μ mol/g, 则出现在 pH 7.5 的试验组. 在 pH 6.0 和 7.5 时菌株 *Thermus* sp. TibetanG7 相对较高的铯吸附量

表 1 研究区温泉水的主要离子成分(mg/L)^{a)}

泉眼	Cl	SO_4	HCO_3	CO_3	OH	F	Br	B_2O_3	Li	Na	Κ	Rb	Cs	Ca	Mg	盐度	pН	
TGJ-9	21.4	377	-	-	-	2.3	-	-	0.6	56.5	8	0.0827	1.442	3.1	1.1	-	3~4	
TGJ-1	149	79.1	170	240	-	22.5	-	-	5.9	457	51.5	0.628	6.797	10.9	1	-	7	
GD-1	744.3	115.3	213.5	240	-	13.3	0.4	430.8	23.59	648.2	91.1	1.3	7.6	-	-	2423	7	
GD-2	774.3	120.1	396.5	108	-	13.3	0.9	443.2	25.5	678.7	98.8	1.4	8.1	-	-	2471	7	
GD-3-1	524.8	11.5	884.5	-	-	5.4	0.2	297.3	0.97	553.7	72.6	0.9	5.1	24.05	19.45	1958	7	
GD-4-1	-	86.45	-	-	-	-	0.9	-	23.3	620.3	97.3	1.3	7.5	26.05	6.08	869.1	7	
GD-4-3	-	168.11	-	-	-	-	0.3	-	23.6	647	91.3	1.1	6.3	62.12	4.89	1004.7	6	
GD-4-6	601.1	275.69	247.7	102	-	7.6	_	358.2	20.7	526.1	81.1	1	6.5	36.87	2.43	2143.2	6	
CH-4-1	541.4	156	298.9	45	-	12	1.9	301.1	17.2	470.6	76.7	1.2	3.6	7.52	1.52	1785	6~7	
CH-5-1	555.2	150	253.2	63	-	10.5	0.9	302.8	16.9	462.7	79	1.3	3.6	17.54	-	1790	6~7	
CH-6-2	579.4	162	178.1	96	-	11.5	1	313.3	17.4	476.3	74.7	1.2	3.7	5.01	_	1830	7~8	

a)-表示未检出.由中国地质科学院盐湖中心实验室司东新、崔锦和刘建华分析

表 2 西藏古堆温泉区中铯离子含量从上游到下游 逐渐降低

泉眼	泉眼 铯离子含量/mg·L ⁻¹											
	上游 下游											
GD-1	3.943	3.652	2.108	_	-	-						
GD-2	4.234	4.196	3.978	3.759	-	-						
GD-3	4.249	4.165	-	-	-	-						
CH-4-5	6.184	6.021	5.883	5.491	5.242	4.821						
CH-5	3.719	3.015	2.943	2.856	_	-						
СН-6-2	7.116	6.859	6.249	6.113	5.842	-						

图 3 不同 pH 条件下菌株 *Thermus* sp. TibetanG7 对铯的 *Q*_{5 min}(空心柱)和 *Q*_{24 h}(实心柱)吸附

数据为平均值±标准差 (n=3)

数据为平均值±标准差 (n=3)

对菌株的原位吸附是非常重要的,因为大部分温泉 水的 pH 在 6~7 之间.

2.3 钾、钠离子对铯吸附的影响

调整实验溶液的 pH 至 6.0 以模拟野外环境条件, 而钾、钠离子也根据温泉水中钾/铯、钠/铯比例调整 到相应浓度.图 5 显示了钾离子对铯吸附的影响.

所有含钾离子的实验组的铯吸附量均低于对照 组的(不含钾),说明钾离子能抑制菌株 *Thermus* sp. TibetanG7 对铯的吸附.但是,即使在最高的钾/铯比 实验组中(钾/铯 10:1,温泉水中的钾/铯比),菌株仍 然显示了一定的铯吸附量.钾/铯 10:1 实验组的 24 h

www.scichina.com

示 K⁺/Cs⁺, 10:1; 示 5:1; ■示 1:1; □示 1:10; ○示对照组. 数据为平均值±标准差(*n*=3)

吸附量(Q_{24h})与对照组形成显著对比(51%的抑制),而 开始时的吸附量(Q_{5min})虽然较低,但仍较显著(31% 的抑制). 钠离子显示了相似但更弱的抑制作用(图 6).

