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ABSTRACT 

A new technique is proposed in this paper for real-time monitoring of brain neural activity based on the balloon model. 
A continuous-discrete extended Kalman filter is used to estimate the nonlinear model states. The stability, controlla- 
bility and observability of the proposed model are described based on the simulation and measured clinical data analysis. 
By introducing the controllable and observable states of the hemodynamic signal we have developed a numerical tech- 
nique to validate and compare the impact of brain signal parameters affecting on BOLD signal variation. This model 
increases significantly the signal-to-noise-ratio (SNR) and the speed of brain signal processing. A linear-quadratic 
regulator (LQR) also has been introduced for optimal control of the model. 
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1. Introduction 

In the brain, real-time monitoring of hemodynamic states 
and preserving their stability provides a significant me- 
chanism for fast and reliable brain monitoring especially 
in early detection of seizure and epilepsy or in brain- 
machine interaction studies. In order to measure the neu-
ral activity of the brain the electroencephalography (EEG) 
and magnetoencephalography (MEG) could be applied 
for electrophysiological aspects and the functional mag-
netic resonance imaging (fMRI) and functional near in-
frared spectroscopy (fNIRS) [1] for metabolic aspects. 
When the blood oxygenation changes in the brain, it 
shows that we have a neural activity. So, this is a way to 
track the neural activity by detecting the hemodynamic 
changes in the brain. Blood oxygen level-dependent 
(BOLD) signal shows the brain activity and fMRI and 
fNIRS use this signal to show this activity. Many ex-
perimental observations have provided evidence of the 
deviation of BOLD from linearity [2-7]. With these ob-
servations of nonlinearity of the BOLD response, several 
researchers have attempted to handle nonlinear charac-
terization for these underlying brain processes. In [3], the 
linear model of heomodynamic response presented in [4] 
is extended to cover nonlinear responses using a Volterra 
series expansion. 

At the same time the first compelling model for heomo- 
dynamic signal transduction in fMRI was presented in 
[5], namely the Balloon Model. Several works have 
recently used this physiological model in the analysis of 

fMRI data, in the context of parameter estimation. The 
work presented in [6] uses the Buxton-Fritson model, 
where the Buxton’s balloon model [7] is added with a 
damped oscillator to model the blood flow [8]. They used 
a local linearization transfer function in the Kalman filter 
methodology, allowing physiological noise in addition to 
the measurement noise.  

The work presented in [8] investigates the above 
physiological model plus the integrated version of the 
balloon model [9]. They use a maximum likelihood ap- 
proach for the model based on the optimization of the 
parameter estimation, however only the measurement 
noise is dealt with the system modeling. Models of the 
underlying hemodynamic and physiologic processes 
which give rise to the BOLD response have recently been 
incorporated into a more complete nonlinear system. 
Hemodynamic responses to neuronal activity are observed 
experimentally in fMRI data via the BOLD signal, which 
provides a noninvasive measure of neuronal activity. 

Despite the widespread use of functional neuroimag- 
ing techniques [6,7,11,12], the physiological changes in 
the brain that accompanying neural activation are still 
poorly understood [2-7]. Due to the nonlinear and/or un- 
specified effects of different parameters on BOLD signal 
variation, there is no specific criterion to validate and 
observe the impact of each parameter. 

The highly dependency and correlation of neurons proc- 
essing, metabolic and vascular responses are conceptually 
well known in time and state space [13], but still the de- 
tails on the translation between an ensemble of neurons 
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firing and the ensuing increase in focal cerebral blood 
flow is a controversial issue. The most popular model to 
describe the neural activity according to the data from 
fMRI, is balloon model, which relates BOLD signal to 
the blood flow. This model is a nonlinear hemodynamic 
model and the measurements usually have a noisy be- 
havior. Furthermore, the electromagnetic field produced 
by neurons is very weak and noisy, so the SNR is very 
low. No quantified technique has been proposed yet in 
order to validate and compare the effect of hemodynamic 
parameters. 