· Na /Cs,100-1; 示 10-1; ■示 5-1; □示 1-1; ●示 1-10; ○示对照组. 数据为平均值±标准差(*n*=3)

随着钠离子浓度的升高, 铯吸附量逐渐降低. 最大的抑制作用出现在最高的钠/铯实验组(100:1, 温 泉水中的钠/铯), 并且 *Q*_{5min}(22%)的抑制比 *Q*_{24h}(33%) 的低. 而在低的钠/铯(1:10)实验组铯吸附量甚至高 于对照组的. 这些说明在较短的接触时间内, 钠离子 对菌株 *Thermus* sp. TibetanG7 吸附铯的影响较小.

2.4 不同钾离子体系中的铯吸附

图 7 显示了在钾过量和钾缺失体系中菌株对铯 吸附的显著不同。

数据为平均值±标准差(n=3)

钾缺失体系的菌株的铯吸附量显著高于钾过量体 系的.而 Q_{smin} 之间的差别最小,这说明钾离子体系在 菌株与铯离子接触较短时间内对吸附的影响较小. 随着时间的推移,钾离子体系之间的吸附差异逐渐增 大,最大的吸附差异出现在 30 min:钾离子过量体系 的 31.98 μmol/g 和钾离子缺失体系的 97.82 μmol/g,之 后差异又逐渐减少,但是这种差异在 Q_{24h} 仍然显著: 钾离子过量体系的 72.29 μmol/g 和钾离子缺失体系 的 107.37 μmol/g.

3 讨论与结论

菌株*Thermus* sp. TibetanG7 显示了中等的铯吸附 能力,低于*Chorella salina*^[23]的铯吸附量,而高于 *Rhodococcus erythropolis*^[24].这种吸附能力进一步被 铯浸取实验所证实(图 8). 含菌株的溶液能显著提高 铯在铯硅华中的浸出.

在接近中性的pH条件下菌株*Thermus* sp. TibetanG7 对铯的吸附值最大(pH 6.0 时的Q_{5min}, pH 7.5 时的Q_{24h}),这与在*Chorella salina*中的研究结果相一致^[16],除了在pH 3.0 时的Q_{5min}相对较低外.伴随着氢离子的进入,铯离子通过钾离子通道进入细胞内^[25],导致在碱性条件下铯吸附量的降低.但是,在酸性条件下,过量的氢离子会与铯离子竞争细胞壁上的吸附位点,使铯吸附量降低.

一般认为,活体生物对铯的吸附一般以细胞内 吸收为主,细胞外吸附很少^[15].但是菌株*Thermus* sp. TibetanG7 对铯的吸附在头 5 min内进行得非常迅速, 说明有一部分是细胞外的吸附.红外光谱分析证实 菌株*Thermus* sp. TibetanG7 对铯的吸附是一个铯离子 首先被吸附在细胞壁上的平衡过程^[26].

吸附量随着时间上升到 9.26 μmol/g干重菌体, 说明有细胞内吸收的存在. 铯离子通过钾离子通道 进入细胞内^[15,19,20],并因为化学相似性替换钾离子^[21].分子学研究表明一些钾离子通道对铯离子和钾 离子的区别很弱^[27].

铯离子通过一些对单价阳离子如K⁺, Na⁺和Cs⁺可 渗透的, 有高度亲和性的钾离子通道^[28]. 一般认为 能影响钾离子吸收的环境因子都能影响铯离子进入 细胞内^[17,18,22]. 在生物*Synechocystis* PCC 6803 中, 当 K⁺/Cs⁺为 10:1 时, 钾离子能抑制约 50%的铯吸收^[29]. 在本实验中, 钾离子和钠离子显示了相似的铯吸附 抑制作用, 但是钠离子的抑制作用(33%的抑制)比钾 离子的(51%)弱一些.

但是,即使在最高的 K⁺/Cs⁺和 Na⁺/Cs⁺,仍有较 高的铯吸附存在(钾抑制实验中的 40.41 μmol/g 干重 菌体和钠抑制实验中的 53.49 μmol/g).这些最高比例 的 K⁺/Cs⁺和 Na⁺/Cs⁺,是模拟了温泉水中的 K⁺/Cs⁺和 Na⁺/Cs⁺,所以在温泉水中,菌株对铯的吸附仍然是 存在的.活体细胞对铯的细胞内吸收是一个依赖于 能量的过程,需要较长的时间(一般超过 24 h).在温 泉区,随着泉水不断的流过菌藻席,两者接触的时间 非常长,可以保证菌株对铯的充分的吸收.

室内和野外环境条件差别很大,甚至在同一温 泉的不同区域,其环境条件也是不同的,温泉中的钾 离子供应不一定都是充足的,从而导致菌株产生一 些钾离子缺失体系的细胞.钾离子体系在生物体对 铯的吸附过程中扮演了重要的角色,钾离子缺失体 系的细胞能吸附更多的铯^[22,26],所以在温泉中,菌株 *Thermus* sp. TibetanG7 对铯的吸附可能更高.

上述证据表明, 在温泉中, 随着温泉水流过菌藻 席, 其中的一部分铯将被菌藻席中的菌株 *Thermus* sp. TibetanG7 所吸附. 而温泉上下游水体中铯离子含量 的差异至少有一部分是由此而引起的.

栖热菌属的细菌常常是大陆温泉中的优势种群 ^[9]

归纳起来, 温泉中铯的聚集可以通过以下2个步 骤: 在温泉上游, 随着与温泉水中铯离子的短暂接触, 菌藻席中栖热菌属的菌株快速地吸附铯离子, 这些 吸附了铯离子的细胞随着温泉水向下游流动, 不断 的沉积在菌藻席中. 同时, 随着菌藻席中的生物体与 温泉水的长时间的接触, 这些生物体也能吸附和吸 收一部分铯离子, 从而导致铯离子在温泉中的富集. 当然, 在温泉中, 二氧化硅胶体对铯的吸附也是应该 考虑的.

图 9 温泉区铯硅华中不同类型的二氧化硅沉积颗粒

地热区的微生物常常作为一个活跃的位点,通 过降低反应能量阈值而吸附二氧化硅胶体^[30]. 栖热 菌属的嗜热细菌,能促进温泉水中二氧化硅的沉积 ^[10]. 在温泉的硅华中,通过普通显微镜和扫描电镜, 我们观察到了不同形状的二氧化硅胶体(颗粒状的、 菜花状的和叠层石状的,图 9),而在菌藻席中,我们 也发现了被菌藻席圈捕的大量的二氧化硅胶体颗粒 (图 10).

图 10 温泉区中的菌藻席圈捕了大量的二氧化硅胶体颗粒

这里我们提出一种在温泉区形成铯硅华的可能 的模式:在上游栖热菌属细菌快速地吸附铯离子,吸 附了铯离子的菌体进一步吸附二氧化硅胶体在其表 面(表面正电性的细胞能吸附水体中的负电性的二氧 化硅胶体颗粒),从而形成二氧化硅的颗粒.这些含 铯离子的二氧化硅颗粒随着水流逐渐地被底部的菌 藻席通过物理、化学和/或生物作用吸附.随着时间的 推移,这种菌藻席逐渐地被压实,并变质成岩.

致谢 黄力和董志扬博士在细菌分离和培养中给予了帮助, 葛军在野外采样中给予了帮助, S.A. Shepherd 博士帮助修改了英文稿, 在此一并感谢.

- Gillan D C, Ridder De C. Accumulation of a ferric mineral in the biofilm of Montacuta ferruginosa (Mollusca, Bivalvia). Biomineralization, bioaccumulation, and inference of paleoenvironments. Chem Geol, 2001, 177: 371-379[DOI]
- 2 Yee N, Phoenix V R, Konhauser K O, et al. The effect of cyanobacteria on silica precipitation at neutral pH: Implications for bacterial silicification in geothermal hot springs. Chem Geol, 2003, 199: 83-90[DOI]