We have introduced an efficient hemodynamic state 
stimulation technique at [14] using fNIRS Data with the 
Extended Kalman Filter and Bifurcation Analysis of 
Balloon Model. Here we have used a modified and 
integrated version of the balloon model [7], using state 
space system realization to be easily applied in any 
control system. We prefer to use this particular version of 
the balloon model since it has many degrees of freedom 
comparing to the other models [7,8] and can therefore 
produce a more desired behavior. An extended Kalman 
filter is applied as a reasonable model to estimate the 
nonlinear model states and output of the balloon model to 
extract data from the signal and increase the SNR. By 
introducing the controllable and observable states of the 
hemodynamic signal we have also developed a numerical 
technique to validate and compare the impact of brain 
signal parameters affecting on BOLD signal variation. 

As a consequence, in this paper the proposed model is 
introduced in Section 2. Section 3 presents the simulation 
and experimental results following by analysis and dis- 
cussions on the stability, controllability and observability 
of the proposed system. A linear-quadratic regulator (LQR) 
also has been introduced at the end. 

2. Proposed Model 

2.1. The Extended Balloon Model 

We have introduced an extended balloon model as de- 
picted in Figure 1. The balloon model relates BOLD 
signal to the blood flow. The balloon model is expanded 
by a difference in normalized venous out-flow  out ,f v t  
and normalized arterial inflow  in .f t  The cerebral blood 
flow (CBF) is also considered identical to  inf t  in 
most works [9-13,15]. Conservation of mass then defines 
the change in the normalized blood volume v in the venous 
balloon as follow: 

    
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here 0  is the mean transit time through the compart- 

ment,   (0 - 30 s) indicated the viscoelastic time con- 
stant (inflation) and   (0 - 30 s) is the viscoelastic time 
constant (deflation). 

Equation (1) thereby introduces a fundamental nonlin- 
earity, sufficient to generate all transients of the BOLD 
response. The variation of the normalized [HbR] concen- 
tration (q), can be defined as: 
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     (2) 

The core of the model is the physical necessity to largely 
increase CBF,  inf t  to achieve a small increase in 
oxygen delivery. An increase in cerebral blood flow is 
very closely linked to the underlying neuronal activity 
[9]. Due to the significant noise induced by measure- 
ments we have applied a stochastic hemodynamic system 
model to describe it. A continuous-discrete extended 
Kalman filter is used as a reasonable model to estimate 
the nonlinear states of the balloon model. The Balloon 
model [7] is an input-state-output nonlinear hemodyna- 
mic model with two state variables volume (v) and de-
oxy-hemoglobin content (q). The input to the system is 
blood flow (fin) and the output is the BOLD signal (y). 
The BOLD signal is partitioned into an extra and intravas- 
cular component, weighted by their respective volumes. 
These signal components depend on the deoxy-hemo- 
globin content and render the signal a nonlinear function 
of v and q. 

 

 

Figure 1. Overview diagram of the applied brain hemodynamic 
model. 
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By extending the model to cover the dynamic coupling 
of synaptic activity and flow a complete model, relating 
experimentally induced changes in neuronal activity to 
BOLD signal, obtains. Here we have considered four 
different states include: v cerebral blood volume (CBV), 
q deoxyhaemoglobin content, s flow inducing signal, f, 
CBF. These equations are acquired from the magnetic 
properties of hemoglobin which is diamagnetic for oxy- 
hemoglobin and paramagnetic for deoxy-hemoglobin. 
Using the electromagnetic equations around a cylinder 
and variation with oxygen saturation, the balloon model 
can be obtained. The neural activity signal u is the input 
of the model. The mathematical expression of hemody- 
namic balloon model is as follows:   

  
T

x v q s f  

2.2. The Extended Kalman Filter 

Extended Kalman filter is a nonlinear version of Kalman 
filter using for nonlinear dynamic systems, applied to 
estimate the states of balloon model. The nonlinear sto- 
chastic dynamical system is described by following state 
space equation:  
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This model includes perturbation and measurement 
noise, because of weak signal of fMRI. In this state space 
equation,  x t  is the state which is dependent on time, 
 u t  is input stimulus,  w t

k

 is the perturbation noise (a 
white noise) which has mean 0 and variance Q. k  is 
measurement noise which is a white noise with mean 0 
and variance R. The k

v

 x x t  and   ,w t  k  are in- 
dependent Gaussian sequences having the following 
properties: 
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       (9b) And output which is BOLD signal is: 

    0 1 21 1y V a q a v              (6) 

We can measure a new parameter   ,m t  which is 
CMRO2 normalized to baseline too: 

The prediction is established as: 
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In this model 0  is baseline oxygen extraction frac- 
tion, 0  is baseline blood volume, 1  is weight for de- 
oxyHb change and 2  is the weight for blood volume. 

0

E
V a

a
  is the mean transit time of the venous compartment, 
α is the stiffness component of the balloon model, s  is 
the signal decay time constant, f  is the autoregulatory 
time constant, and ɛ is the neuronal efficacy. Now, we 
can describe the state space equations as a nonlinear dy- 
namic system. The state of the system is a vector: 
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The Jacobian matrix and 
H

x




 are defined as follow: 
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The input signal u in the balloon model is the neural 
activity and it is created by a square stimulus signal  a t . 
The relation between the neural activity and the stimulus 
signal can be stated by: 

     u t a t I t              (14) 

   d

d u

ku t I tI

t 


             (15) 

where  is the stimulus step signal and  a t  I t  is an 
inhibitory feedback signal and k is a gain factor. u  is a 
time constant. So, first the neural activity  will be 
produced from  and then use neural activity as an 
input to the balloon model. 

 u t
 a t

3. Simulation and Experimental Results 

3.1. Simulation and Measurement Setup 

The balloon model is implemented in Simulink and a 
reasonable neural activity input is produced. Then the 
output is plotted as a BOLD signal. A white noise is 
added to this signal in order to mimic a noisy BOLD 
signal. Using proposed extended Kalman filter, the out- 
put due to the noisy signal follows the measurements 
(Figure 2).  

The proposed system is verified using measured clini- 
cal data also plotted in Figure 3. The extended Kalman 
filter is used to estimate the BOLD signal. Figure 4 
shows the simulated, measured, and the estimated BOLD 
signals. The effect of s  is very important especially on 
the time of reaching to steady state. For higher s  the 
system will reach to steady state later and, so if our pur- 
pose is to reach to steady state condition, we should have 
a small s . As it is supposed when the initialized vari- 
ance ( 0 ) increases that is the initial conditions are un- 
known and it causes that the contribution of measure- 
ments in the update equation increases which results the 
faster convergence. For higher 0  especially when the 
system starts, Kalman gain is more than the case of the 
lower 0 . The convergence is slower when 0





   is low 
which means we trust to the initial values. Due to the 
relationship between R and Kalman gain, when the level 
of the noise at the measured value increases(R increases) 
the gain will decrease and the contribution of measure- 
ment in the update equation will decrease. Therefore 
slower convergence is a direct result of the higher noise 
level at the output. 

3.2. Bifurcation Analysis 

Bifurcation analysis investigates the stability of the sys- 
tem under change of parameters. Thus, it is important to 

first investigate nonlinear stability of the system and then 
use MatCont for Bifurcation analysis.  
 

 
(a) 

 
(b) 

Figure 2. Dynamics of the hemodynamic model: (a) The 
BOLD signal and its estimation; (b) the estimation error of 
BOLD signal. 
 

 
(a) 

 
(b) 

Figure 3. (a) Real experimental measurement of output data 
and its estimation; (b) the Experimental error. 
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(a) 

 
(b) 

 
(c) 

Figure 4. (a) The simulated; (b) measured; (c) the estimated 
BOLD signals. 
 

For bifurcation analysis first the equilibrium point 
should be calculated as follow: 
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As we see the important parameters for the equilib- 
rium point are 0 , E  , f ,   and we have investi- 
gated their effects in the bifurcation analysis. Now, we 
put this equilibrium point in the Jacobian matrix and then 
find the eigenvalues of that matrix to investigate the 
nonlinear stability of balloon model for different pa- 
rameters. 