- 3 Widdel F, Schnell S, Heising S, et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature, 1993, 362: 834-836[DOI]
- 4 Watler M R, Bauld J, Brock T D. Microbiology and morphogenesis of columnar stromatolites (Conophyton, Vacerrilla) from hot springs in Yellowstone National Park. In: Stromatolites, Walter M R, eds. Amsterdam: Elsevier Publ Co, 1976. 273—310
- 5 Avery S V. Caesium accumulation by microorganisms: Uptake mechanisms, cation competition, compartmentalization and toxicity. J Ind Microbiol, 1995, 14(2): 76-84[DOI]
- 6 Hu H, Wang R C, Zhang A C, et al. Compositional heterogeneity and magmatic hydrothermal evolution of pollucite in No. 3 rare metal pegmatite dyke of Altay, Xinjiang. Miner Depos, 2004, 23(4): 411-421
- 7 郑绵平,向军,魏新俊,等.一种新型的铯矿石.地质论评,1986, 32(3):314—315
- 8 郑绵平, 王秋霞, 多吉, 等. 水热成矿新类型——西藏铯硅华矿 床. 北京: 地质出版社, 1995. 114
- 9 Inagaki F, Motomura Y, Doi K, et al. Silicified microbial community at Steep Cone hot spring, Yellowstone National Park. Microb Environ, 2000, 16: 125–130[DOI]
- 10 Inagaki F, Motomura Y, Ogata S. Microbial silica deposition in geothermal hot waters. Appl Microbiol Biotechnol, 2002, 60: 605-611
- 11 Mountain B W, Benning L G, Graham D J. Biomineralization in New Zealand geothermal areas. Proceedings 23th NZ Geothermal Workshop, 2001, 27-32
- 12 Phoenix V R, Konhauser K O, Adams D G, et al. Role of biomineralization as an ultraviolet shield: Implications for Archean life. Geol Soc Am, 2001, 29(9): 823-826
- 13 Bange G G J, Overstreet R. Some observations on absorption of cesium by excised barley roots. Plat Physiol, 1960, 35: 605-608
- 14 Epstein R, Rains D W, Elzam OE. Resolution of dual mechanism of potassium absorption by barley roots. Proc Natl Acad Sci USA, 1963, 49: 684—692
- 15 Avery S V, Codd G A, Gadd G M. Transport kinetics, cation inhibition and intracellular location of accumulated caesium in the green microalga *Chlorella salina*. J Gen Microbiol, 1993, 139: 827–834
- 16 Avery S V, Codd G A, Gadd G M. Salt-stimulation of caesium accumulation in the euryhaline green microalga *Chlorella salina*: potential relevance to the development of a biological Cs-removal process. J Gen Microbiol, 1993, 139: 2239—2244
- 17 Maathuis F J M, Sanders D. Mechanisms of potassium absorption

by higher plants roots. Physiol Plant, 1996, 96: 158-168[DOI]

- 18 Smolders E, Vandenbrande K, Merckx R. Concentration of ¹³⁷Cs and K in soil solution predict the plant availability of ¹³⁷Cs in soils. Environ Sci Technol, 1997, 3: 3432—3438[DOI]
- 19 Sheahan J J, Ribeiro-Nieto L, Sussman M R. Cesium-insensitive mutans of Arabidopsis thaliana. Plant J, 1993, 3: 647–656
- 20 Sacchi G A, Espen L, Nocito F, et al. Cs⁺ uptake in subapical maize roots segments: Mechanism and effects on H⁺ release, transmembrane electric potential and cell pH. Plant Cell Physiol, 1997, 38: 282–289
- 21 Avery S V, Codd G A, Gadd G M. Replacement of cellular potassium by cesium in *Chlorella emersonii*. Differential sensitity of photoautotrophic and chemoheterotrophic growth. J Gen Microbiol, 1992, 138: 69-76
- 22 Heredia M A, Zapico R, Garcia-Sánchez M J, et al. Effect of calcium, sodium and pH on biosorption of radiocesium by *Riccia Fluitans*. Aquat Bot, 2002, 74: 245–256[DOI]
- 23 王海雷.西藏地热区微生物对铯的吸附及其对铯硅华成矿的贡献.博士学位论文,北京:中国地质科学院,2006.99
- Tomioka N, Uchiyama H, Yagi O. Isolation and characterization of cesium-accumulating bacteria. Appl Environ Microbiol, 1992, 58(3): 1019–1023
- 25 Rodríguez-Navarro A. Potassium transport in fungi and plants. Biochim Biophys Acta, 2000, 1469: 1–30
- 26 王海雷,孙凡晶,郑锦平.不同钾浓度培养条件对栖热菌 TibetanG6菌株吸附铯的影响.中国科学C辑:生命科学,2005, 35(6):513—518
- 27 Rubio F, Santa-María G E, Rodríguez-Navarro A. Cloning of Arabidopsis and barley cDNAs enconding HAK potassium transporters in root and shoot cells. Physiol Plant, 2000, 109: 34– 43[DOI]
- 28 White P J. The molecular mechanism of sodium influx to root cells. Trends Plant Sci, 1999, 4: 245—246[DOI]
- 29 Avery S V, Codd G A, Gadd G M. Caesium accumulation and interactions with other monovalent cations in the *Cyanobacterium Synechocystis* PCC 6803. J Gen Microbiol, 1991, 137: 405–413
- 30 Ferris F G, Beveridge T J, Fyfe W S. Iron-silica crystallite nucleation by bacteria in a geothermal sediment. Nature, 1986, 320: 609-611[DOI]