The eigenvalues of the Jacobian matrix in this case 
are: 
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As we see all of the eigen-values are negative and this 
system for every choice of parameters is always stable. 
This is very interesting achievement regarding to the 
stability characteristics of the proposed system to de- 
scribe the hemodynamic parameters. These eigenvalues 
depend on  , s , 0 , f ,   and independent f 

0E . For the bifurcation analysis, in this paper MatCont is 
used to analyze stability of the system with change of 
different effective parameters of the system. Figure 4 
compares the simulated and estimated BOLD signals 
with the measurement data.  

o

3.3. Stability 

Bifurcation analysis shows that the nonlinear stability of 
balloon model is always guarantied. Here the stability is 
also represented based on the linearization of the balloon 
model. This is a simpler model of stability when all of 
the eigenvalues of the system ( 1 2 3 4, , ,    ) are negative. 
In this situation, the system is linearizable and it is possi- 
ble to linearize the state space equation and then use the 
definition of stability, observability, and controllability in 
the linear case. The linear model is in the form of: 

x Ax Bu
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and  ,e ex u  is the equilibrium point. 
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The eigenvalues of A are: 
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All of these eigenvalues are negative and equal to the 
case of nonlinear stability analysis when u = 0. So, the 
system is stable. The Bode diagram and the Root-Locus 
of the open-loop and closed-loop systems are shown in 
Figure 5. 

(a) 
3.4. Controllability and Observability 

The linear and nonlinear controllability and observability 
has been investigated at this section. For linear controllabil- 
ity and observability based on the controllability matrix 

2 3B ABA BA B   and observability index   2 3C CACA CA ,
T
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we can determine their determinant to investigate if the 
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minant of each matrix is as followed: 
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For nonlinear controllability and observability, the 
nonlinear balloon model is directly investigated. For 
nonlinear controllability we have:  
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Figure 5. Stability analysis using (a) Bode diagram; (b) open- 
loop root locus; (c) closed-loop root locus. (23) 



E. KAMRANI  ET  AL. 134 

For nonlinear observability we have: 

 

 
 
 

0

1

2

3

13 1411 12

23 2421 22

33 3431 32

43 4441 42

( )

f

f

f

f

L h h

L h h
L x

hL h

hL h

a aa a

a aa a
A

a aa a

a aa a

                      
 
 
 
 
 
 




           (24) 
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The observability and controllability of linear and 
nonlinear systems depend on all previously introduced 
parameters, so they have been calculated in equilibrium 
point for all of these parameters. The calculation results 
show that for these values the system is controllable and 
observable. 

3.5. The LQR Controller Design 

As the system is controllable we can design an LQR con- 
troller. So, a full state feedback  with a proper 
gain vector k can effectively control the system in a 
neighborhood of the equilibrium point. We consider the 
output 

u k  x

0 2 1y V a v a q   to be matched with the experi- 
mental results. The input, output and the states of the 
system are shown in Figures 6 and 7, when the LQR 
controller is applied. 

4. Conclusions 

A new model for real-time monitoring of brain neural 
activity is proposed in this paper based on the balloon 
model. The stability, controllability and observability of 
the proposed model are described based on the simula- 
tion and measured clinical data analysis. By introducing 
the controllable and observable states of the hemody- 

namic signal we have developed a numerical technique 
to validate and compare the impact of brain signal pa- 
rameters affecting on BOLD signal variation. This model 
increases significantly the SNR and the speed of brain 
signal processing. Up to our knowledge this is the first 
work on evaluation of these control parameters and in-
troducing their practical impacts on clinical application. 
Surprisingly we realized that the system is always stable 
independent from any variation in blood flow and 
HbR/HbO variation. 
 

 
(a) 

 
(b) 

Figure 6. Input (a) and output (b) signals of the LQR Con-
troller. 
 

 
(a) 
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(b) 

 
(c) 

 
(d) 

Figure 7. States of the system when using LQR Control. 
 

The observability and controllability characteristics are 
introduced as significant factors to be considered as an 
evaluation tool to verify the preference of different hemo- 
dynamic factors. The preferred factors then can be con- 
sidered based on their specified priority for further diag- 
nosis and monitoring in clinical applications. This model 
can also be efficiently applied in any monitoring and 
control platform include brain and for study of hemody- 
namic and brain imaging modalities such as pulse-oxi- 

REFE

metry and fNIRS. 
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